
Energy efficiency 

and roadmap to exascaleand roadmap to exascale

Carlo Cavazzoni



outline

- Roadmap to Exascale

- HPC architecture challanges- HPC architecture challanges

- Energy efficiency

- Co processor architecture

- I/O revolution



Roadmap to Exascale
(architectural trends)



Dennard scaling law
(downscaling)

L’ = L / 2

V’ = V / 2

F’ = F * 2

D’ = 1 / L2 = 4D

do not hold anymore! The core frequency
and performance do not
grow following the 
Moore’s law any longer 

new VLSI gen.

old VLSI gen.

P’ = P

The power crisis!

L’ = L / 2

V’ = ~V

F’ = ~F * 2

D’ = 1 / L2 = 4 * D

P’ = 4 * P

Increase the number of cores
to maintain the 
architectures evolution 
on the Moore’s law 

Programming crisis!

Moore’s law any longer 



Moore’s Law

Number of transistors 
per chip double every 
18 month

The true it double 
every 24 month 

�Oh-oh!  Huston! 



The silicon lattice

0.54 nm

Si lattice

There will be still 4~6 cycles (or technology generations) left until
we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some 
year between 2020-30 (H. Iwai, IWJT2008).

50 atoms!



�Not at constant
�Size�Size
�Price
�Watt



Amdahl's law

In a massively parallel context, an upper limit for the scalability of parallel 

applications is determined by the fraction of the overall execution time 

spent in non-scalable operations (Amdahl's law).

maximum speedup tends to 
1 / ( 1 − P ) 

P= parallel fraction

1000000 core

P = 0.999999

serial fraction= 0.000001



HPC trends
(constrained by the three law)

Peak Performance Moore lawexaflops opportunity

FPU Performance Dennard law

Number of FPUs Moore + Dennard

App. Parallelism Amdahl's law

10^9

gigaflops

Serial fraction
1/10^9

challenge



Energy trends

“traditional” RISK and CISC 
chips are designed for maximum
performance for all possible
workloads

A lot of silicon to
maximize single thread
performace

Compute Power

Energy

Datacenter Capacity



Change of paradigm

New chips designed for
maximum performance in a 
small set of workloads

Simple functional units, 
poor single thread
performance, but
maximum throughput

Compute Power

Energy

Datacenter Capacity



Exascale architecture

two model
Hybrid

Homogeneus



Where power is used:

Energy efficiency

Short term impact on 
Where power is used:

1) CPU/GPU silicon

2) Memory

3) Network

4) Data transfer

5) I/O subsystem

6) Cooling

Short term impact on 
programming models



Memory

Today the cost of moving operands to compute a 64bit floating-point FMA takes more 

energy with respect to the FMA operation itself

A

BD = A + B* C B
C

D = A + B* C

at 10nm integration, the energy required to move date is expected to 
becomes 100x !

We need locality! Less “fast” memory per core



Architecture toward exascale

CPU ACC.

Single 
thread perf.

throughput

GPU/MIC/FPGA

ACC.CPU
OpenPower
Nvidia GPU

bottleneck ACC. AMD APU
ARM Big-Little

CPU

SoC
ARM
KNL (next Intel PHI)

3D 
stacking

Active memory

Photonic -> platform flexibility
TSV -> stacking



K20 nVIDIA GPU

15 SMX Streaming Multiprocessors



SMX

192 single precision cuda cores

64 double precision units

32 special function units

32 load and store units32 load and store units

4 warp scheduler
(each warp contains 32 parallel
Threads)

2 indipendent instruction per warp



Accelerator/GPGPU

+

Sum of 1D array



CUDA sample

void CPUCode( int* input1, int* input2, int* output, int length) {
for ( int i = 0; i < length; ++i ) {

output[ i ] = input1[ i ] + input2[ i ];
}

} 

__global__void GPUCode( int* input1, int*input2, int* output, int length) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if ( idx < length ) {

output[ idx ] = input1[ idx ] + input2[ idx ];
}

} 

Each thread execute one loop iteration



Intel Xeon PHI Architecture



Core Architecture



https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing?utm_content=buffer9926a&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer



Intel Vector Units



Programming MIC



Applications Challenges

� Programming model

� Scalability

� I/O, Resiliency/Fault tolerance� I/O, Resiliency/Fault tolerance

� Numerical stability

� Algorithms

� Energy Awareness/Efficiency



Quantum Espresso 

toward exascale
New Algorithm:

CG vs Davidson
Communication

avoiding

High Throughput / Ensamble Simulations

Double buffering
Task level parallelism

Coupled Application

LAMMPS

QE QE QE



• 1. Event driven tasks (EDT)

– a. Dataflow inspired, tiny codelets (self contained)

– b. Non blocking, no preemption

• 2. Programming model:

– a. Express data locality with hierarchical tiling

b. Global, shared, non-coherent address space

Impact on programming and 
execution models

�27

– b. Global, shared, non-coherent address space

– c. Optimization and auto generation of EDTs 

• 3. Execution model:

– a. Dynamic, event-driven scheduling, non-blocking

– b. Dynamic decision to move computation to data 

– c. Observation based adaption (self-awareness)

– d. Implemented in the runtime environment



I/O subsystem of high performance computers are still deployed using spinning disks, 
with their mechanical limitation (spinning speed cannot grow above a certain regime, 
above which the vibration cannot be controlled), and like for the DRAM they eat 
energy even if their state is not changed. Solid state technology appear to be a 
possible alternative, but costs do not allow to implement data storage systems of the 
same size. Probably some hierarchical solutions can exploit both technology, but this 
do not solve the problem of having spinning disks spinning for nothing. 

I/O Subsystem



I/O Challenges

10K clients
100K core per clients
1Exabyte

100 clients
1000 core per client
3PByte

Today Tomorrow

1Exabyte
100K Disks
100TByte/sec
1Gbyte blocks
Parallel Filesystem
Multi Tier architecture

3PByte
3K Disks
100 Gbyte/sec
8MByte blocks
Parallel Filesystem
One Tier architecture



Today

I/O client I/O server

RAID 
Controller

Switch Switch

I/O client

cores

cores
disks

RAID 
Controller

disks

I/O client

…..

Switch SwitchI/O server

I/O server

…..

cores

Controller
disks

RAID 
Controller

disks

160K cores, 96 I/O clients, 24 I/O servers, 3 RAID controllers

IMPORTANT:  I/O subsystem has its own parallelism!



Today-Tomorrow

I/O client I/O server RAID 
Controller

Switch Switch

I/O client

cores

cores

disks

FLASHRAID 
Controller Tier-1

I/O client

…..

Switch SwitchI/O server

I/O server

…..

cores

RAID 
Controller

disks

RAID 
Controller

disks

1M cores, 1000 I/O clients, 100 I/O servers, 10 RAID FLASH/DISK controllers

Tier-2



Tomorrow

I/O client

I/O server

RAID 
Controller

Switch

I/O clientcores

cores

cores

disks

NVRAM

NVRAM FLASHRAID 
Controller

Tier-2

I/O client

…..

Switch

SwitchI/O server

I/O server

…..

cores
RAID 
Controller

disks

RAID 
Controller

disks

1G cores, 10K NVRAM nodes, 1000 I/O clients, 100 I/O servers, 10 RAID controllers

NVRAM

Tier-1 (byte addressable?) Tier-2/Tier-3 (Block device)

Tier-3



DATA:
Billion of (application) files
Large (check-point/restart) file

Posix Filesystem: 
low level
lock/syncronization -> transactional IOP
low IOPs (I/O operation per second)

Impact on programming and 
execution models

low IOPs (I/O operation per second)
Physical supports:

disk too slow -> archive
FLASH aging problem
NVRAM (Non-Volatile RAM), PCM (Phase Change Memory), not ready

Middlewere:
Library HDF5, NetCDF
MPI-I/O
Each layer has its own semantics



Conclusions

• Exascale Systems, will be there

• Power is the main architectural constraints

• Exascale Applications?

• Energy awareness

• Exascale Applications?

• Yes, but…

• Concurrency, Fault Tolerance, I/O …

• Energy awareness


