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AMR - Introduction

• Solving Partial Differential Equations (PDEs)
• PDEs solved using discrete domain
• Algebraic equations estimate values of unknowns at the mesh points
• Resolution/Spacing of mesh points determines error
• Initial Solution and Boundary condition are needed

• Goal of grid adaptivity:
• tracking features much smaller than overall scale of the problem 

providing adequate higher spatial and temporal resolution where 
needed.



AMR - Introduction

Uniform meshes• High resolution required for handling difficult regions 

(discontinuities, steep gradients, shocks, etc.)• Computationally extremely costly

Adaptive Mesh Refinement• Start with a coarse grid• Start with a coarse grid• Identify regions that need finer resolution• Superimpose finer sub-grids only on those regions• Increased computational savings over a static grid 

approach. • Increased storage savings over a static grid approach. • Complete control of grid resolution, compared to the 

fixed resolution of a static grid approach.

AMR makes it feasible to solve problems that are intractable on uniform grid



AMR - Applications

• CFD• Astrophysics• Climate Modeling• Turbulence• Mantle Convection 
Modeling• Combustion•

Demo of a Shock wave passing over a step function (wind tunnel with a 
step), rendered using the FLASH code.

Courtesy of the Univ. of Chicago, Flash Code group

• Biophysics• and many more
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� mesh distortion
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� mesh distortion
� point-wise structured (tree-based) 
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� block structured:

AMR Techniques

� data blocks are created so
that the same stencil can be
used for all points and no special treatment is required. 

� High level objects that encapsulate the functionality for AMR and its parallelization are 
independent of the details of the physics algorithms and the problem being solved. 

� Simplifies the process of adding/replacing physics modules as long as they adhere to the 
interface requirements.

Courtesy of Dr. Andrea Mignone, University of Turin 



Existing Frameworks

• PARAMESH -
http://www.physics.drexel.edu/~olson/paramesh

• SAMRAI  - https://computation.llnl.gov/casc/SAMRAI/

• p4est  - http://www.p4est.org/

• Chombo -
https://commons.lbl.gov/display/chombo/Chombohttps://commons.lbl.gov/display/chombo/Chombo

• and many more



Block Numbering

•All the grid blocks are related to one another 
as the nodes of a tree.
•The starting block is called root block, and 
the blocks with an higher resolution are called 
leaf blocks.
•When a leaf block is designated for 
refinement, it spawns 2 child blocks in 1D, 4 
child blocks in 2D or 8 child blocks in 3D, and 
the original block is called mother (or parent) 
block.
•These child blocks cover the same physical 
block.
•These child blocks cover the same physical 
line, area or volume as their parent but with 
twice the spatial resolution.
•Usually it is helpful to use a particular 
numbering algorithm (see next slides).

From Paramesh User Guide



Typical grid hierarchy

•Each block has a fixed number of grid points
•Each block can be divided into 2ndim sub-blocks
•Blocks are distributed between processes 
minimizing communications (see next slides)

An Example:
•6 x 4 grid is created on each block
•The numbers assigned to each block 
designate the blocks location in the quad-
tree
•The numbers assigned to each block 
designate the blocks location in the quad-
tree

From Paramesh User Guide



Block ordering

•Usually, the most used block ordering algorithm is 
Morton (or Z) ordering.
•It is particularly useful in order to:

•Optimize the usage of cache memory;
•Optimize ghost cells communications between 
process (see next slide);



Block Structure

Usually, each block is composed by:
•standard cells
• ghost cells
In Fortran, the indexes starts with 1 and ends 
with N(X or Y or Z) + 2*(number of ghost cells)
In C, the indexes starts whit 0 and ends N(X or Y 

or Z) + 2*(number of ghost cells) -1

From Paramesh User Guide



� ghost zones values need

to be filled before integration;
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� ghost zones values need

to be filled before 
integration;

� Patches at the same level are

synchronized;

Physical boundaries are 

Passing Ghost Cells

� Physical boundaries are 
imposed 

externally;

� Fine-Coarse and Coarse-Fine

interface need interpolation / 
averaging

� Integration proceeds as for the 
single-grid case

Courtesy of Dr. Andrea Mignone, University of Turin 



Ghost cells communications

When we pass the ghost cells to the adjoining 
blocks, if these blocks have different 
resolutions we must modify the data.

The most simple (and used) method is the 
interpolation method:
•If we must pass the ghost cells to a block 
with higher resolution we can use the linear 
interpolation to artificially increase the 
resolution.resolution.
•If we must pass the ghost cells to a block 
with lower resolution we can average the 
data in order to have the same resolution.

Pros:
•Easy to implement
•It is possible to use many different kind of 
interpolation (linear, quadratic, and so on) 
increasing precision

Cons:
•Non-conservative

From Paramesh User Guide



Passing ghost cells to neighbors blocks

Flux conservation:
It is possible to ensure flux conservation 
after the interpolation checking the 
equation: 
f1A1+f2A2+f3A3+f4A4=FTotATot

From Paramesh User Guide



Passing ghost cells to neighbors blocks

Circulation integral control:
It is possible also to check the value of some 
physical quantity at the edges of the cells

NOTE: Both these three methods are usable in order 
to change the resolution of the blocks.  

From Paramesh User Guide



Particular Geometries

When we have a non symmetric 
computational domain many different 
approach can be used. For a rectangular 
domain: 
•We can have different number of points 
per block on x and y directions (dx = dy)
•We can have different number of points 
on x and y directions (dx ≠ dy)
•We can use more blocks on the x 
directions , and 1 block on x direction 
(same resolution on x and y, and more (same resolution on x and y, and more 
parallelizable)

If we have more complicate computational 
domains, we can always use more blocks in 
order to fully cover the whole domain.

From Paramesh User Guide
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� fill data, level 0

� find where refinement is
needed;

� group cells into patches
according to the “grid efficiency”

� refine and ensure proper nesting

efficiency = 0.7

How to refine

efficiency = 0.7

efficiency = 0.9efficiency = 0.5

Courtesy of Dr. Andrea Mignone, University of Turin 



Little more background on AMR

Refinement structure can be 

represented using a quad-tree (2D)/ 

oct-tree (3D)

An important condition in AMR

Refinement levels of neighboring 

blocks differ by ±1

Note: This is generally true, but 

Chombo library allow more than 1 

refinement level discrepancy.



• A set of blocks assigned to a process• Use space-filling curves for load balancing

Traditional Approach – Parallel Implementations



Traditional Approach - Disadvantages

•Adaptive mesh restructuring:
�Tree metadata replicated on each process

�Required memory increases with # of cores
�Memory can became a problem if we use 
more than 105 cores (and more than 106 boxes)

�Level-by-level restructuring
�Ripple propagation
�Step needed to propagate restructuring ∝
level of refinement (d)

∝

level of refinement (d)

•Load Balancing
•Memory needed ∝ Number of blocks used
•Time needed ∝ Number of blocks used

•Currently  for 3D problems with less than 106 boxes standard AMR library scales up to few 
tens of thousands of cores
•This is a serious problem considering that next generation supercomputers will require the 
use of many hundreds of thousands of cores



Improving AMR: Possible strategies

1. Compress tree metadata
•Already implemented in the last versions of CHOMBO, PARAMESH and SAMRAI libraries

2. Rewrite the algorithm for coarse-fine interpolation in order to minimize communications
•Already implemented in the last versions of CHOMBO, PARAMESH libraries
•Using these first two methods it is possible to scale up to 2x105 cores using 107 grid 
cells

3. Use a distributed memory version for tree metadata
•Currently Langer at al are working on the implementation of this algorithm on 
CHARM++ CHARM++ 



Some additional information about PARAMESH

•Written in Fortran 90
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 1D to 3D)
•Refinement levels of neighbouring blocks differ by ±1
•Compatible with hdf5 format
•Some simple routine are already written by the authors of the library in order to save the  
data and the grid structure into Fortran binary format, and hdf5 format.
•Easy visualization of the results using many external programs (e.g. visit)



Some additional information about CHOMBO

•Written in C
•Easy to implement on a existing code
•Support many geometries (Cartesian, cylindrical, spherical, from 2D to 3D)
•Compatible with hdf5 format
•Easy visualization of the results using many external programs (e.g. visit)



ProblemProblemProblemProblem:::: Blast Wave
– Cloud Interaction

Base Base Base Base GridGridGridGrid:::: 128x128

LevelsLevelsLevelsLevels ofofofof RefinementRefinementRefinementRefinement::::

Example: 2D Blast Wave

LevelsLevelsLevelsLevels ofofofof RefinementRefinementRefinementRefinement::::
5 (eq. 4096x4096)

MethodMethodMethodMethod:::: Unsplit PPM

Code:Code:Code:Code: PLUTO + 
Chombo Lib

Courtesy of Dr. Andrea Mignone, University of Turin 



Problem:
Rayleigh Taylor

Base Grid:
32x64x32

Levels of Refinement:
2 (eq. 128x256x128)

Example: 3D Rayleigh-Taylor

2 (eq. 128x256x128)
Method:

Unsplit PPM
Code:

PLUTO + Chombo Lib

Courtesy of Dr. Andrea Mignone, University of Turin 



Example: 3D INCOMPRESSIBLE FLUID FLOW –
Breaking waves due to a ship's hull.

From Paramesh website. The movie is courtesy of 
Douglas Dommeruth (SAIC).



Thank you for attention
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Step 1: How to install

•Downolad the source code from: 
http://downloads.sourceforge.net/project/paramesh/PARAMESH/paramesh_4.1/paramesh_4
.1.tar.gz

•On PICO use the wget command
•Uncompress the source files:

•tar –xzvf paramesh_4.1.tar.gz
•Enter in the main source directory:

•cd paramesh_4.1
•Load MPI module:•Load MPI module:

•module load autoload intelmpi/5.1.1--binary
•Edit the Makefile.gnu file:

•kate Makefile.gnu
•Comment row 51 (NAG specific compilation commands)
•Uncomment row 58 (Intel specific compilation commands)
•Save and close the file

•Compile the source code:
•gmake –f Makefile.gnu



Step 2: Our problem

•Our numerical scheme (4-pt centered second order accurate difference method):

U(i,j,t+dt) = U(i,j,t) + dt * A /(dx*dx)

A = U(i+1,j,t) + U(i-1,j,t) + U(i,j+1,t) + U(i,j-1,t) - 4*U(i,j,t)



Step 3: Create the files

•Preliminary steps:
•Create a subdirectory inside PARAMESH main directory (AMRDIR from now) named 
your_tutorial
•Copy the file AMRDIR/templates/amr_main_prog_template.F90 into the current 
directory and rename it tutorial.F90
•Copy the file AMRDIR/templates/amr_1blk_bcset_template.F90 into the current 
directory and rename it amr_1blk_bcset.F90



Step 4: Modify paramesh_preprocessor.fh (old version)

•Edit the header file paramesh_preprocessor.fh
•cd to AMRDIR/headers
•Edit paramesh_preprocessor.fh

•If you want to use double precision then define REAL8:
#define REAL8

•Comment out the following preprocessor definitions (none of these features will be used in this example): 
!#define VAR_DT 
!#define PRED_CORR 
!#define EMPTY_CELLS

•Define the preprocessor variable DIAGONALS (used only during the test phase in this case):
#define DIAGONALS

•Set the model dimensionality to 2 by setting 
#define N_DIM 2

•Leave CURVILINEAR undefined since we are using cartesian coordinates in the tutorial.
•Comment out the following preprocessor definitions since none of these features will be used in this example.

!#define NO_PERMANENT_GUARDCELLS !#define NO_PERMANENT_GUARDCELLS 
!#define ADVANCE_ALL_LEVELS

•Make the following definitions to set up the case we want to run. In order, these settings establish the grid blocks as 4x4, 
allow up to 100 blocks on each processor, establish 1 cell centered variable and 0 cell-face-centered variables, 0 edge-
dentered variables, 0 corner-centered variables, and set 1 layer of guard cells at each block boundary.

#define NX_B 4 
#define NY_B 4 
#define MAX_BLOCKS 100 
#define N_GUARD_CELLS 1 
#define N_GUARD_CELLS_WORK 1 
#define N_VAR 1 
#define N_FACEVAR 0 
#define N_VAR_EDGE 0 
#define N_VAR_CORN 0 
#define N_VAR_WORK 1 
#define N_FLUX_VAR 1 
#define N_EDGE_VAR 0



Step 4: Modify paramesh_preprocessor.fh
and amr_runtime parameter

•Edit the header file 
paramesh_preprocessor.fh

•cd to AMRDIR/headers
•Edit 
paramesh_preprocessor.fh

•If you want to use 
double precision then 
define REAL8:

#define REAL8
•Edit the amr_runtime_parameter•Edit the amr_runtime_parameter
file

•cd to AMRDIR/
•Copy amr_runtime_parameter
into your_tutorial directory
•Edit the file in the 
your_tutorial directory 
following this example:



Step 5: Create the makefile

•Copy the AMRDIR/templates/Makefile.gnu_template file into your_directory
• Edit the file:

• Modify the macro definition MAIN to:
main := tutorial.F90

•Modify the macro definition SOURCES to:
sources := amr_1blk_bcset.F90

•Define the CMD macro to be tutor, ie:
CMD = tutor

•cd back on AMRDIR 
•Copy Makefile.gnu into make_tutor.
•Edit the file:

•Replace the character string 'User_applic' with 'your_tutorial', wherever it appears.



Step 6: Modify the program template

•Edit the file tutorial.f90:
•The file is divided into a sequence of numbered sections. Comment out all executable lines in 
sections 4, 5 and 6.

•Edit the file amr_1blk_bcset.F90:
•Uncomment the line:

! if(ibc.eq. ???? ) then

•and its corresponding endif.
•Change the ???? in the if statement to any integer less than or equal to -20
•Uncomment the line:

! unk1(:,i,j,k,idest) = ???? !<<<<< USER EDIT

•and replace the right hand side of this line with 0.0



Step 7: Build & Run

•Build the executable:
gmake -f make_tutor your_tutorial

•Run the executable:
./tutor

•If everything went according to plan you should 
have generated a short output listing which 
concludes with something equivalent to the 
following lines (the order in which the blocks 
are listed may vary slightly, from one machine 
to another):



Step 8: Inizializing the solution

•copy the file AMRDIR/templates/amr_initial_soln_template.F90 into the current directory 
and rename it amr_initial_soln.F90
•edit /your_tutorial/Makefile.gnu, adding amr_initial_soln.F90 to the macro definition of 
source
•Edit amr_initial_soln.F90:

•delete the lines unk(1,i,j,k,lb) = ??? and unk(2,i,j,k,lb) = ??? the 3 dotted lines that 
follow.
•insert the following lines before the triply nested loop which sets values for unk:

dx = bsize(1,lb)/real(nxb) 
dy = bsize(2,lb)/real(nyb)

•replace the line unk(1,i,j,k,lb) = ??? with the following segment:
unk(1,i,j,k,lb) = 1.0 
xi = bnd_box(1,1,lb) + dx*(real(i-nguard0)-.5) xi = bnd_box(1,1,lb) + dx*(real(i-nguard0)-.5) 
yi = bnd_box(1,2,lb) + dy*(real(j-nguard0)-.5) 
if( abs(xi).lt.1.0 .and. abs(yi).lt.1.0) then 

unk(1,i,j,k,lb) = 10.0 
endif

•Edit tutorial.F90:
•uncommenting the call to amr_initial_soln, in SECTION 4.
•insert the following write statements at the end of SECTION 4.

do lb=1,lnblocks 
if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then 

do j=1,nyb+2*nguard
write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard) 

enddo
endif

enddo
•50 format(1x,i3,6(2x,f7.4))



Step 9: Build & Run

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•You have now initialized the solution array 
unk(1,:,:,:,:) on all the grid blocks of the 
initial grid. As proof, the last six lines of 
your output show the data values on the 
centered at (1.0,1.0). It should look like 
this:

•This block is located at 0 < x < 2 and 0 < y < 
2. It straddles one corner of the high density 
region. Notice, the 4x4 block interior has 
been initialized with non-zero values and 
there is a layer of guard cells surrounding 
the block which are currently all set to 0.0.
•The complete initial state is shown here, 
with the block boundaries superimposed in 
black and the grid cells outlined in red:



Step 10: Filling Guardcells

•Edit the file tutorial.f90:
•Uncomment the 3 executable lines in SECTION 5. 

•Move the output code fragment shown below from the end of SECTION 4 to the end of 
SECTION 5:

do lb=1,lnblocks 
if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then 
do j=1,nyb+2*nguard

write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard) 
enddo

endif
enddo

50   format(1x,i3,6(2x,f7.4)) 



Step 11: Build & Run

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•Notice, the guard cell layer has been filled 
with the correct data from the neighboring
blocks.



Step 12: Constructing a routine to test refinement levels - 1

•Copy AMRDIR/templates/amr_test_refinement_template.F90 into the local directory and rename it 
amr_test_refinement.F90
•edit /your_tutorial/Makefile.gnu, adding amr_test_refinement.F90 to the macro definition of source
•Edit amr_test_refinement.F90, commenting out the call to error_measure and immediately after the call 
inserting this simple error measure:

error(:,:,:) = 0. 
do k=klw,kuw

do j=jlw+1,juw-1 
do i=ilw+1,iuw-1 

error1 = abs(work(i+1,j,k,lb,1)-work(i,j,k,lb,1)) 
error2 = abs(work(i-1,j,k,lb,1)-work(i,j,k,lb,1)) 
error3 = abs(work(i,j+1,k,lb,1)-work(i,j,k,lb,1)) 
error4 = abs(work(i,j-1,k,lb,1)-work(i,j,k,lb,1)) 
error_num = max( error1,error2,error3,error4 ) 
error_den = max( work(i,j,k,lb,1) ,work(i+1,j,k,lb,1), &

work(i-1,j,k,lb,1),work(i,j+1,k,lb,1), &work(i-1,j,k,lb,1),work(i,j+1,k,lb,1), &
work(i,j-1,k,lb,1), 1.0e-6 ) 

error(i,j,k) = error_num/error_den
enddo

enddo
enddo

•Edit tutorial.F90
•Uncomment the call to amr_restrict and the 2 lines preceding it (making sure that the 'if 
(.not.advance_all_levels) then' and corresponding 'endif' are also uncommented), and uncomment the 
calls to amr_test_refinement, amr_refine_derefine, amr_prolong and amr_guard cell in SECTION 6. 
•Change lrefine_max in SECTION 3 to allow 1 more level of refinement:

lrefine_max = 4

•Continue…..



Step 12: Constructing a routine to test refinement levels - 2

•Continue in editing tutorial.F90:
•Insert the following lines after the call to amr_test_refinement in SECTION 6:

if(mype.eq.0) write(*,*) ' pe blk refine derefine', &
' curr.ref.level' 

call MPI_BARRIER(MPI_COMM_WORLD, ierr) 
do l=1,lnblocks 

write(*,51) mype,l,refine(l),derefine(l),lrefine(l) 
enddo

51    format(1x,i3,2x,i3,2x,l8,2x,l8,10x,i3) 

•Insert the following lines at the end of SECTION 6:
if(mype.eq.0) write(*,*) 'pe / blk / blk-coords / blk-sizes' 
call MPI_BARRIER(MPI_COMM_WORLD, ierr) 
do l=1,lnblocks 

write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim) write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim) 
enddo

•Set the number of guard cell layers for 'work' :
•Edit amr_runtime_parameters, defining the variable:

1                          ! nguard_work



Step 13: Build & Run – 1

•Remake and run:
cd AMRDIR
gmake -f make_tutor your_tutorial
cd your_tutorial
./tutor

•The changes that you have just made, 
analyzed the error estimate on each existing 
grid block, and marked some blocks for 
additional refinement. In your new output 
there will be a section looking like this (the 
order of lines may be slightly different) :

•This is telling you that the test in amr_test_refinement marked blocks 3, 6, 7, 10, 13, 14, 
17, and 18 for further refinement. 
•However blocks 3, 7, 13, and 17 are parent blocks at level 2 and so their refinement flags 
will be ignored. 
•Blocks 6, 10, 14 and 18 will be refined. Notice also that blocks 2,4,5,8,9,11,12,15,16,19,20 
and 21 have been marked for derefinement. 

•However each of these blocks has a sibling which has not been marked for 
derefinement ( in fact all their siblings have been marked for refinement ), and so 
these particular derefinement choices will be cancelled by PARAMESH. 



Step 13: Build & Run – 2

•This is the new positions of the grid
blocks:

•and this is the new structure:



Step 14: Create the routine to update the solution

•Copy the file ../teamplates/amr_initial_soln.F90 to advance_soln.F90
•Edit advance_soln.F90, making the following changes:

•Change the subroutine statement to:
subroutine advance_soln(mype,time,dt)

•Make the same modification to the end statement
•end subroutine advance_soln

•Add the declarations:
integer :: mype
real :: time,dt
real old_soln(il_bnd:iu_bnd,jl_bnd:ju_bnd,kl_bnd:ku_bnd)

•making sure that they appear after the use statements.
•Before the “! loop over leaf grid blocks” comment line insert the line:

call amr_timestep(dt,dtmin,dtmax,mype)

•Insert the following line immediately before the “! set values for unk” comment line:
old_soln(:,:,:) = unk(1,:,:,:,lb)old_soln(:,:,:) = unk(1,:,:,:,lb)
dx = bsize(1,lb)/real(nxb)

•Replace the triply nested loop which updates 'unk' with the following lines:
do k=kl_bnd+nguard*k3d,ku_bnd-nguard*k3d 
do j=jl_bnd+nguard*k2d,ju_bnd-nguard*k2d 
do i=il_bnd+nguard,iu_bnd-nguard

unk(1,i,j,k,lb) = old_soln(i,j,k) + dt/(dx*dx)* ( &
old_soln(i+1,j,k) + old_soln(i-1,j,k) + &
old_soln(i,j+1,k) + old_soln(i,j-1,k) - &
old_soln(i,j,k)*4.0 )

enddo
enddo
enddo

•Add the following lines before the return statement:
time = time + dt



Step 15: Create the timestep routine

•Copy AMRDIR/templates/amr_timestep_template.F90 in to the current directory and rename it 
amr_timestep.F90
•Edit amr_timestep.F90, making the following changes:

•Delete the lines declaring the real variables speed2, press and maxspeed. 
•Delete the line including the file pointers.fh
•Delete the following lines inside the loop over grid blocks 

rho => unk(1,:,:,:,l) 
vx => unk(2,:,:,:,l) 
vy => unk(3,:,:,:,l) 
vz => unk(4,:,:,:,l)

•Change the parameter statement defining courant to:
real, parameter :: courant=.1, kappa=1.0

•Replace all the lines in the section labeled 'users timestep calculation' with the following line:
•dtl = courant*dx*dx/kappa



Step 16: Modify main program to call the advance_soln routine. 

•Edit tutorial.F90 making the following changes:
•Uncomment the lines setting minstp and maxstp.
•Uncomment the do istep=... statement and the corresponding enddo statement.
•Uncomment the call to advance_soln .F90 .
•Delete the two blocks of output code which we inserted into SECTION 6 earlier.
•Insert the following output code immediately after the call to advance_soln:

write(*,*) 'dt = ',dt
do lb=1,lnblocks 

if(coord(1,lb).eq.1.0.and.coord(2,lb).eq.1.0) then 
do j=1,nyb+2*nguard

write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard) 
enddo

endif
enddo



Step 17: Build & Run
•remake and rerun by typing:

gmake -f make_tutor your_tutorial .
./tutor

•You have now advanced the solution 
through 1 timestep, and the output section 
immediately after the call to advance_soln
will show how the data on the block 
centered on (1.0,1.0) has been diffused. The 
data should look like this: :

•Note, at this point the cell interior (indeces
2-5 in both x and y) are correct, but the 
•Note, at this point the cell interior (indeces
2-5 in both x and y) are correct, but the 
guardcells (indeces 1 and 6) have not yet 
been updated. 
•After the solution has been advanced on the 
block interiors, we test the solution to see if 
refinement is required. In this case 
refinement is selected for the 4 blocks 
around the center of the domain. These are 
refined, and the solution is prolonged to the 
newly created blocks there. The complete 
updated solution after these steps is shown 
here. 



Step 18: Run for 250 timesteps - 1

•Edit tutorial.F90 making the following changes:
•Set maxstp = 250
•Remove the output statements immediately after the call to advance_soln in SECTION 6.
•Insert the following line into SECTION 6 immediately before the enddo statement:

if(mype.eq.0) write(*,*) 'iteration ',istep, &
' no of blocks = ',lnblocks

•Insert the following statements immediately before the amr_close call:
if(mype.eq.0) write(*,*) 'pe / blk / blk-coords / blk-sizes' 
call MPI_BARRIER(MPI_COMM_WORLD, ierr) 
do l=1,lnblocks 

write(*,*) mype,l,(coord(i,l),i=1,ndim),(bsize(j,l),j=1,ndim) 
enddo

•remake and rerun by typing:
gmake -f make_tutor your_tutorial .
./tutor

In your output you will notice that before the first timestep we had 21 blocks, with uniform refinement at 
./tutor

•In your output you will notice that before the first timestep we had 21 blocks, with uniform refinement at 
level 3 throughout the computational domain. On the first timestep (iteration 1) the 4 blocks at the center
containing the high data values were refined, adding 16 blocks to make a total of 37. After the 
seventeenth timestep the solution has diffused outward so that all the outer level 3 blocks, except for 
those on the corners, are now all marked for refinement, adding another 32 child blocks at level 4, for a 
total of 69. 



Step 18: Run for 250 timesteps - 2

•After 250 timesteps, we can see 
from the final block listing below 
that block number 55 is a leaf 
block located near the origin (it 
has coordinates x=0.5, y=0.5 ; the 
line order may be slightly 
different in your output).different in your output).



Step 19: Check solution

•Edit tutorial.F90, adding the following immediately before the call to amr_close, to show the solution on 
the block centered on (0.5,0.5):

do lb=1,lnblocks 
if(coord(1,lb).eq..5.and.coord(2,lb).eq..5) then 

do j=1,nyb+2*nguard
write(*,50) j,(unk(1,i,j,1,lb),i=1,nxb+2*nguard) 

enddo
endif

enddo

•remake and rerun by typing:
gmake -f make_tutor your_tutorial .
./tutor

•Your final lines of output should look like this:

•The final solution is displayed here:



Step 20: Run in Parallel

•Create the file jobscript.sh
•Open the file
•Write:

•Type:
qsub jobscript.sh



Thank you for your attention


