
Introduction to HPC Numerical
libraries at CINECA

HPC Numerical Libraries

26/28 April 2016

n.spallanzani@cineca.it

WELCOME!!
The goal of this course is to show you how to get advantage of
some of the most important numerical libraries for improving the
performance of your HPC applications. We will focus on:

FFTW, a subroutine library for computing the discrete Fourier
transform (DFT) in one or more dimensions, of arbitrary input
size, and of both real and complex data (as well as of even/odd
data, i.e. the discrete cosine/sine transforms or DCT/DST)

A good number of libraries for Linear Algebra
operations, including BLAS, LAPACK,
SCALAPACK, MKL and MAGMA

PETSc, a suite of data structures and routines for the scalable
(parallel) solution of scientific applications modeled by partial
differential equations

Alghorithms used in the main numerical libraries for
Adaptive Mesh Refinement (AMR), some AMR libraries
will be presented.

AMR

ABOUT THIS LECTURE

This first lecture won’t be about numerical libraries…

Its purpose is to teach you the very basics of how to
interact with CINECA’s HPC cluster, where exercises will

take place.

You will learn how to access to our system, how to
compile, how to launch batch jobs, and everything

you need in order to complete the exercises
succesfully

…don’t worry, it won’t last long!! ;-)

WORK ENVIRONMENT
Workstation: User → corsi Password → corsi_2013!

Open a terminal: ssh username@login.galileo.cineca.it

Once you’re logged on a cluster, you are on your home space.

It is best suited for programming environment (compilation, small
debugging sessions…)

Environment variable: $HOME

Another space you can access to is your scratch space.

It is best suited for production environment (launch your jobs from there)

Environment variable: $CINECA_SCRATCH

WARNING: is active a cleaning procedure, that deletes your files older
than 30 days!

Use the command “cindata” for a quick briefing about your space
occupancy

As an user, you have access to a limited number of CPU hours to
spend. They are not assigned to users, but to projects and are shared

between the users who are working on the same project (i.e. your
research partners). Such projects are called accounts and are a

different concept from your username.

ACCOUNTING

You can check the state of your account with the command “saldo –b”,
which tells you how many CPU hours you have already consumed for

each account you’re assigned at

(a more detailed report is provided by “saldo –r”).

ACCOUNTING

The account provided for this course is “train_cnl2016”
(you have to specify it on your job scripts). It expires
Monday the 15th and is shared between all the students;
there are plenty of hours for everybody, but don’t waste
them!

MODULES

CINECA’s work environment is organized with modules, a
set of installed compilers, libraries, tools and applications

available for all users.
“loading” a module means defining all the environment

variables that point to the path of what you have loaded.

After a module is loaded, an environment variable is set of
the form “MODULENAME_HOME”

MODULE COMMANDS
> module available (or just “> module av”)
Shows the full list of the modules available in the profile you’re into, divided
by: environment, libraries, compilers, tools, applications

> module load <module_name>

Loads a specific module

> module show <module_name>
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations about how to use a specific module

> module list
Shows the loaded modules

The Numerical Libraries you will learn about and use during the course
are also available via module system

LIBRARY MODULES

Once loaded, they set the environment variable LIBRARYNAME_LIB .
If needed, there is also LIBRARYNAME_INC for the header files.

More on that during the course…

COMPILING ON GALILEO
In EURORA you can choose between three different compiler
families: gnu, intel and pgi

You can take a look at the versions available with “module av” and then
load the module you want.

Defaults are: gnu 4.9.2, intel xe 2015, pgi 16.3

module load intel # loads default intel compilers suite

module load intel/pe-xe-2016--binary #loads specific compilers suite

Compiler’s
name

GNU INTEL PGI

Fortran gfortran ifortran pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Get a list of the

compilers flags with

the command man

PARALLEL COMPILING ON GALILEO
For parallel programming, two families of compilers are available:

openmpi (recommended) and intelmpi .

There are different versions of openmpi, depending on which compiler has
been used for creating them. Default is openmpi/1.8.4--gnu--4.9.2

module load autoload openmpi # loads default openmpi compilers suite

module load autoload openmpi/1.8.4--intel--cs-xe-2015--binary # loads
specific compilers suite

Warning: mpi compiler needs to be loaded after the corresponding basic
compiler suite. You can load both compilers at the same time with
“autoload”

If another type of compiler was previously loaded, you may get a
“conflict error”. Unload the previous module with “module unload”

PARALLEL COMPILING ON EURORA
Compiler’s name OPENMPI

INTELMPI

Fortran mpif90

C mpicc

C++ mpiCC
mpic++
mpicxx

Compiler flags are the same as the basic compiler (since they are
basically MPI wrappers of those compilers)

OpenMP is provided with the following compiler flags:
gnu: -fopenmp
intel : -openmp

pgi: -mp

Once you have loaded the proper library module, specify its linking by
adding a reference in the compiling command.

Two ways to link a library:
-L$LIBRARY_LIB -lname – or – -L$LIBRARY_LIB/libname.a

For some libraries, it may be necessary to include the header path
 -I$LIBRARY_INC

$ mpicc -I$HDF5_INC input.c -L$HDF5_LIB -lhdf5 \
 -L$SZIP_LIB -lsz -LZLIB_LIB -lz
$ mpicc -I$HDF5_INC input.c -L$HDF5_LIB/libhdf5.a \
 -L$SZIP_LIB/libsz.a -L$ZLIB_LIB/libz.a

COMPILING WITH LIBRARIES

COMPILING WITH LIBRARIES

Galileo lets you choose between static and dynamic linking, with the
latter one as a default.

Static linking means that the library references are resolved at
compile time, so the necessary functions and variables are already
contained in the executable produced. It means a bigger executable
but no need for linking the library paths at runtime.

Dynamic linking means that the library references are resolved at run
time, so the executable searches for them in the paths provided. It
means a lighter executable and no need to recompile the program after
every library update, but need a lot of environment variables to define
at runtime.

For enabling static linking: -static (gnu), -intel-static (intel), -Bstatic (pgi)

Now that we have our GALILEO program, it’s time to learn
how to prepare a job for its execution

LAUNCHING JOBS

GALILEO uses a scheduler called PBS.

The job script scheme is:

- #!/bin/bash

- PBS keywords

- variables environment

- execution line

PBS KEYWORDS
#PBS –N jobname # name of the job
#PBS -o job.out # output file
#PBS -e job.err # error file
#PBS -l select=1:ncpus=8:mpiprocs=2:mem=8GB # resources requested *
#PBS -l walltime=1:00:00 # max 24h, depending on the queue
#PBS -q parallel # queue desired
#PBS -A <my_account> # name of the account
#PBS -m abe # mail events
#PBS -M <email1,email2,...> # list of emails

* select = number of chunks (not exactly the nodes) requested

 ncpus = number of cpus per chunk requested

 mpiprocs = number of mpi tasks per chunk

 mem = amount of RAM per chunk

 For pure MPI jobs, ncpus = mpiprocs

 For OpenMP jobs, mpiprocs < ncpus

#PBS -A train_cnl2016 # your account name

#PBS -q R1620674 # special queue reserved for you

#PBS -W group_list=train_cnl2016 # needed for entering in private queue

KEYWORDS SPECIFIC FOR THE
COURSE

“R1620674” queue is a reserved queue composed by a
node equipped with 2 GPUs and a node equipped with 2
MICs.

In order to grant fast runs to all the students, we ask you to
not launch too big jobs (you won’t need them, anyways).
Please don’t request more than half a node at a time!

ENVIRONMENT SETUP AND
EXECUTION LINE

The command that “split” the executable on the processes is mpirun:
mpirun –n 8 ./myexe arg_1 arg_2
–n is the number of cores you want to use.

In order to use mpirun, openmpi (or intelmpi) has to be loaded. Also, if
you linked dynamically, you have to remember to load every library
module you need.

The environment setting usually start with “cd $PBS_O_WORKDIR”.
That’s because by default you are launching on your home space and
may not find the executable you want to launch.

$PBS_O_WORKDIR points at the folder you’re submitting the job from.

#!/bin/bash
#PBS -l walltime=0:10:00
#PBS -l select=1:ncpus=4:mpiprocs=4:mem=4GB
#PBS -o job.out
#PBS -e job.err
#PBS -q R1620674
#PBS -A train_cnl2016
#PBS -W group_list=train_cnl2016

cd $PBS_O_WORKDIR
module load autoload openmpi
module load somelibrary

mpirun ./myprogram < myinput > myoutput

EURORA JOB SCRIPT EXAMPLE

For GPU accelerators
add this to the select line:
:ngpus=2

For MIC accelerators
add this to the select line:
:nmics=2

PBS COMMANDS

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and the
queue you requested)

qstat

 qstat -u $USER

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other qstat options

PBS COMMANDS

qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you will
learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduler, killing it

USEFUL DOCUMENTATION
Check out the User Guides on our website www.hpc.cineca.it

https://wiki.u-gov.it/confluence/display/SCAIUS/HPC+User+Guide

GALILEO:

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+GALILEO+UserGuide

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS

PICO:

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+PICO+UserGuide

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS

FERMI:

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+FERMI+UserGuide

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.1%3A+Batch+Scheduler+LoadLeveler

USEFUL DOCUMENTATION

Exercises on Numerical Librearies:

http://www.hpc.cineca.it/content/numerical-libraries

Slides:

https://hpc-forge.cineca.it/files/CoursesDev/public/2016/
 Bologna/HPC_Numerical_Libraries/

Training events list 2016:

http://hpc.cineca.it/content/training-events-list-2016

http://www.hpc.cineca.it/
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+GALILEO+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+PICO+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+FERMI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.1%3A+Batch+Scheduler+LoadLeveler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

