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Introduction 



PETSc in a nutshell 

 Serial and parallel computation 

 Linear and NonLinear solvers 

 Support for Finite Difference and Finite Elements PDE 

discretizations 

 Structured and Unstructured topologies 
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PETSc – Portable, Extensible Toolkit for Scientific Computation 

Is a suite of data structures and routines for the scalable (parallel) solution 
of scientific applications mainly modelled by partial differential equations. 



What is in PETSc? 

 Linear system solvers (sparse/dense, iterative/direct) 

 Non linear system solvers 

 Tools for distributed vectors and matrices 

 Support for debugging, profiling and graphical output 



PETSc class hierarchy 
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PETSc numerical components 
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External Packages 

 Dense linear algebra: Scalapack, Plapack 

 Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist 

  Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party 

  ODE solvers: PVODE 

  Eigenvalue solvers (including SVD): SLEPc 

  Optimization: TAO 



PETSc design concepts 

Goals 

• Portability: available on many platforms, basically anything that 

has MPI 

• Performance 

• Scalable parallelism 

• Flexibility: easy switch among different implementations 

Approach 

• Object Oriented Delegation Pattern : many specific 

implementations of the same object 

• Shared interface (overloading): 
                      MATMult(A,x,y); // y <- A x 
                      same code for sequential, parallel, dense, sparse 

• Command line customization 

Drawback 

• Nasty details of the implementation hidden 
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PETSc object oriented model 
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 (Almost) all PETSc objects are essentially delegator objects  

 From Wikipedia: “...an object, instead of performing one of its stated tasks, 

delegates that task to an associated helper object..." 
http://en.wikipedia.org/wiki/Delegation_pattern 

 Example with a XXX object 
#include <petscxxx.h> //Includes the public interface for XXX and other stuff   

PetscXXX xxx; 

XXXCreate(....,&xxx); //Initializes the XXX object (no implementation yet) 

XXXSetType(xxx,ANY_XXX_TYPE); //DELEGATION: Sets specific implementation 

XXXSetOption(xxx,ANY_XXX_OPTION,XXX_OPTION_VALUE); //Sets options in DB 

XXXAnyCustom(xxx,...); //Any XXX customization available through the interface 

XXXSetFromOptions(xxx); //Allows options and command line customization 

XXXSetUp(xxx); //Calls specific setup (not all objects need it)  

 XXXSetType calls the specific creation routine 

XXXCreate_ANYXXXTYPE(...). 

 If XXXSetType is called at a later time, the old delegate is freed and xxx can 

be reused with a different low-level implementation. 

 XXXSetUp, if needed, closes the setup procedure: xxx can then be used. 

 Users can register their own delegates/classes using 

              XXXRegister(...,XXXCreate_MYTYPE) 

  

http://en.wikipedia.org/wiki/Delegation_pattern
http://en.wikipedia.org/wiki/Delegation_pattern
http://en.wikipedia.org/wiki/Delegation_pattern


PETSc and Parallelism 

 All objects in PETSc are defined on a communicator; they can only 

interact if on the same communicator 

 PETSc is layered on top of MPI: you do not need to know much MPI when 

you use PETSc 

 Parallelism through MPI (Pure MPI). No support for threaded code that 

made Petsc calls (OpenMP, Pthreads) since PETSc is not thread-safe. 

 PETSc supports to have individual threads (OpenMP or others) to each 

manage their own (sequential) PETSc objects (and each thread can 

interact only with its own objects).  

 Transparent: same code works sequential and parallel. 

 User can use shared memory programming 

 



Getting Started 



PETSc from a user perspective 
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 Home page 

http://www.mcs.anl.gov/petsc/index.html 

 User manual 

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf 

 Public functions for XXX class (Vec, Mat, KSP, …) accessible at 

http://www.mcs.anl.gov/petsc/petsc-

current/docs/manualpages/XXX/index.html 

 Each class has its own set of tutorials which can be compiled and run 

USE THEM TO LEARN HOW TO DEVELOP WITH PETSc! 

 Always use a debug version of PETSc when developing. 

 No need to download and install supported external packages separately: 

PETSc will do this for you if the needed packages are requested at 

configure time. 

 An example: 

$ ./configure --download-mpich=1 --download-mumps=1  

 

http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html


PETSc from a user perspective 
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Writing PETSc programs:  

initialization and finalization 

PetscInitialize(int *argc, char ***args, const char 

options_file[], const char help_string[]) 

 Setup of static data 

 Registers all PETSc specific implementations (of all classes) 

 Setup of services (logging, error-handling, profiling) 

 Setup of MPI (if it is not already been initialized) 

PetscFinalize() 

 Calculates logging summary 

 Checks for memory leaks (already allocated mem, if 

required) 

 Finalizes MPI (if  PetscInitialize() began MPI) 

 Shutdowns all PETSc services 
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A simple hello_world.c program (C language) 

#include "petscsys.h" 

 

int main(int argc,char **args) { 

  PetscErrorCode ierr; 

  PetscMPIInt    rank; 

 

  ierr = PetscInitialize(&argc, &args,(char *)0, NULL);CHKERRQ(ierr); 

  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr); 

  ierr = PetscPrintf(PETSC_COMM_SELF, 

                     "Hello by process %d!\n",rank);CHKERRQ(ierr); 

  ierr = PetscFinalize(); 

  return 0; 

} 
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A simple hello_world.f90 program (Fortran 

language) 
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#include "finclude/petsc.h" 

 

program main 

 

PetscErrorCode :: ierr 

PetscMPIInt :: rank 

character(len=6)  :: num 

character(len=30) :: hello 

 

call PetscInitialize( PETSC_NULL_CHARACTER,ierr );CHKERRQ(ierr) 

call MPI_Comm_rank( PETSC_COMM_WORLD, rank, ierr );CHKERRQ(ierr) 

write(num,*) rank 

hello = 'Hello from process '//num 

call PetscPrintf( PETSC_COMM_SELF, hello//achar(10), ierr );CHKERRQ(ierr) 

call PetscFinalize(ierr) 

  

end program 

 



 PETSc Vectors 



Vectors 

What are PETSc vectors? 

• Represent elements of a vector space over a field (e.g. Rn) 

• Usually they store field solutions and right-hand sides of PDE  

• Vector elements are PetscScalars (there are no vectors of integers) 

• Each process locally owns a subvector of contiguously numbered 

global indices 

Features 

• Vector types: STANDARD (SEQ on one process and MPI on several), 

PTHREAD, VIENNACL and CUSP  

• Supports all vector space operations 

• VecDot(), VecNorm(), VecScale(), … 

• Also unusual ops, like e.g. VecSqrt(), VecReciprocal() 

• Hidden communication of vector values during assembly 

• Communications between different parallel vectors  
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Crate and Destroy a Vector 

Everything in PETSc is an object, with create and destroy calls: 

 

VecCreate(MPI_Comm comm, Vec *v) 

– Automatically generates the appropriate vector type 
(sequential or parallel) over all processes in comm 

VecDestroy(Vec *x) 

– Destroys the Vec object 

 

/* C */ 

Vec V; 

ierr = VecCreate(MPI_COMM_SELF,&V); CHKERRQ(ierr); 

ierr = VecDestroy(&V); CHKERRQ(ierr); 

! Fortran 
Vec V 
call VecCreate(MPI_COMM_SELF,V,e) 
CHKERRQ(ierr) 
call VecDestroy(V,e) 
CHKERRQ(ierr); 



More about vectors 

A vector object is not completely created in one call:  

 

VecSetSizes(Vec v, PetscInt m, PetscInt M) 

– Sets local and global sizes 

 

Other ways of creating a vector (by duplication): 

 

VecDuplicate(Vec old, Vec *new) 

– Duplicates the vector (doesn't copy values) 

 

 

 



Vector Parallel layout 

VecSetSizes(Vec v, PetscInt m, PetscInt M) 

 

Global size M or local size m can be specified as PETSC_DECIDE but 

cannot be both. If one processor calls this function with M equal to 

PETSC_DECIDE then all processors must, otherwise the program will 

hang. 

 

 

 

 

 

 



Setting values 

VecSet(Vec x, PetscScalar v) 

  - set vector to constant value  

VecSetValue(Vec x, PetscInt idx, PetscScalar v,    

            InsertMode mode) 

 - Set a single entry into a vector 

VecSetValues(Vec x, PetscInt n, PetscInt *idx, 

             PetscScalar *v, InsertMode mode) 

  - Insert or add values in certain locations of a vector (global 

indexing!) 

 

\* C *\ 
i = 1; v = 3.14; 
VecSetValues(x,1,&i,&v,INSERT_VALUES); 
 
ii[0] = 1; ii[1] = 2; vv[0] = 2.7; vv[1] = 3.1; 
VecSetValues(x,2,ii,vv,INSERT_VALUES); 
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!Fortran 
i = 1; v = 3.14; 
call VecSetValues(x,1,i,v,INSERT_VALUES,ierr,e) 
 
ii(1) = 1; ii(2) = 2; vv(1) = 2.7; vv(2) = 3.1 
call VecSetValues(x,2,ii,vv,INSERT_VALUES,ierr,e) 



Vector assembly 

VecAssemblyBegin(Vec x) 

… 

VecAssemblyEnd(Vec x) 

 

A three step process 

 VecSetValues can be called as many times as the user 
wants to tell PETSc what values are to be inserted (or 
added to existing ones) and where 

 VecAsseblyBegin starts communications to ensure that 
values end up where needed (allow other operations, such 
as some independent computation, to proceed). 

 VecAssemblyEnd completes the communication 
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Working with local vectors 

Setting values is done without user access to the stored data. 
Getting values is often not necessary since many operations provided. 
However, sometimes is more efficient to directly access the local 
internal data array of a PETSc Vec(local only). 

 

VecGetArray(Vec x, PetscScalar *[]) 

 Access the internal array 

 

VecRestoreArray(Vec x, PetscScalar *[]) 

 You must return the array to PETSc when you have done 
computing with local data 

 

For most common uses (e.g. standard PETSc vectors), these routines are 

inexpensive and do not involve a copy of local data. They simply returns a 

pointer to a contiguous array that contains this processor's portion of the vector 

data. If the underlying vector data is not stored in a contiguous array this 

routine will copy the data to a contiguous array and return a pointer to that. 
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Working with local vectors 

/* C */ 

... 

PetscScalar * xx_v; 

... 

ierr = VecGetArray(x,& xx_v); 

a = xx_v[3]; 

ierr = VecRestoreArray(x,xx_v); 

...  

 

 

 

!Fortran 

... 

PetscScalar, pointer :: xx_v(:) 
... 

call VecGetArrayF90(x,xx_v,ierr) 

a = xx_v(3) 

call VecRestoreArrayF90(x,xx_v,ierr) 

...  
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Other basic Vector interface APIs 

VecSetType(Vec v, VecType type) 

– Sets vector type (defines the delegated object) 

VecSetFromOptions(Vec v) 

– Configures the vector from the options database 

VecGetSize(Vec v, PetscInt *size) 

– Gets global size of v 

VecGetLocalSize(Vec v, PetscInt *size) 

– Gets local size of v 

VecView(Vec x, PetscViewer v) 

– Prints the content of the vector using the viewer object 

VecCopy(Vec x, Vec y) 

– Copies vector values 
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Numerical vector operations 
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Vector – Example 1  

#include “petscvec.h” 

... 

Vec x; 

PetscInt i,N; 

PetscMPIInt rank; 

PetscScalar value=1.0; 

PetscErrorCode ierr; 

... 

ierr = VecGetSize(x, &N);CHKERRQ(ierr);  /* Global size */ 

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr) 

if (rank == 0) { /* Only rank 0 sets all values into the vector */ 

  for (i=0; i<N; i++) { 

    ierr = VecSetValue(x,i,value,INSERT_VALUES);CHKERRQ(ierr); 

  } 

} 

/* data is distributed to the other processes */ 

ierr = VecAssemblyBegin(x);CHKERRQ(ierr); 

ierr = VecAssemblyEnd(x);CHKERRQ(ierr); 

/* the vector can then be used */ 
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Vector – Example 2  

#include “petscvec.h” 

... 

Vec x; 

PetscInt i,low,high; 

PetscScalar value=1.0; 

PetscErrorCode ierr; 

... 

ierr = VecGetOwnershipRange(x, &low, &high);CHKERRQ(ierr); 

for (i=low; i<high; i++) { /* each process fill its own part */ 

  ierr = VecSetValue(x, i, value, INSERT_VALUES);CHKERRQ(ierr); 

} 

ierr = VecAssemblyBegin(x);CHKERRQ(ierr); 

ierr = VecAssemblyEnd(x);CHKERRQ(ierr); 

/* the vector can then be used */ 
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Vector – Example 3  

#include “petscvec.h” 

... 

Vec vec; 

PetscMPIInt rank; 

PetscScalar *avec; 

... 

ierr = VecCreate(PETSC_COMM_WORLD,&vec);CHKERRQ(ierr); 

ierr = VecSetSizes(vec,PETSC_DECIDE,100);CHKERRQ(ierr); 

ierr = VecSetType(vec,VECSTANDARD);CHKERRQ(ierr); 
... 

ierr = VecGetArray(vec, &avec);CHKERRQ(ierr); 

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr); 

ierr = PetscPrintf(PETSC_COMM_SELF,“First element of local array for rank 

%d is %f\n”,rank,avec[0]);CHKERRQ(ierr); 

ierr = VecRestoreArray(vec, &avec);CHKERRQ(ierr); 

...  

 

31 



PETSc Matrices 



Matrices 

What are PETSc matrices? 

• Roughly represent linear operators that belong to the dual of 
a vector space over a field (e.g. Rn) 

• In most of the PETSc low-level implementations, each process 
logically owns a submatrix of contiguous rows 

 

Features 

• Supports many storage formats 

• AIJ,  BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-only) ... 

• Data structures for many external packages 

• MUMPS (parallel), SuperLU_dist (parallel), SuperLU, 
UMFPack 

• Hidden communications in parallel matrix assembly   

• Matrix operations are defined from a common interface 

• Shell matrices via user defined MatMult and other ops 
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Matrix Creation I 

Matrices are PETSc objects like vectors and can be consequently 
created and destroyed 
 

MatCreate(MPI_Comm comm, Mat *A) 

– Automatically generates the appropriate matrix type 
(sequential or parallel) over all processes in comm. 

 

MatDestroy(Mat *A) 

– Destroys the Mat object 
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Matrix Creation II 

Matrices are PETSc objects like vectors and can be consequently 
created and destroyed 

MatCreate(MPI_Comm comm, Mat *A) 

– Automatically generates the appropriate matrix type 
(sequential or parallel) over all processes in comm. 

 
Several more aspects to creation: 
MatSetType(Mat A, Mat_Type=MATSEQAIJ or MATMPIAIJ) 

MatSetSizes(Mat A, int m, int n, int M, int N) 

MatSeqAIJSetPreallocation(Mat A, PetscInt nz, 

PetscInt nnz[]) 

Local or global size can be PETSC_DECIDE (as in the vector case) 

 

MatSetFromOptions(Mat A) 

– Configures the matrix from the options database. 

MatDuplicate(Mat B, MatDuplicateOption op, Mat *A) 

– Duplicates a matrix (including or not its nonzeros). 
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Matrix Creation (all in one) 

 

MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt 

n, PetscInt nz, const PetscInt nnz[], Mat *A) 

 

MatCreateMPIAIJ(MPI_Comm comm, PetscInt m, PetscInt 

n, PetscInt M, PetscInt N, PetscInt d_nz, const 

PetscInt d_nnz[], PetscInt o_nz, const PetscInt 

o_nnz, Mat *A) 
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Matrix AIJ format 
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The default matrix representation within PETSc is 

the general sparse AIJ format (Yale sparse 

matrix or Compressed Sparse Row, CSR) 

  

  The nonzero elements are stored by rows 

   Array of corresponding column numbers  

   Array of pointers to the beginning of each row 



Matrix memory preallocation 

• PETSc matrix creation is very flexible: No preset sparsity pattern 

• Memory preallocation is critical for achieving good performance 

during matrix assembly, as this reduces the number of allocations 

and copies required during the assembling process. Remember: 

malloc is very expensive (run your code with –memory_info, -

malloc_log) 

• Private representations of PETSc sparse matrices are dynamic data 

structures: additional nonzeros can be freely added (if no 

preallocation has been explicitly provided). 

• No preset sparsity pattern, any processor can set any element: 

potential for lots of malloc calls 

• Dynamically adding many nonzeros  

 requires additional memory allocations 

 requires copies 

→ kills performances! 
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Preallocation  

of a sequential sparse matrix (1/2) 

MatSeqAIJSetPreallocation(Mat A, Petscint nz, 

                          PetscInt *nnz) 

 

• Dynamic preallocation if  (nz == 0 && nnz == 

PETSC_NULL) 

 

• Quick and dirty preallocation if nz is set to the maximum 

number of nonzeros in any row .  

 Fine if the number of nonzeros per row is roughly the same 

throughout the matrix 
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Preallocation  

of sequential sparse matrix (2/2) 

• A finer preallocation 

             nnz[0] = <nonzeros in row 0> 

              ... 

      nnz[m] = <nonzeros in row m> 

 

• If one underestimates the actual number of nonzeros in a given 

row, then during the assembly process PETSc will complain 

unless otherwise told. 
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Preallocation  

of a parallel sparse matrix (1/2) 

MatMPIAIJSetPreallocation(Mat A, 

                          Petscint dnz, 

                          PetscInt *dnnz, 

                          Petscint onz, 

                          PetscInt *onnz) 

 

• Same logic as before for dynamic allocation 

• dnz and dnnz specify preallocation for the diagonal block 

• onz and onnz specify preallocation for the off-diagonal block 
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Preallocation  

of a parallel sparse matrix (2/2) 

Process 0 

dnz=2, onz=2 

dnnz[0]=2, onnz[0]=2 

dnnz[1]=2, onnz[1]=2 

dnnz[2]=2, onnz[2]=2 

Process 1 

dnz=3, onz=2 

dnnz[0]=3, onnz[0]=2 

dnnz[1]=3, onnz[1]=1 

dnnz[2]=2, onnz[2]=1 

Process 2 

dnz=1, onz=4 

dnnz[0]=1, onnz[0]=4 

dnnz[1]=1, onnz[1]=4 42 

P0 

 
 

 

 

P1 

 
 

 
 

P2 

Each process logically owns a matrix subset of contiguously numbered global 
rows. Each subset consists of two sequential matrices corresponding to 
diagonal and off-diagonal parts. 



Preallocation of a parallel sparse matrix 3 

y   A xA + B xB 

 

• xB needs to be communicated 
• A xA can be computed in the 

meantime 
 
Algorithm 
 
• Initiate asynchronous sends/receives 

for xB 

•  compute A xA 

• make sure xB is in 
• compute B xB 

 
The splitting of the matrix storage into 
A (diag) and B (off-diag) part, code for 
the 
sequential case can be reused. 
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Querying parallel structure 

PETSc Matrices are partitioned by block rows: 

MatGetSize(Mat A, PetscInt *M, PetscInt* N) 

– Gets global number of rows and columns 

 

MatGetLocalSize(Mat A, PetscInt *m, PetscInt* n) 

– Gets local number of rows and columns (output can be 

implementation dependent) 

MatGetOwnershipRange(Mat A, PetscInt *m, PetscInt* 

n) 

– Gets the first and last (+1) of locally owned rows 

 

MatGetOwnershipRanges(Mat A, const PetscInt 

**ranges) 

– Gets start and end rows of each process sharing the matrix 
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Setting values 

Set one value: 

MatSetValue(Mat A, PetscInt idxm, PetscInt idxn, 

            PetscScalar value,InsertMode mode) 

Insert mode can be INSERT_VALUES, ADD_VALUES 

 

Set block of values: 

MatSetValues(Mat A, PetscInt m, PetscInt idxm[], 

                    PetscInt n, PetscInt idxn[], 

                    PetscScalar values[], 

                    InsertMode mode) 

 

Mat A is row oriented. 
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Matrix assembly 

Like PETSc vectors, PETSc Mat assembling process involves calls to 

(independent of parallelism) 

 

MatAssemblyBegin(Mat A, MatAssemblyType type) 

… 

MatAssemblyEnd(Mat A, MatAssemblyType type) 
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Getting Values 

• Values are often not needed: many matrix operations supported 

• Matrix elements can only be obtained locally. 

• They are normally used for inspection only, they are expensive. 

 

MatGetRow(Mat A, PetscInt row, PetscInt* ncols, 

          const PetscInt* cols[], const PetscScalar* 

          vals[]) 

MatRestoreRow(…) 

 

MatGetValues(Mat A, PetscInt m, PetscInt* idxm[], 

             PetscInt n, const PetscInt* idxn[], 

             Petscscalar* vals[]) 
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Other Matrix Type 

• Block Matrix 

MatCreateBAIJ(MPI_Comm comm, PetscInt bs, PetscInt 

m, PetscInt n, PetscInt M, PetscInt N, PetscInt 

d_nz, const PetscInt d_nnz[], PetscInt o_nz, const 

PetscInt o_nnz, Mat *A) 

• Creates a sparse parallel matrix in block AIJ format (more 

than one dof per node) 
 
• Dense Matrix: 
MatCreateSeqDense(MPI_Comm comm, PetscInt m, 

PetscInt n, PetscScalar* data[], Mat *A) 

• Creates a sequential dense matrix that is stored in column 
major order (the usual Fortran 77 manner). Many of the 
matrix operations use the BLAS and LAPACK routines. 

 
MatCreateDense(MPI_Comm comm, PetscInt m, PetscInt 

n, PetscInt M, PetscInt N, PetscScalar* data[], Mat 

*A) 
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Matrix Viewers 

MatView(Mat A, PetscViewer v) 

– Prints matrix content using the viewer object 

 
MatView(A,0); (Fortran: 0 -> PETSC_NULL_INTEGER) 
 
row 0: (0, 1) (2, 0.333333) (3, 0.25) (4, 0.2) 
row 1: (0, 0.5) (1, 0.333333) (2, 0.25) (3, 0.2) 
 

• Shorthand for MatView(A,PETSC_VIEWER_STDOUT_WORLD); 

• also invoked by -mat_view 

• Sparse: only allocated positions listed 

• other viewers: for instance -mat_view_draw (X terminal) 
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General Viewers 

Any PETSc object (Vec, Mat, Ksp, …) can be viewed using a 
PetscViewer. 
Let’s see an example with a PETSc Matrix. 
 
.. 

PetscViewer viewer; 

PetscViewerBinaryOpen(PETSC_COMM_WORLD, “matdata”, 

FILE_MODE_WRITE, &viewer):  

PetscViewerSetFormat(viewer, PETSC_VIEWER_BINARY_MATLAB) 

MatView(A, viewer);  

PetscViewerDestroy(viewer); 

... 
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Numerical Matrix Operations 
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Matrix – Example  
#include “petscmat.h” 

... 

Mat A; 

PetscInt cols[3], i, istart, iend; 

PetscScalar vals[3]; 

PetscErrorCode ierr; 

... 

/* suppose A has been already created and have its type set */ 

ierr = MatGetOwnershipRange(A,&istart,&iend);CHKERRQ(ierr); 

...  

vals[0] = -1.0; vals[1] = 2.0; vals[2] = -1.0; /* 1D laplacian stencil */ 

for (i=istart; i<iend; i++) { 

  cols[0] = i-1; cols[1] = i; cols[2] = i+1; /* 1D laplacian stencil */ 

  ierr = MatSetValues(A,1,&i,3,cols,value,INSERT_VALUES);CHKERRQ(ierr); 

} 

ierr = MatAssemblyBegin(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr); 

ierr = MatAssemblyEnd(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr); 

/* all processes contribute to 0,0 entry */ 

ierr = MatSetValue(A,0,0,vals[0],ADD_VALUES);CHKERRQ(ierr);  

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); 

ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); 
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Petsc linear solvers: KSP & PC 



Why using iterative solvers? 

• Solve a linear system A x = b using the Gauss Elimination method 

can be very time-resource consuming 

 

• Alternatives to direct solvers are iterative solvers 

• Convergence of the succession is not always guarateed 

• Possibly much faster and less memory consuming 

• Basic iteration: y <- A x executed once x iteration 

• Also needed a good preconditioner: B ≈ A-1 
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Iterative solver basics 

• KSP (K stands for Krylov) objects are used for solving linear 

systems by means of iterative methods. 

• Convergence can be improved by using a suitable PC object 

(preconditoner). 

• Almost all iterative methods are implemented. 

• Classical iterative methods (not belonging to KSP solvers) are 

classified as preconditioners  

• Direct solution for parallel square matrices available through 

external solvers (MUMPS, SuperLU_dist). Petsc provides a built-in 

LU serial solver. 

• Many KSP options can be controlled by command line 

• Tolerances, convergence and divergence reason 

• Custom monitors and convergence tests 
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PETSc Iterative Solver Basics 
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KspCreate(MPI_Comm comm, KSP* inksp) 

KspDestroy(KSP* inksp) 

 

KSPSetOperators(KSP ksp, Mat amat, Mat pmat) 

 

KspSolve(KSP ksp, Vec b, Vec x) 

/* optional */ KSPSetUp(KSP ksp) 

 



Solver Type 
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KspSetType(KSP ksp, KSPType ksptype) 

The default KSP type is GMRES with a restart of 30, using modified 

Gram-Schmidt orthogonalization. 

 

KSP can be controlled from the command line: 
 

KspSetFromOptions(KSP ksp) 

/* right before KSPSolve or KSPSetUp */ 
 
then options -ksp.... are parsed. 
 
•  type: -ksp_type gmres -ksp_gmres_restart 20 
•  -ksp_view 

 



Solver Type II 
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Convergence 
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Iterative solvers can fail to converge 

• The KSP Solve call itself gives no feedback: user don’t know if the 

solution is wrong or not 

 

• KspGetConvergedReason(KSP ksp, KSPConvergedReason* 

reason) 

 positive is convergence, negative divergence 

 ($fPETSC_DIRg/include/petscksp.h for list) 

 

• KspGetIterationNumber(KSP ksp, PetscInt* its) 

 Gets the current iteration number (During the ith iteration this 
returns i-1); if the KSPSolve function is complete, returns the 
number of iterations used.  

 

 

 



Monitors and convergence tests 

60 

• KspSetTolerances(KSP ksp, PetscReal* rtol, 

PetscReal* atol, PetscReal* dtol, PetscInt maxits) 

 rtol: the relative convergence tolerance, relative decrease in 
the (possibly preconditioned) residual norm 

 atol: the absolute convergence tolerance absolute size of the 
(possibly preconditioned) residual norm 

 dtol: the divergence tolerance 

 maxits: Maximum number of iterations to use 

  

Monitors can also be set in code, but easier: 

• -ksp_monitor 

• -ksp_monitor_true_residual 

 



PC basics 
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• PCs are usually created as part of a KSP object. PCs can be created 

and destroyed independently but it’s almost never done in practice 
... 

KSP solver; PC precond; 

KSPCreate(comm, &solver); 

KSPGetPC(solver, &precond); 

PCSetType(precond, PCJACOBI); 

… 

• Controllable through command line options: 

-pc_type ilu –pc_factor_levels 3 

 

 

 



PETSc PC methods 
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Preconditioner Reuse 
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• In the context of non-linear solvers, time-dependent (linear and not) 

solvers, the preconditioner can sometimes be reused:  

• If the jacobian doesn’t change much, reuse the preconditioner completely 

• If the preconditioner is recomputed, the sparsity pattern will probably not change 

 

KSPSetOperators(solver, A, B, structureflag) 

• B is the basis for the preconditioner, need not be A 

• structureflag can be SAME_PRECONDITIONER, SAME_NON_ZERO_PATTERN, 

DIFFERENT_NON_ZERO_PATTERN: 

• Avoid the recomputation of the preconditioner (sparsity pattern) if possible 

 

 

 

 



Direct solver 
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• Iterative method with direct solver as preconditioner would converge 

in one step 

• Direct methods in PETSc implemented as special iterative method: 

KSPPREONLY -> only apply the preconditioner 

• All direct methods are preconditioner type PCLU 

./myprog –pc_type lu –ksp_type preonly –pc_factor_mat_solver_package mumps 

 

 

 

 



Factorization preconditioner 
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• Exact factorization: A = LU 

• Inexact factorization: A ≈ M = L U where L, U obtained by throwing 

away the ‘fill-in’ during the factorization process (sparsity pattern of 

M is the same as A) 

• Application of the preconditioner (that is, solve Mx = y) approx same 

cost as matrix-vector product y <- A x 

• Factorization preconditioners are sequential 

 

• PCICC: symmetric matrix, PCILU: nonsymmetric matrix 

 



Parallel preconditioners 
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• Factorization preconditioners are sequential  

• We can use them in parallel as a subpreconditioner of a parallel 

preconditioner as Block Jacobi or Additive Schwarz methods 

• Each processor has its own block(s)  to work with 

   



Block Jacobi and Additive Schwarz 

preconditioners 
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• Both methods are parallel  

• BlockJacobi is fully parallel, Schwarz requires communications 

between neighbours 

• Both require sequential local solver 

• Schwarz can be more robust than BlockJacobi and have better 

convergence properties 

   



Block Jacobi and Additive Schwarz example usage 
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KSP *sub_ksps; int nlocal,first local; PC pc; 

PCBJacobiGetSubKSP(pc, &nlocal, &firstlocal, & sub_ksps); 

for(int i=0; i<nlocal; i++) { 

  KSPSetType(sub_ksps[i], KSPGMRES); 

  KSPGetPC(sub_ksps[i], &pc); 

  PCSetType(pc, PCILU); 

} 

 

It can also be set by command line: -sub_ksp_type and –

sub_pc_type (subksp is PREONLY by default) 

 

 



Petsc nonlinear solvers: SNES 



SNES: nonlinear solvers 

The SNES class includes methods for solving systems of nonlinear equations 

coming from the discretization of a PDE in the form 

 

 

Typical solution method: 

 

User has to provide: 

• Function F 

• Jacobian J 

SNESSetFunction(SNES snes, Vec v, 

  PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*), 

void *ctx) 

SNESSetJacobian(SNES snes, Mat amat, Mat pmat, 

  PetscErrorCode (*SNESJacobianFunction) 

  (SNES, Vec, Mat*, Mat*, MatStructure*,void *), 

  void *ctx) 

 
70 



Basis SNES usage 

SNESCreate(MPI_Comm comm, SNES snes) 

SNESSetType(SNES snes, SNESType type) 

 

 

 

 

 

 

SNESSetFromOptions(SNES snes) 

SNESDestroy(SNES snes) 
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SNES Specification 

SNESSetFunction(SNES snes, Vec v, 

  PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*), 

void *ctx) 

 

SNESSetJacobian(SNES snes, Mat amat, Mat pmat, 

  PetscErrorCode (*SNESJacobianFunction) 

  (SNES, Vec, Mat*, Mat*, MatStructure*,void *), 

  void *ctx) 

 

SNESSetTolerances(SNES snes, PetscReal abstol, PetscReal 

rtol, PetscReal stol, PetscInt maxit, PetscInt maxf) 

 

SNESSolve(SNES snes, Vec rhs, Vec x) 

 

SNESGetIterationNumber(SNES snes, PetscInt* iter) 
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Solve customization 

 

 
... 

SNES snes; 

SNESSetType(snes, SNESTR); /*Newton with trust region*/ 

SNESGetKSP(snes, &ksp); 

KSPGetPC(ksp, &pc); 

PCSetType(pc, PCJACOBI); 

KSPSetTolerances(ksp, 1.e-04, PETSC_DEFAULT, 

PETSC_DEFAULT, 20); 
... 
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Example of the Target Function 

PetscErrorCode (*SNESFunction)(SNES snes, Vec x, Vec f, 

void* ctx) 

 
... 

FormFunction(snes, x, f, ctx); 

{ 

VecGetArray(x, &xx); VecGetArray(f, &ff); 

ff[0] = PetscSinScalar(3.0*xx[0] + xx[0]); 

ff[1] = xx[1]; 

VecRestoreArray(x, &xx); VecRestoreArray(f, &ff); 

return 0; 

} 
... 
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Example of the Jacobian Function 

PetscErrorCode (*SNESJacobianFunction)(SNES snes, Vec x, 

Mat amat, Mat pmat, void* ctx) 

 

... 

FormJacobian(snes, x, jac, precond, ctx); 

{ 

PetscScalar a[]; PetscScalar p[]; 

VecGetArray(x, &xx);  

a[0] = …; /* code here the linear operator discretization */ 

p[0] = …; /* code here the preconditioner operator discretization */ 

MatSetValues(*jac, m, idxm, n, idxn, a, INSERT_VALUES); 

MatSetValues(*precond, m, idxm, n, idxn, p, INSERT_VALUES); 

VecRestoreArray(x, &xx);  

MatAssemblyBegin(*precond, MAT_FINAL_ASSEMBLY); 

MatAssemblyEnd(*precond, MAT_FINAL_ASSEMBLY); 

MatAssemblyBegin(*jac, MAT_FINAL_ASSEMBLY); 

MatAssemblyEnd(*jac, MAT_FINAL_ASSEMBLY); 

return 0; 

} 

... 
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PETSc time-stepping solvers: TS 



TS: time steppers 

TS class includes methods for solving systems of linear or nonlinear 

Ordinary Differential Equations (ODEs) or Differential Algebraic Equations 

(DAEs), i.e. problems which can be written down as 

 

 

 

The class provides explicits, implicits or semi-implicit methods and the user 

has to provide functions on how to compute the fundamental pieces of 

equation (F, G and a Jacobian 
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Grid Manipulation and 

Discretization 



DM object 

DM is an abstract PETSc object that manages an abstract grid object 
and its interactions with the algebraic solvers. 
 
• DMDA  
An object that is used to manage data for a structured grid in 1, 2, or 
3 dimensions. In the global representation of the vector each process 
stores a non-overlapping rectangular (or slab in 3d) portion of the grid 
points. In the local representation these rectangular regions (slabs) 
are extended in all directions by a stencil width. The vectors can be 
thought of as either cell centered or vertex centered on the mesh. 
 
• DMPLEX 
An object that encapsulates an unstructured mesh, or CW Complex, 
which can be expressed using a Hasse Diagram. In the local 
representation, Vecs contain all unknowns in the interior and shared 
boundary. This is specified by a PetscSection object.  
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Regular GRID: DMDA 

DMDAs are for storing vector field, not matrix. 
 
To set the DMDA coordinates to be a uniform grid: 
DMDASetUniformCoordinates(DM da, PetscReal xmin, 

PetscReal xmax, PetscReal ymin, PetscReal ymax, 

PetscReal zmin, PetscReal zmax) 

 
Support for different stencil types: 
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Ghost regions around processors 

A DMDA defines a global vector, which contains the elements of the 
grid, and a local vector for each processor which has space for “ghost 
points”. 
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DMDA construction 

DMDACreate2D(MPI_Comm comm, DMBoundaryType bndx, 

DMBoundaryType bndy, DMDAStencilType stencil_type, PetscInt 

M, PetscInt N, PetscInt m, PetscInt n, PetscInt dof, 

PetscInt stencil_width, const PetscInt lx[], const PetscInt 

ly[], DM* da) 

 
• bndx, bndy -> boundary (physical domain) behaviour: DM_BOUNDARY_NONE, 

DM_BOUNDARY_GHOSTED, M_BOUNDARY_MIRROR, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_TWIST 

• DMDAStencilType: DMDA_STENCIL_STAR,DMDA_STENCIL_BOX 

• M/N: Number of grid points in x/y-direction 
• m/n: Number of processes in x/y-direction (or PETSC_DECIDE) 
• dof: Degrees of freedom per node 
• s: The stencil width (for instance, 1 for 2D five-point stencil) 
• lm/n: arrays containing the number of nodes in each cell along the x 

and y coordinates, or NULL. If non-null, these must be of length as m 
and n, and the corresponding m and n cannot be PETSC_DECIDE. The 
sum of the lx[] entries must be M, and the sum of the ly[] entries 
must be N.  
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Associated vectors 

DMCreateGlobalVector(DMDA da, Vec* g) 

 

DMCreateLocalVector(DMDA da, Vec* l) 

 

• global -> local 
DMGlobalToLocalBegin/End(DMDA da, Vec g, InsertMode 

mode, Vec l) 

InsertMode mode: INSERT_VALUES, ADD_VALUES 

 

• local -> global 
DMLocalToGlobalBegin/End(DMDA da, Vec l, InsertMode 

mode, Vec g) 

 
• local -> global -> local 
DMLocalToLocalBegin/End(DMDA da, Vec l1, InsertMode 

mode, Vec l2) 
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Associated Matrix, Ksp and SNES 

• DMCreateMatrix(DM dm, Mat* mat) 

 

• MatSetDM(DMDA da, Vec* g) 

 

• KSPSetDM(DMDA da, Vec* g) 

 

• SNESSetDM(DMDA da, Vec* g) 
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Operator Discretization on a Regular Grid 

• Which function can be used to discretize a linear operator with 
Finite Difference? 

 
MatSetValuesStencil(Mat mat, PetscInt m, const 

MatStencil idxm[], PetscInt n, const MatStencil 

idxn[], const PetscScalar v[], InsertMode addv) 

– Inserts or adds a block of values into a matrix using structured 
grid indexing.  

 
• Which function can be used to impose Dirichlet BDCs? 
 
MatZeroRowsColumnsStencil(Mat mat, PetscInt numRow, 

const MatStencil rows[], PetscScalar diag, Vec x, 

Vec b) 

– Zeros all row and column entries (except possibly the main 
diagonal) of a set of rows and columns of a matrix.  
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Debugging and Profiling 



Debugging 

If configured in debug mode (default), PETSc provides large support to 

error handling, backtracing and memory leak detection for C/C++ codes 

by simply adhering to very basic guidelines for code developing  

 

PETSc programs may be debugged using one of the two options:  

-start_in_debugger - start all processes in debugger 

-on_error_attach_debugger - start debugger only on  error 

 

Also, if configured with MPICH for the message passing interface and 

with GNU compilers, PETSc code is completely valgrind-free (e.g. not 

true with OpenMPI). 

 

• Use of CHKERRQ and SETERRQ for catching and generating error 

• Use of PetscMalloc and PetscFree to catch memory problems; 

CHKMEMQ for instantaneous memory test (debug mode only) 
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Profiling and performance tuning 

Profiling: 

• Integrated profiling of: 

 time 

 floating-point performance 

 memory usage 

 communication 

• User-defined events  

• Profiling by stages of an application 
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Log summary: overall 
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Log summary: details 
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PETSc profiling options 

The profiling options include the following: 
 

-log_summary - Prints an ASCII version of performance data at program’s 

conclusion. These statistics are comprehensive and concise and require little 
overhead; thus, -log_summary is intended as the primary means of 

monitoring the performance of PETSc codes. 
 

-info [infofile] - Prints verbose information about code to stdout or 

an optional file. This option provides details about algorithms, data 

structures, etc.  
 

-log_trace [logfile] - Traces the beginning and ending of all PETSc 

events. If used in conjunction with -info, this option is useful to see where a 

program is hanging without running in the debugger. 
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Thank you for the attention 


