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Brief overview of optimization 

What is optimization? 

•  In plain English, optimization is the act of obtaining the best result under 
given circumstances.    

•  This applies to any field (finance, health, construction, operations, 
manufacturing, transportation, engineering design, sales, public services, 
mail, and so on). 

•  The ultimate goal is either to minimize, maximize or zeroed a quantity of 
interest  (QoI). 



Brief overview of optimization 

Find                             which                          

where      is an n-dimensional vector called the design vector,            is the 
objective function or QoI, and               and              are known as inequality 
and equality constraints, respectively. 

What is optimization? 
•  Mathematically speaking, an optimization problem can be stated as follows, 
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Optimization methods 
•  To find the optimal value we can choose between gradient-based methods 

and derivative-free methods. 

•  Gradient-based methods look for improvement based on derivative 
information. 

•  Derivative-free methods look for the optimal value using sampling with bias/
rules toward improvement or they do broad exploration with selective 
exploitation (e.g. genetic algorithms). 

•  Gradient-based methods will converge to local extremes, while derivative-
free methods can find local and global extremes. 

•  We can also do parametrical studies and design of experiments, this is part 
of design exploration. 

•  We can also do surrogate based optimization (SBO). 

Brief overview of optimization 



Optimization methods 
•  Optimization can be single-objective or multi-objective. 

•  In multi-objective optimization (MOO) we are interested in optimizing more 
than one QoI simultaneously.  

•  The QoI’s can be competitive or opposing. 

•  The final goal in MOO is to find a representative set of optimal solutions 
(Pareto front), quantify the trade-offs, and finding a single or set of solutions 
that satisfy the subjective preferences of a human decision maker. 

Brief overview of optimization 



Choosing an optimization method 
•  Unconstrained or bound-constrained problems  

•  Smooth and cheap: any method is suitable, however gradient-based methods will 
be the fastest. 

•  Smooth and expensive: gradient-based methods.  

•  Non-smooth and cheap: derivative-free methods or surrogate-based 
optimization. 

•  Nonsmooth and expensive: surrogate-based optimization (SBO). 
•  Multi-objective: derivative-free methods or SBO. 

•  Nonlinearly-constrained problems  
•  Smooth and cheap: gradient-based methods. 

•  Smooth and expensive: gradient-based methods. 
•  Nonsmooth and cheap: derivative-free methods or SBO. 

•  Nonsmooth and expensive: SBO. 

•  Multi-objective: derivative-free methods or SBO. 

Brief overview of optimization 
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Surrogate based optimization 
What is surrogate based optimization (SBO)? 

•  When we do SBO, we use a surrogate model (also know as meta-model or 
response surface), to approximate an original high fidelity model (e.g., 
expensive CFD simulations). 

•  The surrogate acts as data fit to the observations so that new results can be 
predicted without recurring to expensive simulations. 

•  Once the surrogate is built, we can use any kind of optimization or calibration 
method. Evaluating the QoI at the surrogate level is inexpensive.   

•  Working at the surrogate level is order of magnitude faster than using high 
fidelity models. 

•  Surrogates can be also used with noisy and incomplete data. 

•  They can be also used for data mining and data analytics. 

•  In engineering design, surrogates can be used for initial screening and to 
provide information on the sensitivities of the data. 



Surrogate based optimization 
SBO workflow 
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Let us illustrate the idea behind SBO by using  
an analytical function: the Branin function 

Surrogate based optimization 



The Branin function 
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The Branin function 
Analytical function – Surface representation 

Surrogate based optimization 



The Branin function 
Analytical function – Contour plot and minimum values 

Surrogate based optimization 



The Branin function 
•  To perform the SBO, we need to proceed as follows: 

•  Design an experiment. 
•  Run high fidelity simulations. 
•  Built the surrogate.  There are many methods, just to name a few: 

kriging interpolation (Gaussian process), neural networks, radial 
basis functions, multivariate adaptive regression splines, polynomial 
functions, least squares and so on. 

•  Compute initial sensitivities and do and initial screening. 
•  Validate the surrogate. 
•  Improve the surrogate.  This includes training the surrogate, 

removing outliers and smoothing the surrogate. 
•  Do the optimization at the surrogate level.   
•  Visualize to design scenario. 

Surrogate based optimization 



The Branin function 
DACE experiment 

Branin function - Analytical  LHS sampling in design space  
(30 experiments) 

Surrogate based optimization 



The Branin function 
Surrogate – Kriging interpolation 

Branin function – Surrogate, meta-
model, response surface, you name it. 

Branin function - Analytical  

Surrogate based optimization 



The Branin function 
Surrogate based optimization at the surrogate level 

•  The red points are global minimum of the analytical Branin function, and the yellow points are 
the global minimum in the surrogate. 

•  We conduct constrained gradient based optimization on the surrogate, for this we use the 
method of feasible directions (MFD), with multiple starting points (multi-start).  

•  We choose different initial points because we want to increase the possibilities of finding all the 
minimum.   

Surrogate based optimization 



The Branin function 
•  Surrogate based optimization using the MFD gradient based method 
•  Surrogate generated using kriging interpolation 
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The Branin function 
•  Surrogate based optimization using the MFD gradient based method 
•  Surrogate generated using kriging interpolation 
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The optimization driver 

BLACK BOX SOLVER

OPTIMIZER

DATA ANALYTICS

DAKOTA

OPENFOAM

PYTHON

The big picture – Tools in use 



The big picture – The optimization loop 

The optimization driver 

Data analytics

Design of experiments 
Parametric studies 

Multidimensional studies 
Sensitivity analysis 

Optimization 
Calibration 

Uncertainty quantification

BLACK BOX SOLVER
It can any kind of software. 

The only requirement is that is must be able to 
run from the shell

Input parameters
(design variables) (QoI)

Reponse metrics

DAKOTA



DAKOTA in a nutshell 
 

•  DAKOTA stands for Design and Analysis toolKit for Optimization and 
Terascale Applications. 

•  DAKOTA is a general-purpose software toolkit for performing optimization, 
uncertainty quantification, parameter estimation, design of experiments, and 
sensitivity analysis on high performance computers.  

•  DAKOTA is developed and supported by U.S. Sandia National Labs. 

•  DAKOTA is well documented and comes with many tutorials. 

•  Extensive support via a dedicated mailing list. 
•  Distribute under the GNU GPL. 

The optimization driver 



DAKOTA capabilities 
 

•  Parameter Studies (PS). 
•  Design of Experiments (DOE) – Design and Analysis of Computer 

Experiments (DACE) . 
•  Sensitivity Analysis (SA). 
•  Uncertainty Quantification (UQ). 
•  Optimization (OPT) via Gradient-based and derivative-free local and 

global methods. 
•  Surrogate based optimization (SBO). 
•  Calibration (CAL) or data fitting – Parameter estimation. 
•  Generic interface to black box solvers. 
•  Scalable parallel computations from desktop to clusters. 
•  Asynchronous evaluations. 
•  Restart capabilities and Python interface. 

The optimization driver 



The optimization driver 
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Typical optimization loop 



The optimization driver 
Typical optimization loop 
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Summary of DAKOTA optimization methods 
Gradient-based Optimization:  
 

•  DOT:   frcg, bfgs, mmfd, slp, sqp   (commercial)  
•  CONMIN:  frcg, mfd 
•  NPSOL:  sqp       (commercial) 
•  NLPQLP:  sqp       (commercial) 
•  OPT++:  cg, Newton, quasi-Newton 

 
Derivative-free Optimization: 
 

•  COLINY:  PS, EA, Solis-Wets, COBYLA, DIRECT  
•  JEGA:   MOGA, SOGA 
•  EGO:   efficient global optimization via Gaussian Process models 
•  NCSU:   DIRECT 
•  OPT++:  PDS (Parallel Direct Search, simplex based method) 

Parameter studies:   vector, list, centered, grid, multidimensional  
 
Design of experiments:  
 

•  DDACE:  LHS, MC, grid, OA, OA_LHS, CCD, BB   
•  FSUDace:  CVT, Halton, Hammersley  
•  PSUADE:  MOAT  
•  Sampling:  LHS, MC, Incr. LHS, IS/AIS/MMAIS 

 

Multi-objective optimization, pareto, hybrid, multi-start, surrogate-based optimization (local and global).  

The optimization driver 
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Blunt body shape optimization 

Practical applications 



Blunt body shape optimization 
•  In this case we aim at optimizing the shape of a blunt body.   

•  The goal is to minimize the drag coefficient. 
•  The body is parametrized using Bezier curves with four control points.   

•  In this case we use gradient based optimization and six linear constraints. 

Practical applications 

Optimizer 
(Dakota)

Geometry parametrization 
(salome geometry module)

Meshing 
(salome meshing module)

Black box solver 
(OpenFOAM)

Automatic post-processing, data 
manipulation and scripting

Mesh smoothing 
(MESQUITE)



Blunt body shape optimization 

Practical applications 



Ahmed body 
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Ahmed body 
•  In this case we aim at optimizing the ahmed body.   
•  The design variable is the slant angle and the objective function is the drag 

coefficient.  
•  In this example we conducted a parametric study, a constrained gradient 

optimization and a surrogate based optimization (SBO). 

Practical applications 

Optimizer 
(Dakota)

Geometry parametrization 
(openscad)

Meshing 
(snappyHexMesh)

Black box solver 
(OpenFOAM)

Automatic post-processing, data 
manipulation and scripting



Ahmed body 

Practical applications 

Parametric study 



Ahmed body 

Practical applications 

Surrogate, meta-models or response surface. 



Ahmed body 

Practical applications 

Surrogate based optimization on the surrogate built using Kriging interpolation.  
Optimization method: Method of feasible direction. 



NACA airfoil shape optimization 
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NACA airfoil shape optimization 
•  In this case we aim at optimizing the shape of a NACA Series 4 airfoil.  The goals are 

maximize the lift coefficient and minimize the drag coefficient 
•  The design variables are the curvature and position of the maximum curvature and 

the objective functions are drag, lift and moment coefficient.   

•  Hereafter, we show a MOO case using evolutionary algorithms (EA) and surrogate 
based optimization (SBO). 

Practical applications 

Optimizer 
(Dakota)

Geometry parametrization 
(openscad)

Meshing 
(snappyHexMesh)

Black box solver 
(OpenFOAM)

Automatic post-processing, data 
manipulation and scripting



NACA airfoil shape optimization 
Lift coefficient surrogate (kriging interpolation).  

Practical applications 



NACA airfoil shape optimization 
Drag coefficient surrogate (kriging interpolation).  

Practical applications 



NACA airfoil shape optimization 
Moment coefficient surrogate (kriging interpolation).  

Practical applications 



NACA airfoil shape optimization 
•  After building the surrogates, we can optimize the airfoil shape.  

•  The goals are to maximize the lift coefficient and minimize the drag coefficient.  
•  For MOO we use the derivative-free MOGA method.  

Practical applications 



Sailing yacht daggerboard optimization 
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Sailing yacht daggerboard optimization 
•  In this case we aim at optimizing the shape of a daggerboard.  The goals are maximize the vertical force and 

minimize the drag coefficient. 

•  There are 12 design variables and 1 non-linear constraint (the lateral force on the daggerboard).  All design 
variables are bounded and for the non-linear constraint we use an inequality. 

•  The design variables control the airfoil shape (NACA 6-Series and NACA 4-Series) and the daggerboard 
shape and flexion.  

•  To conduct the MOO we use the MOGA method and SBO. 

•  We also perform online data analytics using Python. 

Practical applications 

Optimizer 
(Dakota)

Geometry parametrization 
(OpenVSP)

Meshing 
(cfMesh)

Black box solver 
(OpenFOAM)

Automatic post-processing, data 
manipulation and scripting



Practical applications 
Sailing yacht daggerboard optimization 

Daggerboard – Initial geometry 

12 Design variables (dv): 
•  3 airfoil dv – c_l (dv1, dv2, dv3) 

•  3 airfoil dv – A (dv4, dv5, dv6) 

•  3 wing chord dv (dv7, dv8, dv9) 

•  2 wing dihedral dv (dv10, dv11) 

•  1 wing sweep dv (dv12) 

2 Objective functions (of) 

•  Drag (of1) 

•  Vertical force (of2) 

1 non-linear constraint (of) 

•  Lateral force (of3) 

 



Practical applications 
Sailing yacht daggerboard optimization 

Daggerboard – Optimized geometry (4 non-dominated solutions) 
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Daggerboard – Optimized geometry (4 non-dominated solutions) 



Practical applications 
Sailing yacht daggerboard optimization 

Pareto front  
(QoI 1 = drag, QoI 2 = vertical force) 
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Practical applications 
Sailing yacht daggerboard optimization 

Pareto front  
(QoI 1 = drag, QoI 2 = vertical force) 



Practical applications 
Sailing yacht daggerboard optimization 

Scatter plot matrix – DACE 700 Scatter plot matrix – MOGA 



Practical applications 
Sailing yacht daggerboard optimization 

Correlation matrix – DACE 700 Correlation matrix – MOGA 



Practical applications 
Sailing yacht daggerboard optimization 

Scatter plot matrix – DACE 700 Scatter plot matrix – MOGA 



Practical applications 
Sailing yacht daggerboard optimization 

QoI (of1) vs. DV (dv2, dv6, dv7, dv11) – DACE 700 

QoI (of1) vs. DV (dv2, dv6, dv7, dv11) – MOGA 



Practical applications 
Sailing yacht daggerboard optimization 

QoI (of2) vs. DV (dv2, dv6, dv7, dv11) – MOGA 

QoI (of2) vs. DV (dv2, dv6, dv7, dv11) – DACE 700 



Practical applications 
Sailing yacht daggerboard optimization 

Dynamic parallel coordinates plot 



Practical applications 
Sailing yacht daggerboard optimization 

Interactive scatterplot matrix 



Roadmap 

1.  Brief overview of optimization 
2.  Surrogate based optimization  
3.  The optimization driver 
4.  Practical applications 
5.  Wrap-up 



Wrap-up 

To conclude 
•  We have effectively used an optimization framework entirely 

based on open-source technology. 

•  The tools used are capable of performing and completing 
general purpose applications, as well as complex engineering 
tasks. 

•  The framework can be easily automated and used in HPC 
environments. 



Wrap-up 

To conclude 

•  Evolutionary algorithm studies can be quite expensive due to 
the large number of function evaluation needed to arrive to the 
optimal. By using SBO, we can reduce the number of function 
evaluations while getting similar results. 

•  An added benefit of working at the surrogate level, is that by 
using the output of the sampling plan we can do initial 
screening, compute sensitivities, and explore the design space. 

•  The observations (or experiments), can be used to ask and 
answer questions about the data, this is data analytics. 



Wrap-up 

Ongoing work 
•  Currently we are working in adding advanced dataset 

exploration and machine learning tools to the framework. 

•  Improvement on the computation of basic statistics. 

•  Uncertainty quantification. 

•  Substituting all the scripts with a GUI. 

•  Dynamic multidimensional detective (parallel coordinates). 

•  Interactive data visualization and real time rendering. 

•  Visualization of multidimensional surrogates. 

•  All the visualization will be implemented using Python and D3.js 



Wrap-up 

Future developments (or good intentions) 
•  Efficient shape and mesh morphing tools. 

•  Mesh smoothing and mesh morphing using MESQUITE. 

•  An intuitive GUI for code coupling. 

•  A web interface for data analytics. 

•  Adjoint optimization.  



Thank you for your attention 

Questions? 


