
Application of GPU technology to
OpenFOAM simulations

Jakub Poła, Andrzej Kosior, Łukasz Miroslaw
jakub.pola@vratis.com,
www.vratis.com
Wroclaw, Poland

mailto:jakub.pola@vratis.com
mailto:jakub.pola@vratis.com
http://www.vratis.com
http://www.vratis.com

Agenda

● Motivation
● Partial acceleration

○ SpeedIT
○ OpenFOAM SpeedIT Plugin

● Full acceleration
○ SpeedIT FLOW
○ Examples

● Summary

Problem

The more accurate models the more resources
they require.

Solution #1

Use HPC CPU based systems

Solution #2

Unleash the computational power of the
GPGPU

Why GPU?

Why GPU?

Case #1. Partial acceleration

Case #1. Partial acceleration

SpeedIT: Linear Algebra on GPU

● Solvers:
○ Conjugate Gradient.
○ Bi-Conjugate Gradient Stab.

● Preconditioners:
○ Diagonal.
○ Approximate Inverse.
○ Algebraic Multigrid with

Smoothed Aggregation
(CUSP).

● Support for Multi-GPU.
● Platforms:

○ OpenCL.
○ CUDA.

SpeedIT Integration with OpenFOAM

OpenFOAM plugin:
● libspeedit_plugin.so
● Conversion:

○ from LDU to CSR
● Solvers:

○ BiCGStab: SI_PBiCG
○ CG: SI_PCG

● Provides interfaces for
multi-gpu calculations

contrlolDict:

fvSolution:

p {

solver SI_PCG;

preconditioner
SI_AMG;

matrix CSR;

}

U {

solver SI_PBiCG;

preconditioner
SI_DIAGONAL;

matrix CSR;

}

libs(

“libspeedit_plugin.so”

“libspeedit.so”

)

Case #1. Ahmed body
- Simulation parameters:

- 1.37M cells
- Stationary flow
- Pressure solver / precond:

- GAMG(CPU), PCG-AMG
(GPU)

- Velocity solver precond:
- PBiCG - DILU(CPU),

PBiCGStab Diagonal(GPU)
-

- Hardware:
- System #1: Intel Core 2 Quad,

Tesla C2090 GPU
- System #2: Intel Xeon, Tesla

C2090 GPU

Partial acceleration: Results

Bottleneck: Memory transfer

Solution

SpeedIT Flow
● Full GPU implementation of:

○ PISO
○ SIMPLE
○ Turbulence k-ᶫ SST

● Boundary Conditions:
○ Zero gradient.
○ Time dependent fixed-value and slip
○ InletOutlet.
○ kqRWallFunction, omegaWallFunction,

nutkWallFunction.
● Adjustable time step.
● Use OpenFOAM case definition for I/O
● Road Map:

○ Support for Multi-GPU.

SpeedIT Flow in action

Three simple steps:

1. Generate the mesh using blockMesh and
snappyHexMesh

2. Execute the converter to prepare the data in a
GPU-friendly format.

3. Run the GPU based solver (gSIMPLE, gPISO)

SpeedIT Flow in action: Configuration
● Steady State simulation, SIMPLE algorithm with k-ω SST

turbulence model
● Meshing on CPU, Solving on GPU. Double Precision.
● External, turbulent flow at various speed.
● CPU Configuration:

○ Intel Xeon 5649 @ 2.53 GHz, 96 GB RAM
○ OpenFOAM 2.0.1 in parallel mode using 12 threads

■ Pressure solver: GAMG
■ Velocity, k, ω solvers: PBiCG with diagonal preconditioner

● GPU Configuration:
○ Intel Xeon 5649 @ 2.53 GHz, 96 GB RAM,
○ GPU: NVIDIA Quadro K6000, AMD W9100
○ SpeedIT FLOWCL: GSIMPLE solver

■ Pressure solver: PCG with AMG preconditioner
■ Velocity, k, ω solver: PBiCGStab with diagonal

preconditioner

Case #2. NACA 2412 airfoil

● chord - c = 1m, taper ratio - ctip/croot = 1, wing span - b = 6m - span, wing area - S = 6m2.
● 3401338 (3.4M) cells
● Different angles of attack from 0 to 45 degrees with a 5 degree step

Case #2. Performance results

Case #2. Numerical results

Case #2. Visualisation

Cutting edge hardware

AMD FirePro S9150
● 2.53 TFLOPS of peak

double-precision
performance

● 16GB GDDR5 memory
● 235W at maximum power

NVIDIA K6000
● 1.4 TFLOPS of peak

double-precision
performance

● 12GB GDDR5 memory
● 225W at maximum power

Case #3. Cars

Origin of models: 4-ID Network, TUM (Technische Universität München)

Case #3. Performance results (AMD)

Case #3. Power consumption

Summary

1. Use of GPU to accelerate OpenFOAM simulation is
profitable!
○ Speedup from x1.8 up to x3.5
○ Energy consumption is lower.

2. Use your GPU as external accelerator.
○ GPU uses 1 CPU thread.
○ Rest of the cores can be utilized for other tasks i.e for another

GPU simulations.
3. With SpeedIT Flow w can:

○ Simulate flows on fully unstructured meshes up to 9M cells on
single GPU

○ Accelerate solution of Navier - Stokes equations for steady-
state and transient cases using SIMPLE and PISO algorithms

○ Solve the laminar and turbulent cases using k-w SST model
○ Use OpenFOAM as a standard for case definition

Questions?
Comments?

Jakub Pola
jakub.pola@vratis.com

www.vratis.com

Acknowledemnents:
Vratis: Michal Cieslak, Andrzej Kosior, Lukasz Miroslaw
Wroclaw Uni.: Zbigniew Koza
Wroclaw Uni. of Technology: Tadeusz Tomczak

http://www.vratis.com
http://www.vratis.com

