
Introduction to scientific computing
with PETSc

Portable, Extensible Toolkit for Scientific Computation

Simone Bnà – s.bn@cineca.it
SuperComputing Applications and Innovation Department

Outline

 Introduction

 Getting Started

 VEC and Mat

 KSP, SNES and TS

 Grid Manipulation and Discretization

 Debugging and Profiling

2

Introduction

PETSc in a nutshell

 Serial and parallel computation

 Linear and NonLinear solvers

 Support for Finite Difference and Finite Elements PDE

discretizations

 Structured and Unstructured topologies

4

PETSc – Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

What is in PETSc?

 Linear system solvers (sparse/dense, iterative/direct)

 Non linear system solvers

 Tools for distributed vectors and matrices

 Support for debugging, profiling and graphical output

PETSc class hierarchy

6

PETSc numerical components

7

External Packages

 Dense linear algebra: Scalapack, Plapack

 Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist

 Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party

 ODE solvers: PVODE

 Eigenvalue solvers (including SVD): SLEPc

 Optimization: TAO

PETSc design concepts

Goals

• Portability: available on many platforms, basically anything that

has MPI

• Performance

• Scalable parallelism

• Flexibility: easy switch among different implementations

Approach

• Object Oriented Delegation Pattern : many specific

implementations of the same object

• Shared interface (overloading):
 MATMult(A,x,y); // y <- A x
 same code for sequential, parallel, dense, sparse

• Command line customization

Drawback

• Nasty details of the implementation hidden

9

PETSc object oriented model

10

 (Almost) all PETSc objects are essentially delegator objects

 From Wikipedia: “...an object, instead of performing one of its stated tasks,

delegates that task to an associated helper object..."
http://en.wikipedia.org/wiki/Delegation_pattern

 Example with a XXX object
#include <petscxxx.h> //Includes the public interface for XXX and other stuff

PetscXXX xxx;

XXXCreate(....,&xxx); //Initializes the XXX object (no implementation yet)

XXXSetType(xxx,ANY_XXX_TYPE); //DELEGATION: Sets specific implementation

XXXSetOption(xxx,ANY_XXX_OPTION,XXX_OPTION_VALUE); //Sets options in DB

XXXAnyCustom(xxx,...); //Any XXX customization available through the interface

XXXSetFromOptions(xxx); //Allows options and command line customization

XXXSetUp(xxx); //Calls specific setup (not all objects need it)

 XXXSetType calls the specific creation routine

XXXCreate_ANYXXXTYPE(...).

 If XXXSetType is called at a later time, the old delegate is freed and xxx can

be reused with a different low-level implementation.

 XXXSetUp, if needed, closes the setup procedure: xxx can then be used.

 Users can register their own delegates/classes using

 XXXRegister(...,XXXCreate_MYTYPE)

http://en.wikipedia.org/wiki/Delegation_pattern
http://en.wikipedia.org/wiki/Delegation_pattern
http://en.wikipedia.org/wiki/Delegation_pattern

PETSc and Parallelism

 All objects in PETSc are defined on a communicator; they can only

interact if on the same communicator

 PETSc is layered on top of MPI: you do not need to know much MPI when

you use PETSc

 Parallelism through MPI (Pure MPI). No support for threaded code that

made Petsc calls (OpenMP, Pthreads) since PETSc is not thread-safe.

 PETSc supports to have individual threads (OpenMP or others) to each

manage their own (sequential) PETSc objects (and each thread can

interact only with its own objects).

 Transparent: same code works sequential and parallel.

 User can use shared memory programming

Getting Started

PETSc from a user perspective

13

 Home page

http://www.mcs.anl.gov/petsc/index.html

 User manual

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

 Public functions for XXX class (Vec, Mat, KSP, …) accessible at

http://www.mcs.anl.gov/petsc/petsc-

current/docs/manualpages/XXX/index.html

 Each class has its own set of tutorials which can be compiled and run

USE THEM TO LEARN HOW TO DEVELOP WITH PETSc!

 Always use a debug version of PETSc when developing.

 No need to download and install supported external packages separately:

PETSc will do this for you if the needed packages are requested at

configure time.

 An example:

$./configure --download-mpich=1 --download-mumps=1

http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html

PETSc from a user perspective

14

Writing PETSc programs:

initialization and finalization

PetscInitialize(int *argc, char ***args, const char

options_file[], const char help_string[])

 Setup of static data

 Registers all PETSc specific implementations (of all classes)

 Setup of services (logging, error-handling, profiling)

 Setup of MPI (if it is not already been initialized)

PetscFinalize()

 Calculates logging summary

 Checks for memory leaks (already allocated mem, if

required)

 Finalizes MPI (if PetscInitialize() began MPI)

 Shutdowns all PETSc services

15

A simple hello_world.c program (C language)

#include "petscsys.h"

int main(int argc,char **args) {

 PetscErrorCode ierr;

 PetscMPIInt rank;

 ierr = PetscInitialize(&argc, &args,(char *)0, NULL);CHKERRQ(ierr);

 ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

 ierr = PetscPrintf(PETSC_COMM_SELF,

 "Hello by process %d!\n",rank);CHKERRQ(ierr);

 ierr = PetscFinalize();

 return 0;

}

16

A simple hello_world.f90 program (Fortran

language)

17

#include "finclude/petsc.h"

program main

PetscErrorCode :: ierr

PetscMPIInt :: rank

character(len=6) :: num

character(len=30) :: hello

call PetscInitialize(PETSC_NULL_CHARACTER,ierr);CHKERRQ(ierr)

call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr);CHKERRQ(ierr)

write(num,*) rank

hello = 'Hello from process '//num

call PetscPrintf(PETSC_COMM_SELF, hello//achar(10), ierr);CHKERRQ(ierr)

call PetscFinalize(ierr)

end program

 PETSc Vectors

Vectors

What are PETSc vectors?

• Represent elements of a vector space over a field (e.g. Rn)

• Usually they store field solutions and right-hand sides of PDE

• Vector elements are PetscScalars (there are no vectors of integers)

• Each process locally owns a subvector of contiguously numbered

global indices

Features

• Vector types: STANDARD (SEQ on one process and MPI on several),

PTHREAD, VIENNACL and CUSP

• Supports all vector space operations

• VecDot(), VecNorm(), VecScale(), …

• Also unusual ops, like e.g. VecSqrt(), VecReciprocal()

• Hidden communication of vector values during assembly

• Communications between different parallel vectors

19

Crate and Destroy a Vector

Everything in PETSc is an object, with create and destroy calls:

VecCreate(MPI_Comm comm, Vec *v)

– Automatically generates the appropriate vector type
(sequential or parallel) over all processes in comm

VecDestroy(Vec *x)

– Destroys the Vec object

/* C */

Vec V;

ierr = VecCreate(MPI_COMM_SELF,&V); CHKERRQ(ierr);

ierr = VecDestroy(&V); CHKERRQ(ierr);

! Fortran
Vec V
call VecCreate(MPI_COMM_SELF,V,e)
CHKERRQ(ierr)
call VecDestroy(V,e)
CHKERRQ(ierr);

More about vectors

A vector object is not completely created in one call:

VecSetSizes(Vec v, PetscInt m, PetscInt M)

– Sets local and global sizes

Other ways of creating a vector (by duplication):

VecDuplicate(Vec old, Vec *new)

– Duplicates the vector (doesn't copy values)

Vector Parallel layout

VecSetSizes(Vec v, PetscInt m, PetscInt M)

Global size M or local size m can be specified as PETSC_DECIDE but

cannot be both. If one processor calls this function with M equal to

PETSC_DECIDE then all processors must, otherwise the program will

hang.

Setting values

VecSet(Vec x, PetscScalar v)

 - set vector to constant value

VecSetValue(Vec x, PetscInt idx, PetscScalar v,

 InsertMode mode)

 - Set a single entry into a vector

VecSetValues(Vec x, PetscInt n, PetscInt *idx,

 PetscScalar *v, InsertMode mode)

 - Insert or add values in certain locations of a vector (global

indexing!)

* C *\
i = 1; v = 3.14;
VecSetValues(x,1,&i,&v,INSERT_VALUES);

ii[0] = 1; ii[1] = 2; vv[0] = 2.7; vv[1] = 3.1;
VecSetValues(x,2,ii,vv,INSERT_VALUES);

23

!Fortran
i = 1; v = 3.14;
call VecSetValues(x,1,i,v,INSERT_VALUES,ierr,e)

ii(1) = 1; ii(2) = 2; vv(1) = 2.7; vv(2) = 3.1
call VecSetValues(x,2,ii,vv,INSERT_VALUES,ierr,e)

Vector assembly

VecAssemblyBegin(Vec x)

…

VecAssemblyEnd(Vec x)

A three step process

 VecSetValues can be called as many times as the user
wants to tell PETSc what values are to be inserted (or
added to existing ones) and where

 VecAsseblyBegin starts communications to ensure that
values end up where needed (allow other operations, such
as some independent computation, to proceed).

 VecAssemblyEnd completes the communication

24

Working with local vectors

Setting values is done without user access to the stored data.
Getting values is often not necessary since many operations provided.
However, sometimes is more efficient to directly access the local
internal data array of a PETSc Vec(local only).

VecGetArray(Vec x, PetscScalar *[])

 Access the internal array

VecRestoreArray(Vec x, PetscScalar *[])

 You must return the array to PETSc when you have done
computing with local data

For most common uses (e.g. standard PETSc vectors), these routines are

inexpensive and do not involve a copy of local data. They simply returns a

pointer to a contiguous array that contains this processor's portion of the vector

data. If the underlying vector data is not stored in a contiguous array this

routine will copy the data to a contiguous array and return a pointer to that.

25

Working with local vectors

/* C */

...

PetscScalar * xx_v;

...

ierr = VecGetArray(x,& xx_v);

a = xx_v[3];

ierr = VecRestoreArray(x,xx_v);

...

!Fortran

...

PetscScalar, pointer :: xx_v(:)
...

call VecGetArrayF90(x,xx_v,ierr)

a = xx_v(3)

call VecRestoreArrayF90(x,xx_v,ierr)

...

26

Other basic Vector interface APIs

VecSetType(Vec v, VecType type)

– Sets vector type (defines the delegated object)

VecSetFromOptions(Vec v)

– Configures the vector from the options database

VecGetSize(Vec v, PetscInt *size)

– Gets global size of v

VecGetLocalSize(Vec v, PetscInt *size)

– Gets local size of v

VecView(Vec x, PetscViewer v)

– Prints the content of the vector using the viewer object

VecCopy(Vec x, Vec y)

– Copies vector values

27

Numerical vector operations

28

Vector – Example 1

#include “petscvec.h”

...

Vec x;

PetscInt i,N;

PetscMPIInt rank;

PetscScalar value=1.0;

PetscErrorCode ierr;

...

ierr = VecGetSize(x, &N);CHKERRQ(ierr); /* Global size */

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr)

if (rank == 0) { /* Only rank 0 sets all values into the vector */

 for (i=0; i<N; i++) {

 ierr = VecSetValue(x,i,value,INSERT_VALUES);CHKERRQ(ierr);

 }

}

/* data is distributed to the other processes */

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */

29

Vector – Example 2

#include “petscvec.h”

...

Vec x;

PetscInt i,low,high;

PetscScalar value=1.0;

PetscErrorCode ierr;

...

ierr = VecGetOwnershipRange(x, &low, &high);CHKERRQ(ierr);

for (i=low; i<high; i++) { /* each process fill its own part */

 ierr = VecSetValue(x, i, value, INSERT_VALUES);CHKERRQ(ierr);

}

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */

30

Vector – Example 3

#include “petscvec.h”

...

Vec vec;

PetscMPIInt rank;

PetscScalar *avec;

...

ierr = VecCreate(PETSC_COMM_WORLD,&vec);CHKERRQ(ierr);

ierr = VecSetSizes(vec,PETSC_DECIDE,100);CHKERRQ(ierr);

ierr = VecSetType(vec,VECSTANDARD);CHKERRQ(ierr);
...

ierr = VecGetArray(vec, &avec);CHKERRQ(ierr);

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);

ierr = PetscPrintf(PETSC_COMM_SELF,“First element of local array for rank

%d is %f\n”,rank,avec[0]);CHKERRQ(ierr);

ierr = VecRestoreArray(vec, &avec);CHKERRQ(ierr);

...

31

PETSc Matrices

Matrices

What are PETSc matrices?

• Roughly represent linear operators that belong to the dual of
a vector space over a field (e.g. Rn)

• In most of the PETSc low-level implementations, each process
logically owns a submatrix of contiguous rows

Features

• Supports many storage formats

• AIJ, BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-only) ...

• Data structures for many external packages

• MUMPS (parallel), SuperLU_dist (parallel), SuperLU,
UMFPack

• Hidden communications in parallel matrix assembly

• Matrix operations are defined from a common interface

• Shell matrices via user defined MatMult and other ops

33

Matrix Creation I

Matrices are PETSc objects like vectors and can be consequently
created and destroyed

MatCreate(MPI_Comm comm, Mat *A)

– Automatically generates the appropriate matrix type
(sequential or parallel) over all processes in comm.

MatDestroy(Mat *A)

– Destroys the Mat object

34

Matrix Creation II

Matrices are PETSc objects like vectors and can be consequently
created and destroyed

MatCreate(MPI_Comm comm, Mat *A)

– Automatically generates the appropriate matrix type
(sequential or parallel) over all processes in comm.

Several more aspects to creation:
MatSetType(Mat A, Mat_Type=MATSEQAIJ or MATMPIAIJ)

MatSetSizes(Mat A, int m, int n, int M, int N)

MatSeqAIJSetPreallocation(Mat A, PetscInt nz,

PetscInt nnz[])

Local or global size can be PETSC_DECIDE (as in the vector case)

MatSetFromOptions(Mat A)

– Configures the matrix from the options database.

MatDuplicate(Mat B, MatDuplicateOption op, Mat *A)

– Duplicates a matrix (including or not its nonzeros).

35

Matrix Creation (all in one)

MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt

n, PetscInt nz, const PetscInt nnz[], Mat *A)

MatCreateMPIAIJ(MPI_Comm comm, PetscInt m, PetscInt

n, PetscInt M, PetscInt N, PetscInt d_nz, const

PetscInt d_nnz[], PetscInt o_nz, const PetscInt

o_nnz, Mat *A)

36

Matrix AIJ format

37

The default matrix representation within PETSc is

the general sparse AIJ format (Yale sparse

matrix or Compressed Sparse Row, CSR)

 The nonzero elements are stored by rows

 Array of corresponding column numbers

 Array of pointers to the beginning of each row

Matrix memory preallocation

• PETSc matrix creation is very flexible: No preset sparsity pattern

• Memory preallocation is critical for achieving good performance

during matrix assembly, as this reduces the number of allocations

and copies required during the assembling process. Remember:

malloc is very expensive (run your code with –memory_info, -

malloc_log)

• Private representations of PETSc sparse matrices are dynamic data

structures: additional nonzeros can be freely added (if no

preallocation has been explicitly provided).

• No preset sparsity pattern, any processor can set any element:

potential for lots of malloc calls

• Dynamically adding many nonzeros

 requires additional memory allocations

 requires copies

→ kills performances!

38

Preallocation

of a sequential sparse matrix (1/2)

MatSeqAIJSetPreallocation(Mat A, Petscint nz,

 PetscInt *nnz)

• Dynamic preallocation if (nz == 0 && nnz ==

PETSC_NULL)

• Quick and dirty preallocation if nz is set to the maximum

number of nonzeros in any row .

 Fine if the number of nonzeros per row is roughly the same

throughout the matrix

39

Preallocation

of sequential sparse matrix (2/2)

• A finer preallocation

 nnz[0] = <nonzeros in row 0>

 ...

 nnz[m] = <nonzeros in row m>

• If one underestimates the actual number of nonzeros in a given

row, then during the assembly process PETSc will complain

unless otherwise told.

40

Preallocation

of a parallel sparse matrix (1/2)

MatMPIAIJSetPreallocation(Mat A,

 Petscint dnz,

 PetscInt *dnnz,

 Petscint onz,

 PetscInt *onnz)

• Same logic as before for dynamic allocation

• dnz and dnnz specify preallocation for the diagonal block

• onz and onnz specify preallocation for the off-diagonal block

41

Preallocation

of a parallel sparse matrix (2/2)

Process 0

dnz=2, onz=2

dnnz[0]=2, onnz[0]=2

dnnz[1]=2, onnz[1]=2

dnnz[2]=2, onnz[2]=2

Process 1

dnz=3, onz=2

dnnz[0]=3, onnz[0]=2

dnnz[1]=3, onnz[1]=1

dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4

dnnz[0]=1, onnz[0]=4

dnnz[1]=1, onnz[1]=4 42

P0

P1

P2

Each process logically owns a matrix subset of contiguously numbered global
rows. Each subset consists of two sequential matrices corresponding to
diagonal and off-diagonal parts.

Preallocation of a parallel sparse matrix 3

y A xA + B xB

• xB needs to be communicated
• A xA can be computed in the

meantime

Algorithm

• Initiate asynchronous sends/receives

for xB

• compute A xA

• make sure xB is in
• compute B xB

The splitting of the matrix storage into
A (diag) and B (off-diag) part, code for
the
sequential case can be reused.

43

Querying parallel structure

PETSc Matrices are partitioned by block rows:

MatGetSize(Mat A, PetscInt *M, PetscInt* N)

– Gets global number of rows and columns

MatGetLocalSize(Mat A, PetscInt *m, PetscInt* n)

– Gets local number of rows and columns (output can be

implementation dependent)

MatGetOwnershipRange(Mat A, PetscInt *m, PetscInt*

n)

– Gets the first and last (+1) of locally owned rows

MatGetOwnershipRanges(Mat A, const PetscInt

**ranges)

– Gets start and end rows of each process sharing the matrix

44

Setting values

Set one value:

MatSetValue(Mat A, PetscInt idxm, PetscInt idxn,

 PetscScalar value,InsertMode mode)

Insert mode can be INSERT_VALUES, ADD_VALUES

Set block of values:

MatSetValues(Mat A, PetscInt m, PetscInt idxm[],

 PetscInt n, PetscInt idxn[],

 PetscScalar values[],

 InsertMode mode)

Mat A is row oriented.

45

Matrix assembly

Like PETSc vectors, PETSc Mat assembling process involves calls to

(independent of parallelism)

MatAssemblyBegin(Mat A, MatAssemblyType type)

…

MatAssemblyEnd(Mat A, MatAssemblyType type)

46

Getting Values

• Values are often not needed: many matrix operations supported

• Matrix elements can only be obtained locally.

• They are normally used for inspection only, they are expensive.

MatGetRow(Mat A, PetscInt row, PetscInt* ncols,

 const PetscInt* cols[], const PetscScalar*

 vals[])

MatRestoreRow(…)

MatGetValues(Mat A, PetscInt m, PetscInt* idxm[],

 PetscInt n, const PetscInt* idxn[],

 Petscscalar* vals[])

47

Other Matrix Type

• Block Matrix

MatCreateBAIJ(MPI_Comm comm, PetscInt bs, PetscInt

m, PetscInt n, PetscInt M, PetscInt N, PetscInt

d_nz, const PetscInt d_nnz[], PetscInt o_nz, const

PetscInt o_nnz, Mat *A)

• Creates a sparse parallel matrix in block AIJ format (more

than one dof per node)

• Dense Matrix:
MatCreateSeqDense(MPI_Comm comm, PetscInt m,

PetscInt n, PetscScalar* data[], Mat *A)

• Creates a sequential dense matrix that is stored in column
major order (the usual Fortran 77 manner). Many of the
matrix operations use the BLAS and LAPACK routines.

MatCreateDense(MPI_Comm comm, PetscInt m, PetscInt

n, PetscInt M, PetscInt N, PetscScalar* data[], Mat

*A)
48

Matrix Viewers

MatView(Mat A, PetscViewer v)

– Prints matrix content using the viewer object

MatView(A,0); (Fortran: 0 -> PETSC_NULL_INTEGER)

row 0: (0, 1) (2, 0.333333) (3, 0.25) (4, 0.2)
row 1: (0, 0.5) (1, 0.333333) (2, 0.25) (3, 0.2)

• Shorthand for MatView(A,PETSC_VIEWER_STDOUT_WORLD);

• also invoked by -mat_view

• Sparse: only allocated positions listed

• other viewers: for instance -mat_view_draw (X terminal)

49

General Viewers

Any PETSc object (Vec, Mat, Ksp, …) can be viewed using a
PetscViewer.
Let’s see an example with a PETSc Matrix.

..

PetscViewer viewer;

PetscViewerBinaryOpen(PETSC_COMM_WORLD, “matdata”,

FILE_MODE_WRITE, &viewer):

PetscViewerSetFormat(viewer, PETSC_VIEWER_BINARY_MATLAB)

MatView(A, viewer);

PetscViewerDestroy(viewer);

...

50

Numerical Matrix Operations

51

Matrix – Example
#include “petscmat.h”

...

Mat A;

PetscInt cols[3], i, istart, iend;

PetscScalar vals[3];

PetscErrorCode ierr;

...

/* suppose A has been already created and have its type set */

ierr = MatGetOwnershipRange(A,&istart,&iend);CHKERRQ(ierr);

...

vals[0] = -1.0; vals[1] = 2.0; vals[2] = -1.0; /* 1D laplacian stencil */

for (i=istart; i<iend; i++) {

 cols[0] = i-1; cols[1] = i; cols[2] = i+1; /* 1D laplacian stencil */

 ierr = MatSetValues(A,1,&i,3,cols,value,INSERT_VALUES);CHKERRQ(ierr);

}

ierr = MatAssemblyBegin(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);

/* all processes contribute to 0,0 entry */

ierr = MatSetValue(A,0,0,vals[0],ADD_VALUES);CHKERRQ(ierr);

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

52

Petsc linear solvers: KSP & PC

Why using iterative solvers?

• Solve a linear system A x = b using the Gauss Elimination method

can be very time-resource consuming

• Alternatives to direct solvers are iterative solvers

• Convergence of the succession is not always guarateed

• Possibly much faster and less memory consuming

• Basic iteration: y <- A x executed once x iteration

• Also needed a good preconditioner: B ≈ A-1

54

Iterative solver basics

• KSP (K stands for Krylov) objects are used for solving linear

systems by means of iterative methods.

• Convergence can be improved by using a suitable PC object

(preconditoner).

• Almost all iterative methods are implemented.

• Classical iterative methods (not belonging to KSP solvers) are

classified as preconditioners

• Direct solution for parallel square matrices available through

external solvers (MUMPS, SuperLU_dist). Petsc provides a built-in

LU serial solver.

• Many KSP options can be controlled by command line

• Tolerances, convergence and divergence reason

• Custom monitors and convergence tests

55

PETSc Iterative Solver Basics

56

KspCreate(MPI_Comm comm, KSP* inksp)

KspDestroy(KSP* inksp)

KSPSetOperators(KSP ksp, Mat amat, Mat pmat)

KspSolve(KSP ksp, Vec b, Vec x)

/* optional */ KSPSetUp(KSP ksp)

Solver Type

57

KspSetType(KSP ksp, KSPType ksptype)

The default KSP type is GMRES with a restart of 30, using modified

Gram-Schmidt orthogonalization.

KSP can be controlled from the command line:

KspSetFromOptions(KSP ksp)

/* right before KSPSolve or KSPSetUp */

then options -ksp.... are parsed.

• type: -ksp_type gmres -ksp_gmres_restart 20
• -ksp_view

Solver Type II

58

Convergence

59

Iterative solvers can fail to converge

• The KSP Solve call itself gives no feedback: user don’t know if the

solution is wrong or not

• KspGetConvergedReason(KSP ksp, KSPConvergedReason*

reason)

 positive is convergence, negative divergence

 ($fPETSC_DIRg/include/petscksp.h for list)

• KspGetIterationNumber(KSP ksp, PetscInt* its)

 Gets the current iteration number (During the ith iteration this
returns i-1); if the KSPSolve function is complete, returns the
number of iterations used.

Monitors and convergence tests

60

• KspSetTolerances(KSP ksp, PetscReal* rtol,

PetscReal* atol, PetscReal* dtol, PetscInt maxits)

 rtol: the relative convergence tolerance, relative decrease in
the (possibly preconditioned) residual norm

 atol: the absolute convergence tolerance absolute size of the
(possibly preconditioned) residual norm

 dtol: the divergence tolerance

 maxits: Maximum number of iterations to use

Monitors can also be set in code, but easier:

• -ksp_monitor

• -ksp_monitor_true_residual

PC basics

61

• PCs are usually created as part of a KSP object. PCs can be created

and destroyed independently but it’s almost never done in practice
...

KSP solver; PC precond;

KSPCreate(comm, &solver);

KSPGetPC(solver, &precond);

PCSetType(precond, PCJACOBI);

…

• Controllable through command line options:

-pc_type ilu –pc_factor_levels 3

PETSc PC methods

62

Preconditioner Reuse

63

• In the context of non-linear solvers, time-dependent (linear and not)

solvers, the preconditioner can sometimes be reused:

• If the jacobian doesn’t change much, reuse the preconditioner completely

• If the preconditioner is recomputed, the sparsity pattern will probably not change

KSPSetOperators(solver, A, B, structureflag)

• B is the basis for the preconditioner, need not be A

• structureflag can be SAME_PRECONDITIONER, SAME_NON_ZERO_PATTERN,

DIFFERENT_NON_ZERO_PATTERN:

• Avoid the recomputation of the preconditioner (sparsity pattern) if possible

Direct solver

64

• Iterative method with direct solver as preconditioner would converge

in one step

• Direct methods in PETSc implemented as special iterative method:

KSPPREONLY -> only apply the preconditioner

• All direct methods are preconditioner type PCLU

./myprog –pc_type lu –ksp_type preonly –pc_factor_mat_solver_package mumps

Factorization preconditioner

65

• Exact factorization: A = LU

• Inexact factorization: A ≈ M = L U where L, U obtained by throwing

away the ‘fill-in’ during the factorization process (sparsity pattern of

M is the same as A)

• Application of the preconditioner (that is, solve Mx = y) approx same

cost as matrix-vector product y <- A x

• Factorization preconditioners are sequential

• PCICC: symmetric matrix, PCILU: nonsymmetric matrix

Parallel preconditioners

66

• Factorization preconditioners are sequential

• We can use them in parallel as a subpreconditioner of a parallel

preconditioner as Block Jacobi or Additive Schwarz methods

• Each processor has its own block(s) to work with

Block Jacobi and Additive Schwarz

preconditioners

67

• Both methods are parallel

• BlockJacobi is fully parallel, Schwarz requires communications

between neighbours

• Both require sequential local solver

• Schwarz can be more robust than BlockJacobi and have better

convergence properties

Block Jacobi and Additive Schwarz example usage

68

KSP *sub_ksps; int nlocal,first local; PC pc;

PCBJacobiGetSubKSP(pc, &nlocal, &firstlocal, & sub_ksps);

for(int i=0; i<nlocal; i++) {

 KSPSetType(sub_ksps[i], KSPGMRES);

 KSPGetPC(sub_ksps[i], &pc);

 PCSetType(pc, PCILU);

}

It can also be set by command line: -sub_ksp_type and –

sub_pc_type (subksp is PREONLY by default)

Petsc nonlinear solvers: SNES

SNES: nonlinear solvers

The SNES class includes methods for solving systems of nonlinear equations

coming from the discretization of a PDE in the form

Typical solution method:

User has to provide:

• Function F

• Jacobian J

SNESSetFunction(SNES snes, Vec v,

 PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*),

void *ctx)

SNESSetJacobian(SNES snes, Mat amat, Mat pmat,

 PetscErrorCode (*SNESJacobianFunction)

 (SNES, Vec, Mat*, Mat*, MatStructure*,void *),

 void *ctx)

70

Basis SNES usage

SNESCreate(MPI_Comm comm, SNES snes)

SNESSetType(SNES snes, SNESType type)

SNESSetFromOptions(SNES snes)

SNESDestroy(SNES snes)

71

SNES Specification

SNESSetFunction(SNES snes, Vec v,

 PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*),

void *ctx)

SNESSetJacobian(SNES snes, Mat amat, Mat pmat,

 PetscErrorCode (*SNESJacobianFunction)

 (SNES, Vec, Mat*, Mat*, MatStructure*,void *),

 void *ctx)

SNESSetTolerances(SNES snes, PetscReal abstol, PetscReal

rtol, PetscReal stol, PetscInt maxit, PetscInt maxf)

SNESSolve(SNES snes, Vec rhs, Vec x)

SNESGetIterationNumber(SNES snes, PetscInt* iter)

72

Solve customization

...

SNES snes;

SNESSetType(snes, SNESTR); /*Newton with trust region*/

SNESGetKSP(snes, &ksp);

KSPGetPC(ksp, &pc);

PCSetType(pc, PCJACOBI);

KSPSetTolerances(ksp, 1.e-04, PETSC_DEFAULT,

PETSC_DEFAULT, 20);
...

73

Example of the Target Function

PetscErrorCode (*SNESFunction)(SNES snes, Vec x, Vec f,

void* ctx)

...

FormFunction(snes, x, f, ctx);

{

VecGetArray(x, &xx); VecGetArray(f, &ff);

ff[0] = PetscSinScalar(3.0*xx[0] + xx[0]);

ff[1] = xx[1];

VecRestoreArray(x, &xx); VecRestoreArray(f, &ff);

return 0;

}
...

74

Example of the Jacobian Function

PetscErrorCode (*SNESJacobianFunction)(SNES snes, Vec x,

Mat amat, Mat pmat, void* ctx)

...

FormJacobian(snes, x, jac, precond, ctx);

{

PetscScalar a[]; PetscScalar p[];

VecGetArray(x, &xx);

a[0] = …; /* code here the linear operator discretization */

p[0] = …; /* code here the preconditioner operator discretization */

MatSetValues(*jac, m, idxm, n, idxn, a, INSERT_VALUES);

MatSetValues(*precond, m, idxm, n, idxn, p, INSERT_VALUES);

VecRestoreArray(x, &xx);

MatAssemblyBegin(*precond, MAT_FINAL_ASSEMBLY);

MatAssemblyEnd(*precond, MAT_FINAL_ASSEMBLY);

MatAssemblyBegin(*jac, MAT_FINAL_ASSEMBLY);

MatAssemblyEnd(*jac, MAT_FINAL_ASSEMBLY);

return 0;

}

...

75

PETSc time-stepping solvers: TS

TS: time steppers

TS class includes methods for solving systems of linear or nonlinear

Ordinary Differential Equations (ODEs) or Differential Algebraic Equations

(DAEs), i.e. problems which can be written down as

The class provides explicits, implicits or semi-implicit methods and the user

has to provide functions on how to compute the fundamental pieces of

equation (F, G and a Jacobian

77

Grid Manipulation and

Discretization

DM object

DM is an abstract PETSc object that manages an abstract grid object
and its interactions with the algebraic solvers.

• DMDA
An object that is used to manage data for a structured grid in 1, 2, or
3 dimensions. In the global representation of the vector each process
stores a non-overlapping rectangular (or slab in 3d) portion of the grid
points. In the local representation these rectangular regions (slabs)
are extended in all directions by a stencil width. The vectors can be
thought of as either cell centered or vertex centered on the mesh.

• DMPLEX
An object that encapsulates an unstructured mesh, or CW Complex,
which can be expressed using a Hasse Diagram. In the local
representation, Vecs contain all unknowns in the interior and shared
boundary. This is specified by a PetscSection object.

79

Regular GRID: DMDA

DMDAs are for storing vector field, not matrix.

To set the DMDA coordinates to be a uniform grid:
DMDASetUniformCoordinates(DM da, PetscReal xmin,

PetscReal xmax, PetscReal ymin, PetscReal ymax,

PetscReal zmin, PetscReal zmax)

Support for different stencil types:

80

Ghost regions around processors

A DMDA defines a global vector, which contains the elements of the
grid, and a local vector for each processor which has space for “ghost
points”.

81

DMDA construction

DMDACreate2D(MPI_Comm comm, DMBoundaryType bndx,

DMBoundaryType bndy, DMDAStencilType stencil_type, PetscInt

M, PetscInt N, PetscInt m, PetscInt n, PetscInt dof,

PetscInt stencil_width, const PetscInt lx[], const PetscInt

ly[], DM* da)

• bndx, bndy -> boundary (physical domain) behaviour: DM_BOUNDARY_NONE,

DM_BOUNDARY_GHOSTED, M_BOUNDARY_MIRROR, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_TWIST

• DMDAStencilType: DMDA_STENCIL_STAR,DMDA_STENCIL_BOX

• M/N: Number of grid points in x/y-direction
• m/n: Number of processes in x/y-direction (or PETSC_DECIDE)
• dof: Degrees of freedom per node
• s: The stencil width (for instance, 1 for 2D five-point stencil)
• lm/n: arrays containing the number of nodes in each cell along the x

and y coordinates, or NULL. If non-null, these must be of length as m
and n, and the corresponding m and n cannot be PETSC_DECIDE. The
sum of the lx[] entries must be M, and the sum of the ly[] entries
must be N.

82

Associated vectors

DMCreateGlobalVector(DMDA da, Vec* g)

DMCreateLocalVector(DMDA da, Vec* l)

• global -> local
DMGlobalToLocalBegin/End(DMDA da, Vec g, InsertMode

mode, Vec l)

InsertMode mode: INSERT_VALUES, ADD_VALUES

• local -> global
DMLocalToGlobalBegin/End(DMDA da, Vec l, InsertMode

mode, Vec g)

• local -> global -> local
DMLocalToLocalBegin/End(DMDA da, Vec l1, InsertMode

mode, Vec l2)

83

Associated Matrix, Ksp and SNES

• DMCreateMatrix(DM dm, Mat* mat)

• MatSetDM(DMDA da, Vec* g)

• KSPSetDM(DMDA da, Vec* g)

• SNESSetDM(DMDA da, Vec* g)

84

Operator Discretization on a Regular Grid

• Which function can be used to discretize a linear operator with
Finite Difference?

MatSetValuesStencil(Mat mat, PetscInt m, const

MatStencil idxm[], PetscInt n, const MatStencil

idxn[], const PetscScalar v[], InsertMode addv)

– Inserts or adds a block of values into a matrix using structured
grid indexing.

• Which function can be used to impose Dirichlet BDCs?

MatZeroRowsColumnsStencil(Mat mat, PetscInt numRow,

const MatStencil rows[], PetscScalar diag, Vec x,

Vec b)

– Zeros all row and column entries (except possibly the main
diagonal) of a set of rows and columns of a matrix.

85

Debugging and Profiling

Debugging

If configured in debug mode (default), PETSc provides large support to

error handling, backtracing and memory leak detection for C/C++ codes

by simply adhering to very basic guidelines for code developing

PETSc programs may be debugged using one of the two options:

-start_in_debugger - start all processes in debugger

-on_error_attach_debugger - start debugger only on error

Also, if configured with MPICH for the message passing interface and

with GNU compilers, PETSc code is completely valgrind-free (e.g. not

true with OpenMPI).

• Use of CHKERRQ and SETERRQ for catching and generating error

• Use of PetscMalloc and PetscFree to catch memory problems;

CHKMEMQ for instantaneous memory test (debug mode only)

87

Profiling and performance tuning

Profiling:

• Integrated profiling of:

 time

 floating-point performance

 memory usage

 communication

• User-defined events

• Profiling by stages of an application

88

Log summary: overall

89

Log summary: details

90

PETSc profiling options

The profiling options include the following:

-log_summary - Prints an ASCII version of performance data at program’s

conclusion. These statistics are comprehensive and concise and require little
overhead; thus, -log_summary is intended as the primary means of

monitoring the performance of PETSc codes.

-info [infofile] - Prints verbose information about code to stdout or

an optional file. This option provides details about algorithms, data

structures, etc.

-log_trace [logfile] - Traces the beginning and ending of all PETSc

events. If used in conjunction with -info, this option is useful to see where a

program is hanging without running in the debugger.

 91

Thank you for the attention

