

COST, COMPLEXITY AND UNCERTAINTY IN AERODYNAMIC SHAPE OPTIMISATION: A NEW OPPORTUNITY FOR HPC

H Telib, R Arpa, A Scardigli A Torluccio E Minisci, A Ricardi I Spisso

OPTIMAD engineering, Turin, Italy Automobili Lamborghini, Sant'Agata Bolognese, Italy University of Strathclyde, Glasgow, Scotland CINECA, Casalecchio di Reno, Italy

HPC enabling of OF @CINECA, 26/03/2015

Outline

- 1. Practical problems in shape optimization
- 2. Enabling of large scale aerodynamic shape optimization
 - Shape morphing based on FFD and Level-Sets
 - ROM based on POD and domain decomposition
- 3. The Fortissimo SOUTH experiment

Motivation

2 major burdens to aerodynamic shape optimization

1. Difficult to set-up (Integration)

- identification of parameters, parameterization itself etc
- totally automatized (geometry creation, pre-processing)
- especially critical if at advanced design

2. Expensive (Availability)

- computing resources sized for analysis
- licenses CAD, CFD

The optimization context – Information provided by solver

The optimization context – Time & Costs

cost of real life RANS approx.	С _{нғм} =2000 сриһ
# of design variables	O(10)
cost of computing	0.1€/cpuh
cost of licenses	0

2 Level multi-fidelity approach using response surface (neglectable cost) + HFM

global optimization run O(100) - O(1000)	2.e5 – 2.e6 cpuh
computing resources O(10) – O(1000)	2. e2 – 2.e4 h

1week – 2years -> stop we you have to

20K€ - 200K€ -> convince your management !!

3 Level multi-fidelity approach using response surface (neglectable cost) + ROM + HFM

cost of Reduced Order Model	$C_{ROM} = \sigma C_{HFM}$
global optimization run O(1000) ROM + O(10) HFM	2.e6 σ + 2.e4 cpuh
necessary saving factor σ O(1month), O(10K€)	1-1/100

1. simulation

- calibration of models
- hope in "systematic errors" or "conservation of trends"
- what if your new prototype(!!) performs worse than original??
- 2. optimal strategy
 - should I use Krigging or ANN?
 - optimal number of initial samples??
 - when should I stop my optimization??
 - best answer we can give today "depends from case to case"

- Uncertainty nowadays is mastered by empirical knowledge. Limited basin of validity
- it takes specialized technical staff (like Joel!!)
 - i. to build an automatic workflow (geometry??, mesh??, 1month)
 - ii. and to do some preliminary investigations (sensitivity, uncertainty) (1.5 month)
 - iii. which help you to set up the optimization run (0.5 month)
- very costly (factor 10-100 wrt analysis)
- Automatic shape optimization is used only if strategic

Free-Form Deformation using Level-Sets

Requirements to geometrical engine

Geometry represented as surface triangulation (CAD neutral)

1.parameterization of complex geometries

Free-Form Deformation developed by Desideri et al @INRIA adaptive parameterization (multi-level etc)

2.constraints handling

C⁰, C¹, C² conditions on arbitrary boundaries no-penetration condition

3.features & curvature based surface mesh adaptation

if deformed geometry needs finer surface mesh than original geometry

Constraints via Level-Set information

Free-Form Deformation applies a displacement vector $N_i = S_i + D(S_i)$

difficult to impose regularity conditions on an arbitrary shaped boundary **Г**

our approach introduces a weight function $N_i = S_i + w[\phi(S_i | \mathbf{\Gamma})] D(S_i)$

withw(0) = 0for C^0 conditionwithw(0) = 0, w'(0) = 0for C^1 conditionwithw(0) = 0, w'(0) = 0, w''(0) = 0for C^2 condition

Constraint control Free condition C0 condition C1 condition C2 condition 1.2 0.1 Filter value 0.6 0.4 0.2 0.2 0.4 0.6 0.8 Normalized distance function

 $φ(S_i|\Gamma)$ must provide topological information but it is requires that $φ(S_i|\Gamma)$ is C⁰, C¹ and C² respectively

Geodesic distance from boundary

resulting function is only C⁰, cannot impose higher regularity

Geodesics based on heat kernel proposed by Crane et al.

- resovle heat equation $u_{,t} = -u_{,xx}$ for a given time (parameter for smoothing) calculate X = -grad u / |grad u|1.
- 2.
- solve lap Φ = div grad X 3.

As similar as possible to geodesic distance, but imposes smoothness

Geodesics based on heat kernel proposed by Crane et al.

Deformation using C⁰ constraint

Deformation using C¹ constraint

Deformation using C² constraint

Control of penetration

1. User may indicate no-penetration surfaces:

- surface id
- distance to be maintained

2. Ray-tracing algorithm will calculate maximum displacement for each vertex

3. Two different types of rescaling algorithms available.

CM2: global rescale

Volume constraints

Multi-level parameterization

Spin-Off del Politecnico di Torino

Goal: Successively refine optimization run by introducing local shape parameters

podFOAM: ROM based on POD and Domain decomposition

Sustainable CFD: Domain Decomposition

inner zone: use non-linear CFD outer zone: use simplified model to impose BC to inner zone

Far Field BC

Sustainable CFD: Re-Use your data

Our assumptions are that

- in the outer zone, the perturbation becomes linear
- the **information needed** for describing the flow field of outer zone, is **already available** in the data stored on your HD

If fulfilled then

- that the new flow field will can be represented as a linear combination of the ones on your HD
- no need to compute

Sustainable CFD: Re-Use your data: But how?

Represent the green zone by Proper Orthogonal Decomposition

- representation of a solution as $u_i^j(x) = \Sigma a_i^j \Phi_i(x)$ for i= 0...N
- $\Phi_i(x)$ are orthogonal POD basis, which can be found by solving the eigen-problem of the **snapshot correlation matrix**
- no series converges faster than POD; identification of coherent structures; very few modes to capture 99% of the energy

Couple to CFD in blue zone

- through a Least-Squares Problem on the data at the interface
- through a Least-Squares Problem on the residuals at the interface or domain

Validation of POD: case 1 mirror

RANS calculations k-omega TM

Reproduction of a case included in the database

white isolines: ROM, colormap: CFD

Performance of POD: optimization of rear diffusor

Velocity Mode 0

Velocity Mode 1

Reproduction of case NOT included in database: velocity

U Magnitude

white isolines: ROM, colormap: CFD

Reproduction of case NOT included in database: pressure

white isolines: ROM, colormap: CFD

TC2: Performance Summary

	original	hybrid
cost		
# of grid points	40M - 120M	4M – 9M
iterations	10K	2К
cpuh	1.5K – 2.5K	45 – 75
cost reduction	1	O(50)
accuracy		
drag	1.	1.005
lift	1.	0.93*
loss of accuracy	<1% drag, <10%lift	

*dependency on grid

An outlook: SOUTH experiment within FORTISSIMO

The SOUTH experiment

Shape Optimization under Uncertainty through HPC cloudS

- Enable easy setup of optimization runs to SMEs through massive usage of HPC resources.
- Target: Expert user in analysis, un-experienced in optimization
- User provides intuitive information:
 - 1. time and budget
 - 2. simulation templates
 - 3. indication of uncertain and tuneable parameters reference data if available (e.g. wind tunnel)
- automatic setup the optimization run, by exploiting the simulation parameter space through HPC
- Accessible via web using HTML5 protocol, Software-as-a-Service paradigm
- Compatibility with any CAE solution (testing using OpenFOAM)

The SOUTH platform

Contribution per partner

geometrical

engine

multi level,&

fidelity optimization

engine

simulation

bus & interface

specifications

& testing

