
An introduction to
Adaptive Mesh Refinement (AMR)

-
Part 1: Numerical Methods and Tools

Massimiliano Guarrasi– m.guarrasi@cineca.it
Super Computing Applications and Innovation Department

HPC Numerical Libraries

26-28 April 2016

CINECA – Casalecchio di Reno (BO)

AMR - Introduction

• Solving Partial Differential Equations (PDEs)
• PDEs solved using discrete domain
• Algebraic equations estimate values of unknowns at the mesh points
• Resolution/Spacing of mesh points determines error
• Initial Solution and Boundary condition are needed

• Goal of grid adaptivity:
• tracking features much smaller than overall scale of the problem

providing adequate higher spatial and temporal resolution where
needed.

AMR - Introduction

Uniform meshes• High resolution required for handling difficult regions

(discontinuities, steep gradients, shocks, etc.)• Computationally extremely costly

Adaptive Mesh Refinement• Start with a coarse grid• Start with a coarse grid• Identify regions that need finer resolution• Superimpose finer sub-grids only on those regions• Increased computational savings over a static grid

approach. • Increased storage savings over a static grid approach. • Complete control of grid resolution, compared to the

fixed resolution of a static grid approach.

AMR makes it feasible to solve problems that are intractable on uniform grid

AMR - Applications

• CFD• Astrophysics• Climate Modeling• Turbulence• Mantle Convection
Modeling• Combustion•

Demo of a Shock wave passing over a step function (wind tunnel with a
step), rendered using the FLASH code.

Courtesy of the Univ. of Chicago, Flash Code group

• Biophysics• and many more

AMR Techniques

� mesh distortion

Courtesy of Dr. Andrea Mignone, University of Turin

AMR Techniques

� mesh distortion

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement
� block structured

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement
� block structured

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement
� block structured:

AMR Techniques

Courtesy of Dr. Andrea Mignone, University of Turin

� mesh distortion
� point-wise structured (tree-based)

refinement
� block structured:

AMR Techniques

� data blocks are created so
that the same stencil can be
used for all points and no special treatment is required.

� High level objects that encapsulate the functionality for AMR and its parallelization are
independent of the details of the physics algorithms and the problem being solved.

� Simplifies the process of adding/replacing physics modules as long as they adhere to the
interface requirements.

Courtesy of Dr. Andrea Mignone, University of Turin

Existing Frameworks

• PARAMESH -
http://www.physics.drexel.edu/~olson/paramesh

• SAMRAI - https://computation.llnl.gov/casc/SAMRAI/

• p4est - http://www.p4est.org/

• Chombo -
https://commons.lbl.gov/display/chombo/Chombohttps://commons.lbl.gov/display/chombo/Chombo

• and many more

Block Numbering

•All the grid blocks are related to one another
as the nodes of a tree.
•The starting block is called root block, and
the blocks with an higher resolution are called
leaf blocks.
•When a leaf block is designated for
refinement, it spawns 2 child blocks in 1D, 4
child blocks in 2D or 8 child blocks in 3D, and
the original block is called mother (or parent)
block.
•These child blocks cover the same physical
block.
•These child blocks cover the same physical
line, area or volume as their parent but with
twice the spatial resolution.
•Usually it is helpful to use a particular
numbering algorithm (see next slides).

From Paramesh User Guide

Typical grid hierarchy

•Each block has a fixed number of grid points
•Each block can be divided into 2ndim sub-blocks
•Blocks are distributed between processes
minimizing communications (see next slides)

An Example:
•6 x 4 grid is created on each block
•The numbers assigned to each block
designate the blocks location in the quad-
tree
•The numbers assigned to each block
designate the blocks location in the quad-
tree

From Paramesh User Guide

Block ordering

•Usually, the most used block ordering algorithm is
Morton (or Z) ordering.
•It is particularly useful in order to:

•Optimize the usage of cache memory;
•Optimize ghost cells communications between
process (see next slide);

Block Structure

Usually, each block is composed by:
•standard cells
• ghost cells
In Fortran, the indexes starts with 1 and ends
with N(X or Y or Z) + 2*(number of ghost cells)
In C, the indexes starts whit 0 and ends N(X or Y

or Z) + 2*(number of ghost cells) -1

From Paramesh User Guide

� ghost zones values need

to be filled before integration;

Passing Ghost Cells

Courtesy of Dr. Andrea Mignone, University of Turin

� ghost zones values need

to be filled before integration;

� Patches at the same level are

syncrhonized.

Passing Ghost Cells

Courtesy of Dr. Andrea Mignone, University of Turin

� ghost zones values need

to be filled before integration;

� Patches at the same level are

syncrhonized;

� Physical boundaries are imposed

externally;

Passing Ghost Cells

externally;

Courtesy of Dr. Andrea Mignone, University of Turin

� ghost zones values need

to be filled before
integration;

� Patches at the same level are

synchronized;

Physical boundaries are

Passing Ghost Cells

� Physical boundaries are
imposed

externally;

� Fine-Coarse and Coarse-Fine

interface need interpolation /
averaging

� Integration proceeds as for the
single-grid case

Courtesy of Dr. Andrea Mignone, University of Turin

Ghost cells communications

When we pass the ghost cells to the adjoining
blocks, if these blocks have different
resolutions we must modify the data.

The most simple (and used) method is the
interpolation method:
•If we must pass the ghost cells to a block
with higher resolution we can use the linear
interpolation to artificially increase the
resolution.resolution.
•If we must pass the ghost cells to a block
with lower resolution we can average the
data in order to have the same resolution.

Pros:
•Easy to implement
•It is possible to use many different kind of
interpolation (linear, quadratic, and so on)
increasing precision

Cons:
•Non-conservative

From Paramesh User Guide

Passing ghost cells to neighbors blocks

Flux conservation:
It is possible to ensure flux conservation
after the interpolation checking the
equation:
f1A1+f2A2+f3A3+f4A4=FTotATot

From Paramesh User Guide

Passing ghost cells to neighbors blocks

Circulation integral control:
It is possible also to check the value of some
physical quantity at the edges of the cells

NOTE: Both these three methods are usable in order
to change the resolution of the blocks.

From Paramesh User Guide

Particular Geometries

When we have a non symmetric
computational domain many different
approach can be used. For a rectangular
domain:
•We can have different number of points
per block on x and y directions (dx = dy)
•We can have different number of points
on x and y directions (dx ≠ dy)
•We can use more blocks on the x
directions , and 1 block on x direction
(same resolution on x and y, and more (same resolution on x and y, and more
parallelizable)

If we have more complicate computational
domains, we can always use more blocks in
order to fully cover the whole domain.

From Paramesh User Guide

� fill data, level 0

How to refine

Courtesy of Dr. Andrea Mignone, University of
Turin

� fill data, level 0

� find where refinement is
needed;

How to refine

Courtesy of Dr. Andrea Mignone, University of
Turin

� fill data, level 0

� find where refinement is
needed;

� group cells into patches
according to the “grid efficiency”

How to refine

Courtesy of Dr. Andrea Mignone, University of
Turin

� fill data, level 0

� find where refinement is
needed;

� group cells into patches
according to the “grid efficiency”

� refine and ensure proper nesting

How to refine

� refine and ensure proper nesting

Courtesy of Dr. Andrea Mignone, University of
Turin

� fill data, level 0

� find where refinement is
needed;

� group cells into patches
according to the “grid efficiency”

� refine and ensure proper nesting

efficiency = 0.7

How to refine

efficiency = 0.7

efficiency = 0.9efficiency = 0.5

Courtesy of Dr. Andrea Mignone, University of Turin

Little more background on AMR

Refinement structure can be

represented using a quad-tree (2D)/

oct-tree (3D)

An important condition in AMR

Refinement levels of neighboring

blocks differ by ±1

Note: This is generally true, but

Chombo library allow more than 1

refinement level discrepancy.

• A set of blocks assigned to a process• Use space-filling curves for load balancing

Traditional Approach – Parallel Implementations

Traditional Approach - Disadvantages

•Adaptive mesh restructuring:
�Tree metadata replicated on each process

�Required memory increases with # of cores
�Memory can became a problem if we use
more than 105 cores (and more than 106 boxes)

�Level-by-level restructuring
�Ripple propagation
�Step needed to propagate restructuring ∝
level of refinement (d)

∝

level of refinement (d)

•Load Balancing
•Memory needed ∝ Number of blocks used
•Time needed ∝ Number of blocks used

•Currently for 3D problems with less than 106 boxes standard AMR library scales up to few
tens of thousands of cores
•This is a serious problem considering that next generation supercomputers will require the
use of many hundreds of thousands of cores

Improving AMR: Possible strategies

1. Compress tree metadata
•Already implemented in the last versions of CHOMBO, PARAMESH and SAMRAI libraries

2. Rewrite the algorithm for coarse-fine interpolation in order to minimize communications
•Already implemented in the last versions of CHOMBO, PARAMESH libraries
•Using these first two methods it is possible to scale up to 2x105 cores using 107 grid
cells

3. Use a distributed memory version for tree metadata
•Currently Langer at al are working on the implementation of this algorithm on
CHARM++ CHARM++

Some additional information about PARAMESH

•Written in Fortran 90
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 1D to 3D)
•Refinement levels of neighbouring blocks differ by ±1
•Compatible with hdf5 format
•Some simple routine are already written by the authors of the library in order to save the
data and the grid structure into Fortran binary format, and hdf5 format.
•Easy visualization of the results using many external programs (e.g. visit)

Some additional information about CHOMBO

•Written in C
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 2D to 3D)
•Compatible with hdf5 format
•Easy visualization of the results using many external programs (e.g. visit)

ProblemProblemProblemProblem:::: Blast Wave
– Cloud Interaction

Base Base Base Base GridGridGridGrid:::: 128x128

LevelsLevelsLevelsLevels ofofofof RefinementRefinementRefinementRefinement::::

Example: 2D Blast Wave

LevelsLevelsLevelsLevels ofofofof RefinementRefinementRefinementRefinement::::
5 (eq. 4096x4096)

MethodMethodMethodMethod:::: Unsplit PPM

Code:Code:Code:Code: PLUTO +
Chombo Lib

Courtesy of Dr. Andrea Mignone, University of Turin

Problem:
Rayleigh Taylor

Base Grid:
32x64x32

Levels of Refinement:
2 (eq. 128x256x128)

Example: 3D Rayleigh-Taylor

2 (eq. 128x256x128)
Method:

Unsplit PPM
Code:

PLUTO + Chombo Lib

Courtesy of Dr. Andrea Mignone, University of Turin

Example: 3D INCOMPRESSIBLE FLUID FLOW –
Breaking waves due to a ship's hull.

From Paramesh website. The movie is courtesy of
Douglas Dommeruth (SAIC).

Thank you for attention

An introduction to
Adaptive Mesh Refinement (AMR)

-
Part 2: A very short tutorial about

PARAMESH

Massimiliano Guarrasi– m.guarrasi@cineca.it
Super Computing Applications and Innovation Department

HPC Numerical Libraries

26-28 April 2016

CINECA – Casalecchio di Reno (BO)

Step 1: How to install

•Downolad the source code from:
http://downloads.sourceforge.net/project/paramesh/PARAMESH/paramesh_4.1/paramesh_4
.1.tar.gz

•On PICO use the wget command
•Uncompress the source files:

•tar –xzvf paramesh_4.1.tar.gz
•Enter in the main source directory:

•cd paramesh_4.1
•Load MPI module:•Load MPI module:

•module load autoload intelmpi/5.1.1--binary
•Edit the Makefile.gnu file:

•kate Makefile.gnu
•Comment row 51 (NAG specific compilation commands)
•Uncomment row 58 (Intel specific compilation commands)
•Save and close the file

•Compile the source code:
•gmake –f Makefile.gnu

Step 2: Our problem

•Our numerical scheme (4-pt centered second order accurate difference method):

U(i,j,t+dt) = U(i,j,t) + dt * A /(dx*dx)

A = U(i+1,j,t) + U(i-1,j,t) + U(i,j+1,t) + U(i,j-1,t) - 4*U(i,j,t)

Step 3: Create the files

•Preliminary steps:
•Create a subdirectory inside PARAMESH main directory (AMRDIR from now) named
your_tutorial
•Copy the file AMRDIR/templates/amr_main_prog_template.F90 into the current
directory and rename it tutorial.F90
•Copy the file AMRDIR/templates/amr_1blk_bcset_template.F90 into the current
directory and rename it amr_1blk_bcset.F90

Step 4: Modify paramesh_preprocessor.fh (old version)

•Edit the header file paramesh_preprocessor.fh
•cd to AMRDIR/headers
•Edit paramesh_preprocessor.fh

•If you want to use double precision then define REAL8:
#define REAL8

•Comment out the following preprocessor definitions (none of these features will be used in this example):
!#define VAR_DT
!#define PRED_CORR
!#define EMPTY_CELLS

•Define the preprocessor variable DIAGONALS (used only during the test phase in this case):
#define DIAGONALS

•Set the model dimensionality to 2 by setting
#define N_DIM 2

•Leave CURVILINEAR undefined since we are using cartesian coordinates in the tutorial.
•Comment out the following preprocessor definitions since none of these features will be used in this example.

!#define NO_PERMANENT_GUARDCELLS !#define NO_PERMANENT_GUARDCELLS
!#define ADVANCE_ALL_LEVELS

•Make the following definitions to set up the case we want to run. In order, these settings establish the grid blocks as 4x4,
allow up to 100 blocks on each processor, establish 1 cell centered variable and 0 cell-face-centered variables, 0 edge-
dentered variables, 0 corner-centered variables, and set 1 layer of guard cells at each block boundary.

#define NX_B 4
#define NY_B 4
#define MAX_BLOCKS 100
#define N_GUARD_CELLS 1
#define N_GUARD_CELLS_WORK 1
#define N_VAR 1
#define N_FACEVAR 0
#define N_VAR_EDGE 0
#define N_VAR_CORN 0
#define N_VAR_WORK 1
#define N_FLUX_VAR 1
#define N_EDGE_VAR 0

Step 4: Modify paramesh_preprocessor.fh
and amr_runtime parameter

•Edit the header file
paramesh_preprocessor.fh

•cd to AMRDIR/headers
•Edit
paramesh_preprocessor.fh

•If you want to use
double precision then
define REAL8:

#define REAL8
•Edit the amr_runtime_parameter•Edit the amr_runtime_parameter
file

•cd to AMRDIR/
•Copy amr_runtime_parameter
into your_tutorial directory
•Edit the file in the
your_tutorial directory
following this example:

Step 5: Create the makefile

•Copy the AMRDIR/templates/Makefile.gnu_template file into your_directory
• Edit the file:

• Modify the macro definition MAIN to:
main := tutorial.F90

•Modify the macro definition SOURCES to:
sources := amr_1blk_bcset.F90

•Define the CMD macro to be tutor, ie:
CMD = tutor

•cd back on AMRDIR
•Copy Makefile.gnu into make_tutor.
•Edit the file:

•Replace the character string 'User_applic' with 'your_tutorial', wherever it appears.

Step 6: Modify the program template

•Edit the file tutorial.f90:
•The file is divided into a sequence of numbered sections. Comment out all executable lines in
sections 4, 5 and 6.

•Edit the file amr_1blk_bcset.F90:
•Uncomment the line:

! if(ibc.eq. ????) then

•and its corresponding endif.
•Change the ???? in the if statement to any integer less than or equal to -20
•Uncomment the line:

! unk1(:,i,j,k,idest) = ???? !<<<<< USER EDIT

•and replace the right hand side of this line with 0.0

Step 7: Build & Run

•Build the executable:
gmake -f make_tutor your_tutorial

•Run the executable:
./tutor

•If everything went according to plan you should
have generated a short output listing which
concludes with something equivalent to the
following lines (the order in which the blocks
are listed may vary slightly, from one machine
to another):

Step 8: Inizializing the solution

•copy the file AMRDIR/templates/amr_initial_soln_template.F90 into the current directory
and rename it amr_initial_soln.F90
•edit /your_tutorial/Makefile.gnu, adding amr_initial_soln.F90 to the macro definition of
source
•Edit amr_initial_soln.F90:

•delete the lines unk(1,i,j,k,lb) = ??? and unk(2,i,j,k,lb) = ??? the 3 dotted lines that
follow.
•insert the following lines before the triply nested loop which sets values for unk:

dx = bsize(1,lb)/real(nxb)
dy = bsize(2,lb)/real(nyb)

•replace the line unk(1,i,j,k,lb) = ??? with the following segment:
unk(1,i,j,k,lb) = 1.0
xi = bnd_box(1,1,lb) + dx*(real(i-nguard0)-.5) xi = bnd_box(1,1,lb) + dx*(real(i-nguard0)-.5)
yi = bnd_box(1,2,lb) + dy*(real(j-nguard0)-.5)
if(abs(xi).lt.1.0 .and. abs(yi).lt.1.0) then

unk(1,i,j,k,lb) = 10.0
endif

•Edit tutorial.F90:
•uncommenting the call to amr_initial_soln, in SECTION 4.
•insert the following write statements at the end of SECTION 4.

do lb=1,lnblocks
if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then

do j=1,nyb+2*nguard
write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard)

enddo
endif

enddo
•50 format(1x,i3,6(2x,f7.4))

Step 9: Build & Run

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•You have now initialized the solution array
unk(1,:,:,:,:) on all the grid blocks of the
initial grid. As proof, the last six lines of
your output show the data values on the
centered at (1.0,1.0). It should look like
this:

•This block is located at 0 < x < 2 and 0 < y <
2. It straddles one corner of the high density
region. Notice, the 4x4 block interior has
been initialized with non-zero values and
there is a layer of guard cells surrounding
the block which are currently all set to 0.0.
•The complete initial state is shown here,
with the block boundaries superimposed in
black and the grid cells outlined in red:

Step 10: Filling Guardcells

•Edit the file tutorial.f90:
•Uncomment the 3 executable lines in SECTION 5.

•Move the output code fragment shown below from the end of SECTION 4 to the end of
SECTION 5:

do lb=1,lnblocks
if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then
do j=1,nyb+2*nguard

write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard)
enddo

endif
enddo

50 format(1x,i3,6(2x,f7.4))

Step 11: Build & Run

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•Notice, the guard cell layer has been filled
with the correct data from the neighboring
blocks.

Step 12: Constructing a routine to test refinement levels - 1

•Copy AMRDIR/templates/amr_test_refinement_template.F90 into the local directory and rename it
amr_test_refinement.F90
•edit /your_tutorial/Makefile.gnu, adding amr_test_refinement.F90 to the macro definition of source
•Edit amr_test_refinement.F90, commenting out the call to error_measure and immediately after the call
inserting this simple error measure:

error(:,:,:) = 0.
do k=klw,kuw

do j=jlw+1,juw-1
do i=ilw+1,iuw-1

error1 = abs(work(i+1,j,k,lb,1)-work(i,j,k,lb,1))
error2 = abs(work(i-1,j,k,lb,1)-work(i,j,k,lb,1))
error3 = abs(work(i,j+1,k,lb,1)-work(i,j,k,lb,1))
error4 = abs(work(i,j-1,k,lb,1)-work(i,j,k,lb,1))
error_num = max(error1,error2,error3,error4)
error_den = max(work(i,j,k,lb,1) ,work(i+1,j,k,lb,1), &

work(i-1,j,k,lb,1),work(i,j+1,k,lb,1), &work(i-1,j,k,lb,1),work(i,j+1,k,lb,1), &
work(i,j-1,k,lb,1), 1.0e-6)

error(i,j,k) = error_num/error_den
enddo

enddo
enddo

•Edit tutorial.F90
•Uncomment the call to amr_restrict and the 2 lines preceding it (making sure that the 'if
(.not.advance_all_levels) then' and corresponding 'endif' are also uncommented), and uncomment the
calls to amr_test_refinement, amr_refine_derefine, amr_prolong and amr_guard cell in SECTION 6.
•Change lrefine_max in SECTION 3 to allow 1 more level of refinement:

lrefine_max = 4

•Continue…..

Step 12: Constructing a routine to test refinement levels - 2

•Continue in editing tutorial.F90:
•Insert the following lines after the call to amr_test_refinement in SECTION 6:

if(mype.eq.0) write(*,*) ' pe blk refine derefine', &
' curr.ref.level'

call MPI_BARRIER(MPI_COMM_WORLD, ierr)
do l=1,lnblocks

write(*,51) mype,l,refine(l),derefine(l),lrefine(l)
enddo

51 format(1x,i3,2x,i3,2x,l8,2x,l8,10x,i3)

•Insert the following lines at the end of SECTION 6:
if(mype.eq.0) write(*,*) 'pe / blk / blk-coords / blk-sizes'
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
do l=1,lnblocks

write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim) write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim)
enddo

•Set the number of guard cell layers for 'work' :
•Edit amr_runtime_parameters, defining the variable:

1 ! nguard_work

Step 13: Build & Run – 1

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•The changes that you have just made,
analyzed the error estimate on each existing
grid block, and marked some blocks for
additional refinement. In your new output
there will be a section looking like this (the
order of lines may be slightly different) :

•This is telling you that the test in amr_test_refinement marked blocks 3, 6, 7, 10, 13, 14,
17, and 18 for further refinement.
•However blocks 3, 7, 13, and 17 are parent blocks at level 2 and so their refinement flags
will be ignored.
•Blocks 6, 10, 14 and 18 will be refined. Notice also that blocks 2,4,5,8,9,11,12,15,16,19,20
and 21 have been marked for derefinement.

•However each of these blocks has a sibling which has not been marked for
derefinement (in fact all their siblings have been marked for refinement), and so
these particular derefinement choices will be cancelled by PARAMESH.

Step 13: Build & Run – 2

•This is the new positions of the grid
blocks:

•and this is the new structure:

Step 14: Create the routine to update the solution

•Copy the file ../teamplates/amr_initial_soln.F90 to advance_soln.F90
•Edit advance_soln.F90, making the following changes:

•Change the subroutine statement to:
subroutine advance_soln(mype,time,dt)

•Make the same modification to the end statement
•end subroutine advance_soln

•Add the declarations:
integer :: mype
real :: time,dt
real old_soln(il_bnd:iu_bnd,jl_bnd:ju_bnd,kl_bnd:ku_bnd)

•making sure that they appear after the use statements.
•Before the “! loop over leaf grid blocks” comment line insert the line:

call amr_timestep(dt,dtmin,dtmax,mype)

•Insert the following line immediately before the “! set values for unk” comment line:
old_soln(:,:,:) = unk(1,:,:,:,lb)old_soln(:,:,:) = unk(1,:,:,:,lb)
dx = bsize(1,lb)/real(nxb)

•Replace the triply nested loop which updates 'unk' with the following lines:
do k=kl_bnd+nguard*k3d,ku_bnd-nguard*k3d
do j=jl_bnd+nguard*k2d,ju_bnd-nguard*k2d
do i=il_bnd+nguard,iu_bnd-nguard

unk(1,i,j,k,lb) = old_soln(i,j,k) + dt/(dx*dx)* (&
old_soln(i+1,j,k) + old_soln(i-1,j,k) + &
old_soln(i,j+1,k) + old_soln(i,j-1,k) - &
old_soln(i,j,k)*4.0)

enddo
enddo
enddo

•Add the following lines before the return statement:
time = time + dt

Step 15: Create the timestep routine

•Copy AMRDIR/templates/amr_timestep_template.F90 in to the current directory and rename it
amr_timestep.F90
•Edit amr_timestep.F90, making the following changes:

•Delete the lines declaring the real variables speed2, press and maxspeed.
•Delete the line including the file pointers.fh
•Delete the following lines inside the loop over grid blocks

rho => unk(1,:,:,:,l)
vx => unk(2,:,:,:,l)
vy => unk(3,:,:,:,l)
vz => unk(4,:,:,:,l)

•Change the parameter statement defining courant to:
real, parameter :: courant=.1, kappa=1.0

•Replace all the lines in the section labeled 'users timestep calculation' with the following line:
•dtl = courant*dx*dx/kappa

Step 16: Modify main program to call the advance_soln routine.

•Edit tutorial.F90 making the following changes:
•Uncomment the lines setting minstp and maxstp.
•Uncomment the do istep=... statement and the corresponding enddo statement.
•Uncomment the call to advance_soln .F90 .
•Delete the two blocks of output code which we inserted into SECTION 6 earlier.
•Insert the following output code immediately after the call to advance_soln:

write(*,*) 'dt = ',dt
do lb=1,lnblocks

if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then
do j=1,nyb+2*nguard

write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard)
enddo

endif
enddo

Step 17: Build & Run
•remake and rerun by typing:

gmake -f make_tutor your_tutorial .
./tutor

•You have now advanced the solution
through 1 timestep, and the output section
immediately after the call to advance_soln
will show how the data on the block
centered on (1.0,1.0) has been diffused. The
data should look like this: :

•Note, at this point the cell interior (indeces
2-5 in both x and y) are correct, but the
•Note, at this point the cell interior (indeces
2-5 in both x and y) are correct, but the
guardcells (indeces 1 and 6) have not yet
been updated.
•After the solution has been advanced on the
block interiors, we test the solution to see if
refinement is required. In this case
refinement is selected for the 4 blocks
around the center of the domain. These are
refined, and the solution is prolonged to the
newly created blocks there. The complete
updated solution after these steps is shown
here.

Step 18: Run for 250 timesteps - 1

•Edit tutorial.F90 making the following changes:
•Set maxstp = 250
•Remove the output statements immediately after the call to advance_soln in SECTION 6.
•Insert the following line into SECTION 6 immediately before the enddo statement:

if(mype.eq.0) write(*,*) 'iteration ',istep, &
' no of blocks = ',lnblocks

•Insert the following statements immediately before the amr_close call:
if(mype.eq.0) write(*,*) 'pe / blk / blk-coords / blk-sizes'
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
do l=1,lnblocks

write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim)
enddo

•remake and rerun by typing:
gmake -f make_tutor your_tutorial .
./tutor

In your output you will notice that before the first timestep we had 21 blocks, with uniform refinement at
./tutor

•In your output you will notice that before the first timestep we had 21 blocks, with uniform refinement at
level 3 throughout the computational domain. On the first timestep (iteration 1) the 4 blocks at the center
containing the high data values were refined, adding 16 blocks to make a total of 37. After the
seventeenth timestep the solution has diffused outward so that all the outer level 3 blocks, except for
those on the corners, are now all marked for refinement, adding another 32 child blocks at level 4, for a
total of 69.

Step 18: Run for 250 timesteps - 2

•After 250 timesteps, we can see
from the final block listing below
that block number 55 is a leaf
block located near the origin (it
has coordinates x=0.5, y=0.5 ; the
line order may be slightly
different in your output).different in your output).

Step 19: Check solution

•Edit tutorial.F90, adding the following immediately before the call to amr_close, to show the solution on
the block centered on (0.5,0.5):

do lb=1,lnblocks
if(coord(1,lb).eq..5.and.coord(2,lb).eq..5) then

do j=1,nyb+2*nguard
write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard)

enddo
endif

enddo

•remake and rerun by typing:
gmake -f make_tutor your_tutorial .
./tutor

•Your final lines of output should look like this:

•The final solution is displayed here:

Step 20: Run in Parallel

•Create the file jobscript.sh
•Open the file
•Write:

•Type:
qsub jobscript.sh

Thank you for your attention

