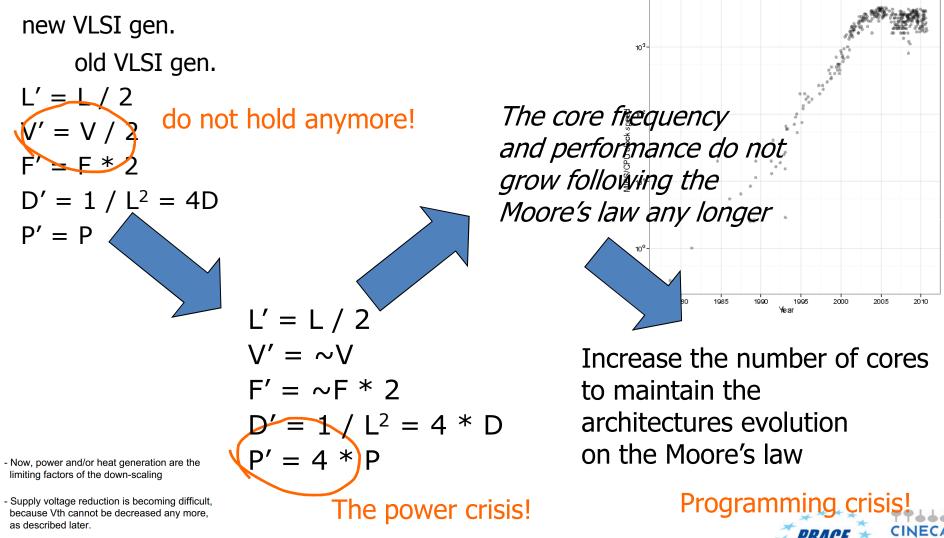
Energy efficiency and roadmap to exascale

Carlo Cavazzoni

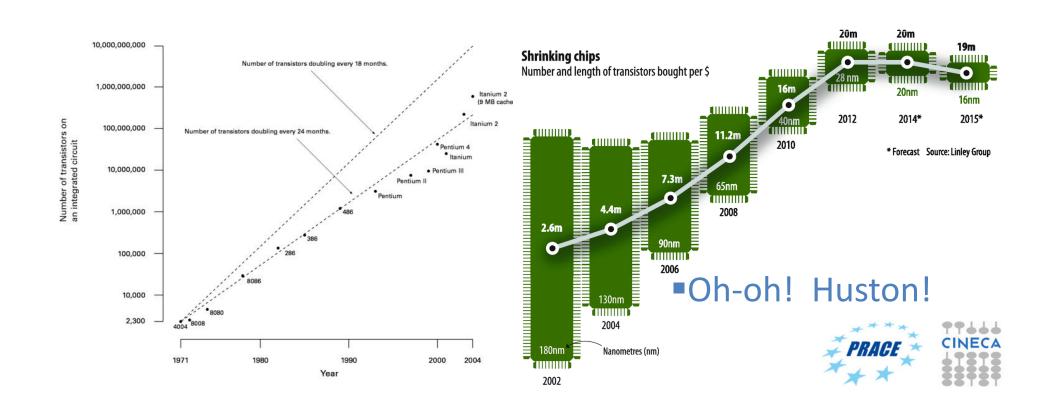
outline


- Roadmap to Exascale
- HPC architecture challanges
- Energy efficiency
- Co processor architecture
- I/O revolution

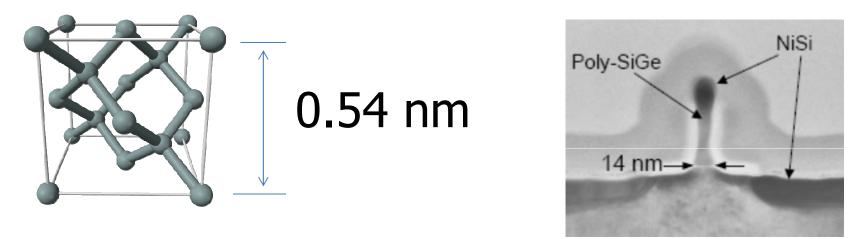
Roadmap to Exascale (architectural trends)

Systems	2009	2011	2015	2018
System Peak Flops/'s	2 Peta	20 Peta	100-200 Peta	1 Fxa
System Memory	0.3 PB	1 PB	5 PB	10 PB
Node Performance	125 GF	200 GF	400 GF	1-10 TF
Node Memory BW	25 GB/s	40 GB/s	100 GB/s	200-400 GB/s
Node Concurrency	12	32	0(100)	0(1000)
Interconnect BW	1.5 GB/s	10 GB/s	25 GB/s	50 GB/s
System Size (Nodes)	18,700	100,000	500,000	O(Million)
Total Concurrency	225,000	3 Million	50 Million	O(Billion)
Storage	15 PB	30 PB	150 PB	300 PS
1/0	0.2 TB/s	2 TB/s	10 TB/s	20 TB/s
мтті	Days	Days	Days	O(1Day)
Power	6 MW	~10 MW	~10 MW	~20 MW

Dennard scaling law (downscaling)


- Growth rate in clock frequency and chip area becomes smaller.

Moore's Law


Number of transistors per chip double every 18 month

Moore's Law

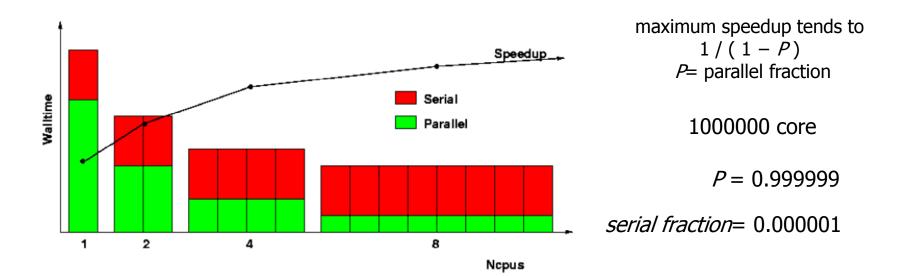
The true it double every 24 month

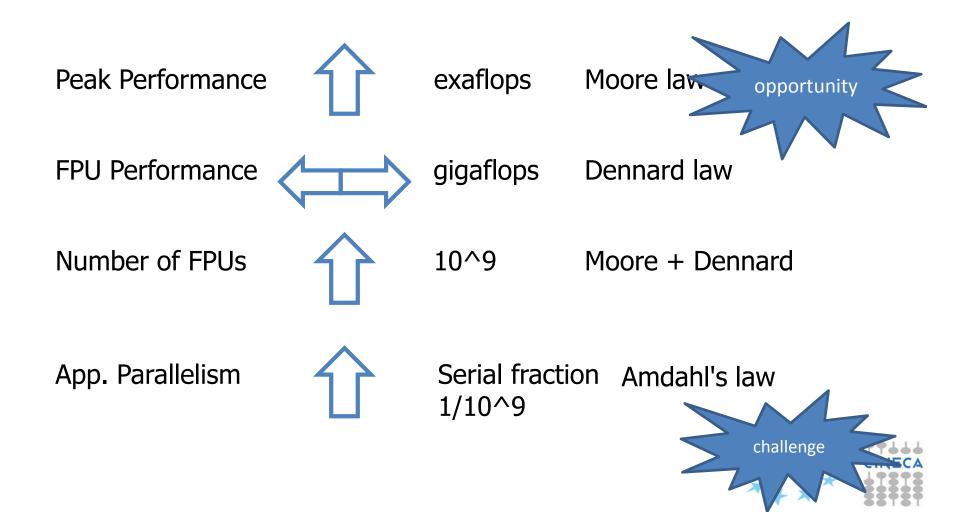
The silicon lattice

Si lattice

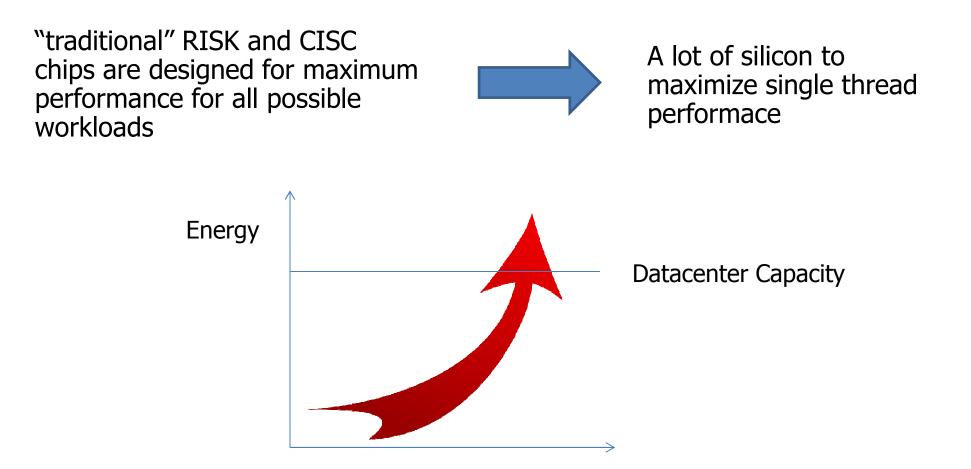
50 atoms!

There will be still 4~6 cycles (or technology generations) left until we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit in some year between 2020-30 (H. Iwai, IWJT2008).



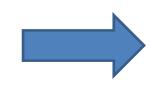

Amdahl's law

In a massively parallel context, an upper limit for the scalability of parallel applications is determined by the fraction of the overall execution time spent in non-scalable operations (Amdahl's law).

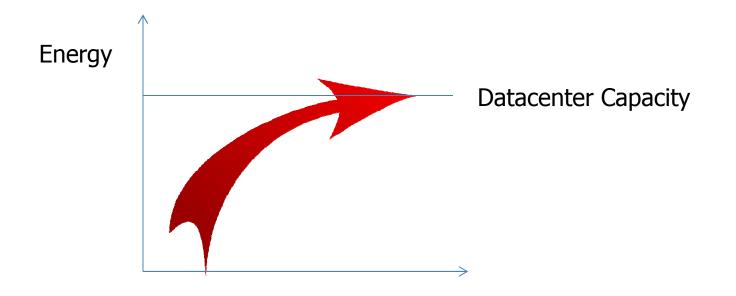


HPC trends (constrained by the three law)

Energy trends



Compute Power



Change of paradigm

New chips designed for maximum performance in a small set of workloads

Simple functional units, poor single thread performance, but maximum throughput

Compute Power

Exascale architecture

two model

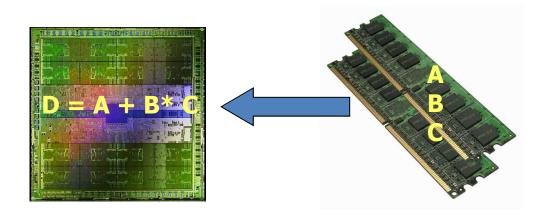
Hybrid Homogeneus

System attributes	2001	2010	"2	015"	"2018"				
System peak	10 Tera	2 Peta	200 Pet	aflop/sec	1 Exaflop/sec				
Power	~0.8 MW	6 MW	15	MW	20 MW				
System memory	0.006 PB	0.3 PB	5	РВ	32-64 PB				
Node performance	0.024 TF	0.125 TF	0.125 TF 0.5 TF 7 TF		1 TF	10 TF			
Node memory BW		25 GB/s	0.1 TB/sec 1 TB/sec		0.4 TB/sec	4 TB/sec			
Node concurrency	16	12	O(100)	O(1,000)	O(1,000)	O(10,000)			
System size (nodes)	416	18,700	50,000 5,000		1,000,000	100,000			
Total Node Interconnect BW		1.5 GB/s	150 GB/sec	1 TB/sec	250 GB/sec	2 TB/sec			
MTTI		day	O(1	day)	O(1 day)				

Energy efficiency

Where power is used:

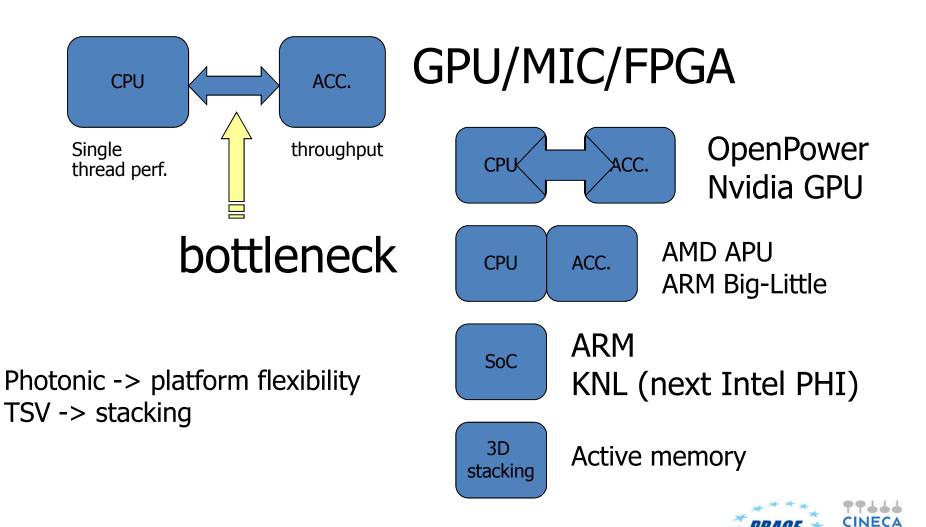
- 1) CPU/GPU silicon
- 2) Memory
- 3) Network
- 4) Data transfer
- 5) I/O subsystem
- 6) Cooling



Short term impact on programming models

Memory

Today the cost of moving operands to compute a 64bit floating-point FMA takes more energy with respect to the FMA operation itself



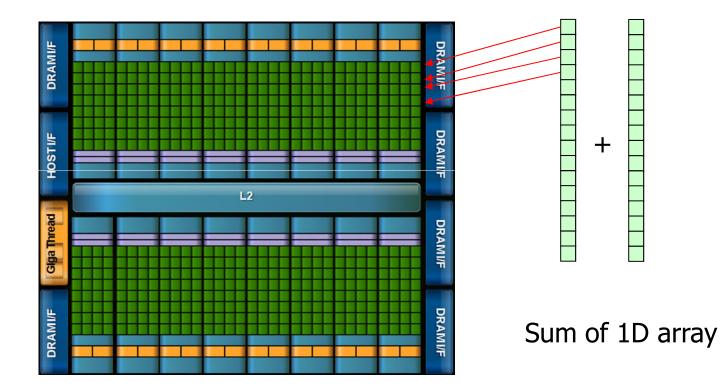
at 10nm integration, the energy required to move date is expected to becomes 100x !

Less "fast" memory per core

We need locality!

Architecture toward exascale

K20 nVIDIA GPU

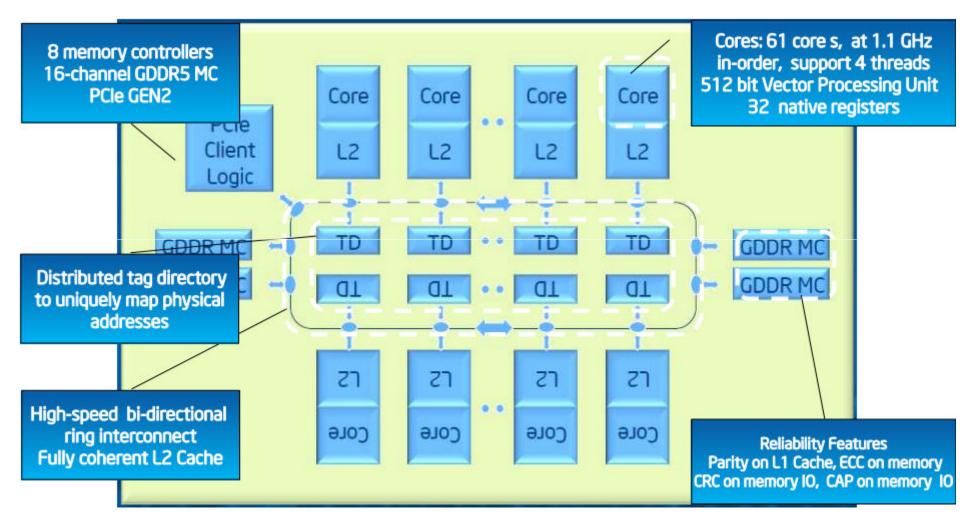

15 SMX Streaming Multiprocessors

SMX

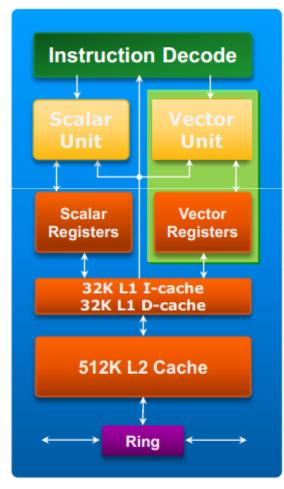
SMX Instruction Cache																			
	War	D Scl	veduler	-	-	Wa	rp Scher		trucu	on Ca		p Sch	eduler	-	-	Wa	ro Sche	duler	
Dispatch Dispatch			Dispatch Dispatch				Di	Dispatch Dispatch				Dispatch Dispatch							
	+		+			+	Dogi	ster f	Eile //		+	2 6 14				+		+	
							L	sterr	- 110 (1			2-01	•	+					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD:ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LO/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LOIST	SFU
-	Interconnect Network																		
	64 KB Shared Memory / L1 Cache																		
48 KB Read-Only Data Cache Tex Tex Tex Tex Tex Tex Tex Tex Tex																			
											Tex							Tex	
	Tex Tex Tex Tex Tex Tex Tex Tex																		

192 single precision cuda cores
64 double precision units
32 special function units
32 load and store units
4 warp scheduler (each warp contains 32 parallel Threads)
2 indipendent instruction per warp

Accelerator/GPGPU



CUDA sample


```
void CPUCode( int* input1, int* input2, int* output, int length) {
    for ( int i = 0; i < length; ++i ) {
        output[ i ] = input1[ i ] + input2[ i ];
    }
}
____global__void GPUCode( int* input1, int*input2, int* output, int length) {
        int idx = blockDim.x * blockIdx.x + threadIdx.x;
        if ( idx < length ) {
            output[ idx ] = input1[ idx ] + input2[ idx ];
        }
}</pre>
```

Each thread execute one loop iteration

Intel Xeon PHI Architecture

Core Architecture

- 60+ in-order, low-power Intel® Architecture cores in a ring interconnect
- Two pipelines
 - Scalar Unit based on Pentium® processors
 - Dual issue with scalar instructions
 - Pipelined one-per-clock scalar throughput
- SIMD Vector Processing Engine
- 4 hardware threads per core
 - 4 clock latency, hidden by round-robin scheduling of threads
 - Cannot issue back-to-back inst in same thread
- Coherent 512 KB L2 Cache per core

Knights Landing is the codename for Intel's 2nd generation Intel® Xeon Phi[™] Product Family, which will deliver massive thread parallelism, data parallelism and memory bandwidth – with improved single-thread performance and Intel® Xeon® processor binary-compatibility in a standard CPU form factor. Additionally, Knights Landing will offer integrated Intel® Omni-Path fabric technology, and also be available in the traditional PCIe* coprocessor form factor.

The following is a list of public disclosures that Intel has previously made about the forthcoming product:

PERFORMANCE

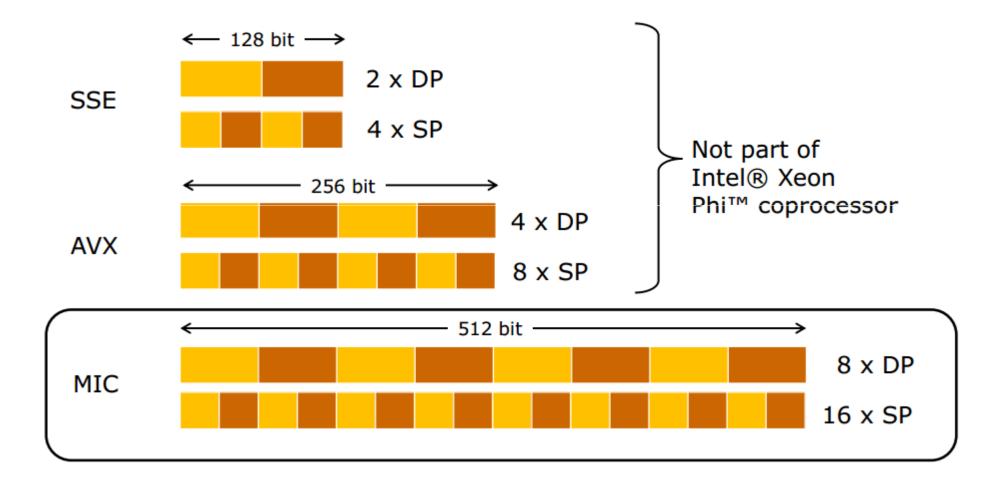
3+ TeraFLOPS of double-precision peak theoretical performance per single socket node⁰

Over 5x STREAM vs. DDR4¹ \Rightarrow Over 400 GB/s

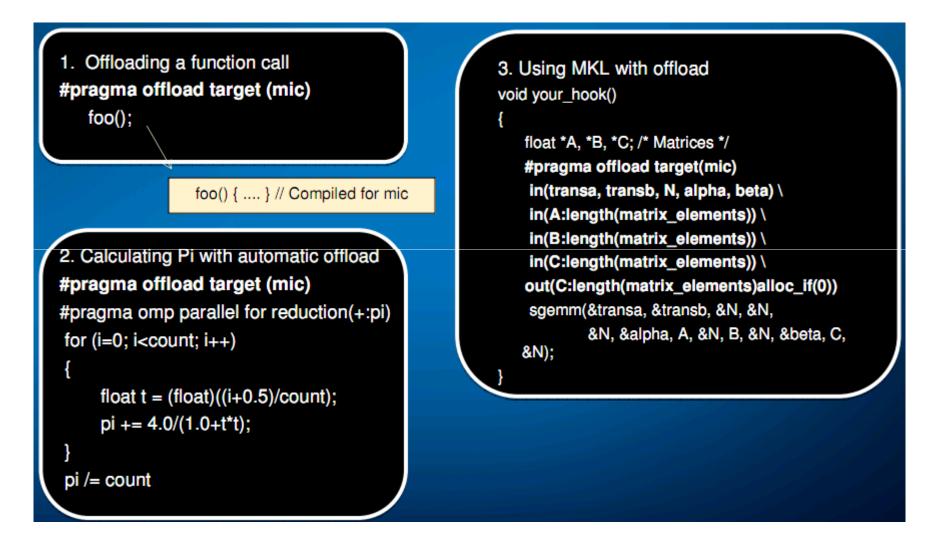
Up to 16GB at launch

High-performance on-package memory (MCDRAM) NUMA support

Over 5x Energy Efficiency vs. GDDR5²


Over 3x Density vs. GDDR5²

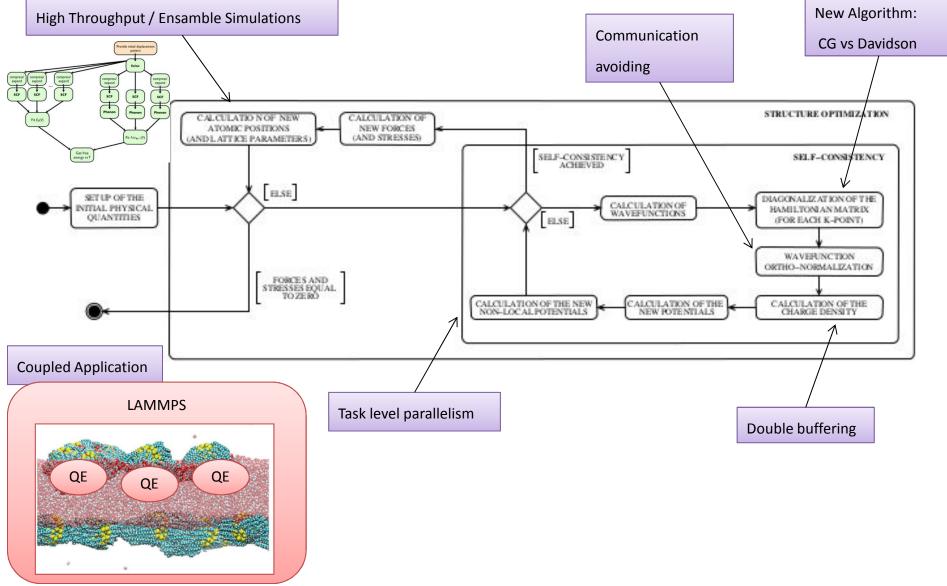
In partnership with Micron Technology


Flexible memory modes including cache and flat

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing?utm_content=buffer9926a&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Intel Vector Units

Programming MIC



Applications Challenges

- Programming model
- Scalability
- I/O, Resiliency/Fault tolerance
- Numerical stability
- Algorithms
- Energy Awareness/Efficiency

Quantum Espresso

toward exascale

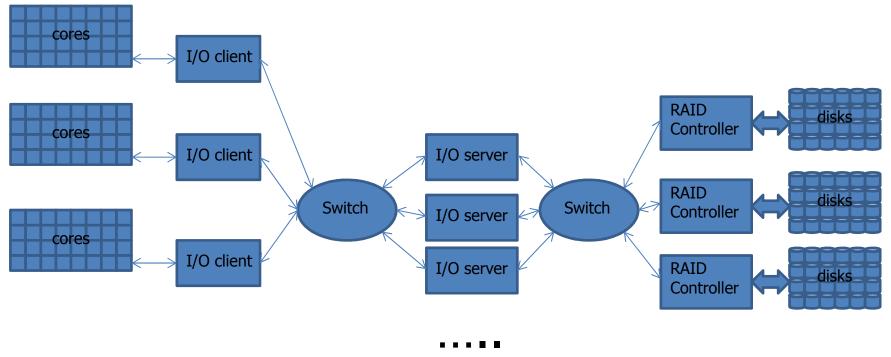
Impact on programming and execution models

- 1. Event driven tasks (EDT)
 - a. Dataflow inspired, tiny codelets (self contained)
 - b. Non blocking, no preemption
- 2. Programming model:
 - a. Express data locality with hierarchical tiling
 - b. Global, shared, non-coherent address space
 - c. Optimization and auto generation of EDTs
- 3. Execution model:
 - a. Dynamic, event-driven scheduling, non-blocking
 - b. Dynamic decision to move computation to data
 - c. Observation based adaption (self-awareness)
 - d. Implemented in the runtime environment

I/O Subsystem

I/O subsystem of high performance computers are still deployed using spinning disks, with their mechanical limitation (spinning speed cannot grow above a certain regime, above which the vibration cannot be controlled), and like for the DRAM they eat energy even if their state is not changed. Solid state technology appear to be a possible alternative, but costs do not allow to implement data storage systems of the same size. Probably some hierarchical solutions can exploit both technology, but this do not solve the problem of having spinning disks spinning for nothing.

I/O Challenges

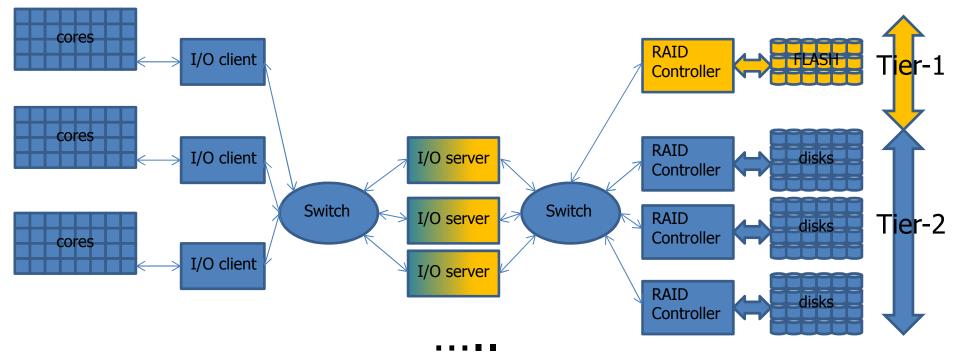

Today

100 clients 1000 core per client 3PByte 3K Disks 100 Gbyte/sec 8MByte blocks Parallel Filesystem One Tier architecture

Tomorrow

10K clients 100K core per clients 1Exabyte 100K Disks 100TByte/sec 1Gbyte blocks Parallel Filesystem Multi Tier architecture

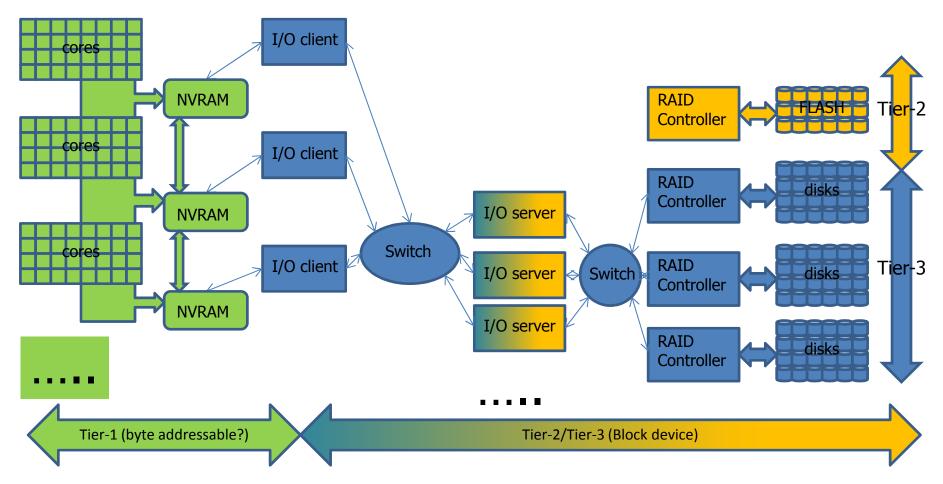
Today



.....

160K cores, 96 I/O clients, 24 I/O servers, 3 RAID controllers

IMPORTANT: I/O subsystem has its own parallelism!


Today-Tomorrow

.

1M cores, 1000 I/O clients, 100 I/O servers, 10 RAID FLASH/DISK controllers

Tomorrow

1G cores, 10K NVRAM nodes, 1000 I/O clients, 100 I/O servers, 10 RAID controllers

Impact on programming and execution models

DATA:

Billion of (application) files Large (check-point/restart) file Posix Filesystem: low level lock/syncronization -> transactional IOP low IOPs (I/O operation per second) Physical supports: disk too slow -> archive FLASH aging problem NVRAM (Non-Volatile RAM), PCM (Phase Change Memory), not ready Middlewere: Library HDF5, NetCDF MPI-I/O

Each layer has its own semantics

Conclusions

- Exascale Systems, will be there
- Power is the main architectural constraints
- Exascale Applications?
- Yes, but...
- Concurrency, Fault Tolerance, I/O ...
- Energy awareness