

Numerical and experimental study for the prediction of the steady, three dimensional flow in a turbine nozzle vane cascade using OpenFOAM

Silvia Ravelli*, Giovanna Barigozzi*, Francesco Pasqua**, Roberto Pieri++, Raffaele Ponzini**

> *Department of Engineering, University of Bergamo, Italy ** CINECA, Segrate (MI), Italy ++ SCS Italy, Segrate (MI), Italy

Outline

- Who we are
- Motivation & background
- Experimental and numerical setup
- Results and validation against measurements
- Conclusions & future developments

Who we are

EST - Energy Systems and Turbomachinery Group Department of Engineering University of Bergamo, Italy

3

Motivation

Main goal: exploring the potential of the OpenFOAM Toolbox to characterize the HP turbine section of a gas turbine engine

Background

Experimental and numerical investigation of thermal and aerodynamic performance of linear vane cascade

- National Research Projects (PRIN) and Industrial research contracts
- Simulations by means of commercial CFD codes

Suction-type, open circuit wind tunnel

Current activity

CFD open-source technology for industrial applications

Experimental setup

Solid Vane

• *c* = 142.1 mm

• H/c = 0.69

- *s/c* = 1.04
- *H* = 98 mm

• $\beta_2 = 70^{\circ}$ • $\beta_1 = 0$

Operating conditions

Inlet boundary layer ($X/c_{ax} = -1.6$)

Experimental setup

Experimental data used for validation:

- vane loading at midspan (z/H=0.5)
- wake total pressure P_{t2} (z/H=0.5, $x/C_{ax} = 1.50$)
- kinetic energy loss coefficient ζ (at $x/C_{ax} = 1.53$)

$\zeta = \left(1 - \frac{U_2^2}{U_{2is}^2}\right) * 100$

5-hole probe

Instrumented vanes

Numerical workflow

Meshing

- Meshing CAD geometry
- Criteria: checkMesh output & experimental fidelity
- Hybrid mesh topology
- SW: Pointwise (Pointwise Inc.)

Mesh details

Different meshes were created to assess the sensitivity of the solver setup to the spatial discretization:

	TOPOLOGY			QUALITY				SIZE
Mesh name	y⁺ (min – max – average)	BL hexahedra block	BL – # of layers	Max Non- orthogonality	Average Non- orthogonality	Max Skewness	Max Aspect Ratio	# of cells [Millions]
hybrid ₁	15.1 - 113.7 - 60.2	yes	5	43.2	6.1	0.7	6.2	1.6
hybrid ₂	15.2 - 116.8 - 59.7	yes	5	37.1	6.1	0.7	6.4	2.4
hybrid₃	8.0 - 68.0 - 36.1	yes	5	36.9	6.2	0.6	4.6	3.5

Boundary conditions

Patch name	Patch type	
inlet	patch	
	symmetryPlane	
outlet	patch	
tip	wall	
vane	wall	
periodic*	cyclic	⁷ x

Patch name	U	р
inlet	timeVaryingMappedFixedValue	zeroGradient
outlet	zeroGradient	fixedValue

Numerical setup

- Solver: steady state simpleFoam
- Discretization schemes: 2nd order
- Advection term: blended scheme (1st/2nd order)
- Residual control: ending criterion of 10⁻⁹
- Monitoring: 14 pressure and velocity probes
- **Two-equation turbulence models** with WallFunctions approach

Mesh name	Turbulence model
hybrid ₁	k-ε
hybrid ₂	k-ε
hybrid₃	k-ε/realisable k-ε/SST k-ω

Results – Overview

Results will include the following:

- Mesh sensitivity analysis based on midspan flow features
 Lagrandow Turbulence model: k-ε
- Evaluation of the **turbulence model** influence on the predictions of:
 - ✓ vane load
 - ✓ wake loss
 - ✓ secondary flows
- Scalability analysis over different HW configurations

Results – Mesh sensitivity

Results – Vane load

Vane load predictions have a weak dependence on turbulence model

Results – Midspan velocity

 $(x/C_{ax} = 1.50)$

Turbulence model marginally affects midpan velocity

Results – Midspan wake

 $(x/C_{ax} = 1.50)$

Wake predictions have a strong dependence on turbulence model

Results – Midspan wake

Wake predictions have a strong dependence on turbulence model

19

 $(x/C_{ax} = 1.50)$

Results – Secondary flows

 $(x/C_{ax} = 1.53)$

Scalability

Hybrid₃ mesh

cores

Conclusions

Turbulence model

- ✓ The vane load prediction is satisfactory, especially on the pressure side.
- ✓ *Realisable k-* ε and *SST k-* ω are the closest to the measured wake loss, with an overestimation of 15% and **9%**, respectively.
- ✓ Simulations overpredicted the kinetic energy losses associated with the passage vortex and the corner vortex as well.

Computational efficiency

- ✓ The scalability of the study-case is effective on the tested cores range thanks to the HPC platform (HW+Interconnection).
- Setup shows a good efficiency (>80%) using up to 38k cells per computational core. This cell density per computational core can be used as reference for the same setup on larger problems.

Future developments

- Pre-processing: Mesh topology based on native openFoam pre-processor
- Compressibility to match experiments at $M_{2is} = 0.4 0.6$
- Thermal modelling to simulate film cooling applications
- Unsteadyness for an accurate prediction of the thermal mixing between mainstream and coolant flow

Questions?

Thank you for your kind attention!

