Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Non-linear Detached-Eddy Simulations on Supercomputing Facilities

Valerio D'Alessandro¹, Sergio Montelpare², Renato Ricci¹

¹Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche

²Dipartimento di Ingegneria e Geologia Università degli Studi "G. D'Annunzio" di Chieti-Pescara

CINECA, Casalecchio di Reno (BO) - Italy, 26 March 2015

Introduction

- 2 Scalability Tests Lid–driven cavity
- **4** Conclusions

- The long term goal of this research work is to develop a CFD approach to investigate accurately and efficiently (as more as possibile) fluid flow phenomena involving wakes, such as:
 - Wind turbines
 - Pin fin arrays

- The long term goal of this research work is to develop a CFD approach to investigate accurately and efficiently (as more as possibile) fluid flow phenomena involving wakes, such as:
 - Wind turbines
 - Pin fin arrays
- Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)

- The long term goal of this research work is to develop a CFD approach to investigate accurately and efficiently (as more as possibile) fluid flow phenomena involving wakes, such as:
 - Wind turbines
 - Pin fin arrays
- Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)
- \bullet Provide a contribution to the ongoing search for a better hybrid LES/RANS approach applicable to high ${\rm Re}$ flows. In particular:
 - a quadratic constitutive relation (QCR) for Reynolds Stresses introduced in [Spalart, 2000] for RANS equations is here evaluated in SA-DES environment
 - a standard SA–DES computation was also performed

- The long term goal of this research work is to develop a CFD approach to investigate accurately and efficiently (as more as possibile) fluid flow phenomena involving wakes, such as:
 - Wind turbines
 - Pin fin arrays
- Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)
- \bullet Provide a contribution to the ongoing search for a better hybrid LES/RANS approach applicable to high ${\rm Re}$ flows. In particular:
 - a quadratic constitutive relation (QCR) for Reynolds Stresses introduced in [Spalart, 2000] for RANS equations is here evaluated in SA–DES environment
 - a standard SA–DES computation was also performed
- Perform scalability tets for OpenFOAM code on the GALILEO supercomputing facility (just installed at CINECA)

Scalabilty tests

Strong scalability tests have been conducted on GALILEO supercomputing facility @CINECA considering the following parameters:

- Total number of cells
- Linear-solvers
- Compiler/MPI implementation effect
 - GNU compilers + Open MPI (built with GNU compilers)
 - $Intel^{\mathbb{R}}compilers + Intel^{\mathbb{R}}MPI$ library
 - Intel[®] compilers + Open MPI (built with Intel[®] compilers)
 - Intel[®] compilers + Open MPI (built with GNU compilers)

Aim of the work O Lid–driven cavity Scalability Tests

 $\begin{array}{l} \text{Cylinder} \ \mathrm{Re} = 3900 \\ 000000000000 \end{array}$

Conclusio

Bibliography

Lid-driven cavity flow

Streamlines, [Vratis Ltd, 2015]

- Cubic domain, H = 1, Re = 10;
- icoFoam solver;
- Structured uniformly spaced grid;
- 40 time-steps without I/O as in [Culpo, 2011];
- $\Delta t = 10^{-4};$
- Default linear-solvers:
 - PCG for *p* with DIC preconditioner;
 - smoothSolver for u (symGaussSeidel);
 - PISO correctors: 2;
- Default tollerances: $p: 10^{-6}$, **u**: 10^{-5} .

	Scalability Tests ○●○○○○○○○○		
Lid–driven cavity			

Grid cells

Figure: Effect of different total number of grid cells

	Scalability Tests 00●0000000		
Lid–driven cavity			

Grid cells

Figure: Effect of different total number of grid cells

Aim of the work O Lid–driven cavity Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Compilers and MPI implementation

Figure: Effect of different compilers and MPI implementations (2 · 10⁶ cells)

Aim of the work O Lid–driven cavity Scalability Tests

Cylinder Re = 3900

Conclusion

Bibliography

Compilers and MPI implementation

Figure: Effect of different compilers and MPI implementations (2 · 10⁶ cells)

Aim of the work O Lid-driven cavity Cylinder Re = 3900

Conclusio

Bibliography

Linear solvers

ł

smoothSolver for u (symGaussSeidel);
PISO correctors: 2.

р

solver	GAMG;
tolerance	1e-06;
relTol	0;
smoother	GaussSeidel;
nPreSweeps	0;
nPostSweeps	2;
nFinestSweeps	2;
cacheAgglomerat	ion on;
agglomerator	<pre>faceAreaPair;</pre>
nCellsInCoarses	tLevel 16-512;
mergeLevels	1;

}

Aim of the work O Lid–driven cavity Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Linear solvers

Figure: $2 \cdot 10^6$ cells

Aim of the work O Lid-driven cavity Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Linear solvers

Figure: $2 \cdot 10^6$ cells

Aim of the work O Lid–driven cavity Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Linear solvers

Figure: $4 \cdot 10^6$ cells

Aim of the work O Lid–driven cavity Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Linear solvers

Figure: $4 \cdot 10^6$ cells

	Cylinder Re = 3900 ●00000000000	
DES computations		

DES equations

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) = -\frac{1}{\rho} \nabla \rho + \nabla \cdot (2\nu \mathbf{D}) + \nabla \cdot \mathbf{B},$$

$$\frac{\partial \tilde{\nu}}{\partial t} + \nabla \cdot (\mathbf{u}\tilde{\nu}) = c_{b1}\tilde{S}\tilde{\nu} + \frac{c_{b2}}{\sigma} \nabla \tilde{\nu} \cdot \nabla \tilde{\nu} + \frac{1}{\sigma} \nabla \cdot ((\nu + \tilde{\nu}) \nabla \tilde{\nu}) - c_{w1} f_w \left(\frac{\tilde{\nu}}{\tilde{d}}\right)^2$$

where:

$$\begin{split} \mathbf{B} &= \mathbf{R} - c_{r1} \left(\mathbf{Q} \cdot \mathbf{R} - \mathbf{R} \cdot \mathbf{Q} \right), \\ \mathbf{R} &= -\frac{2}{3} k \mathbf{I} + 2\nu_t \mathbf{D}, \quad \mathbf{Q} = 2\Omega / \sqrt{\nabla \mathbf{u} : \nabla \mathbf{u}} , \\ \mathbf{D} &= \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right), \quad \mathbf{\Omega} = \frac{1}{2} \left(\nabla \mathbf{u} - \nabla \mathbf{u}^T \right), \quad S = \sqrt{2\Omega : \Omega} , \\ \tilde{S} &= S + \frac{\tilde{\nu}}{k^2 d^2} f_{v2}, \quad \nu_t = f_{v1} \tilde{\nu}, \quad \tilde{d} = \min \left(d, C_{DES} \Delta \right). \end{split}$$

DES equations

- $\mathbf{B} = \mathbf{R} c_{r1} \left(\mathbf{Q} \cdot \mathbf{R} \mathbf{R} \cdot \mathbf{Q} \right)$
 - it was introduced in [Spalart, 2000] for RANS equations coupled with the one-equation Spalart-Allmaras turbulence model and it allows the prediction of secondary flows
 - it is related related to the proposal of [Wilcox and Rubesin, 1980]
 - this quadratic constitutive relation is considered preliminar in the sense it uses only one of the many possibile combinations of strain rate and rotation tensor
 - $c_{r1} = 0.3$ was obtained in simple boundary layer flows requiring a fair level of anistropy $\overline{u'u'} > \overline{w'w'} > \overline{v'v'}$
 - it is turbulence model indipendent
- the closure functions and constants of the turbulence/SGS model are standard
- To assess the performance of this constitutive relation in DES envinroment the flow-field around the circular cylinder in subcritical regime ($\mathrm{Re}=3900$) was computed

Scalability Tests

Cylinder Re = 3900

Conclusion

Bibliography

Computational Grid

- Structured non-orthogonal grid
- Rectangular domain:
 - 40 D in the wake region
 - 20 D in transverse direction
 - 0.5 D in span-wise direction
- First cell height: $2 \cdot 10^{-3}D$
- Span-wise direction: $2 \cdot 10^{-2}D$ uniform spacing
- No wall functions
- No perturbations added at the inlet
- 2.06 · 10⁶ cells

Numerics

- pimpleFOAM solver
- some div-terms:

```
div(phi,U) Gauss linear;
div(phi,nuTilda) Gauss limitedLinear 0.333;
div(nonlinearStress) Gauss linear corrected;
```

- Linear solvers:
 - Preconditioned bi-Conjugate Gradient Method with DILU for ${\boldsymbol{u}}$
 - Preconditioned bi-Conjugate Gradient Method with DILU for $\tilde{\nu}$
 - $\bullet\,$ Preconditioned conjugate gradient method with DIC for p
- Tollerances: 10^{-5} for $p,\,10^{-12}$ for ${\bf u}$ and $\tilde{\nu}$
- second order implicit time integration ($\Delta t = 10^{-3}$)

Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Parallel performance

Figure: Effect of the linear solver

Scalability Tests

Cylinder Re = 3900

Conclusio

Bibliography

Vortical structures

Scalability Tests

Cylinder Re = 3900

1D energy spectra

	St_{vs}
NL-DES	$0.217 \pm 4 \cdot 10^{-3}$
SA–DES	$0.216 \pm 7 \cdot 10^{-3}$
LES-SMAG	0.19
LES-TKE	0.209
Parnaudau	0.208
Ong	0.21

	${\rm St_{vs}/St_{sL}}$
NL-DES	pprox 8.7
SA–DES	pprox 7.3
LES-SMAG	≈ 8
LES-TKE	pprox 7
Dong (DNS)	7.83

Scalability Tests

 $\begin{array}{l} \text{Cylinder } \mathrm{Re} = 3900 \\ 000000000000 \end{array}$

Conclusior

Bibliography

Mean-velocity profiles

Scalability Tests

 $\begin{array}{l} \text{Cylinder } \mathrm{Re} = 3900 \\ 0000000000000 \end{array}$

Conclusio

Bibliography

Mean-velocity profiles

Scalability Tests

Cylinder Re = 3900

Conclusior

Bibliography

$\overline{u'u'}$ profiles

Scalability Tests

Cylinder $\operatorname{Re} = 3900$

Conclusio

Bibliography

$\overline{\mathbf{v}'\mathbf{v}'}$ profiles

Cylinder Re = 3900

Aerodynamic forces

	C _{I,rms}	C _{d,rms}	$\langle C_l \rangle$	$\langle C_d \rangle$
NI –DES	0 3988	1 1 3 7 4	0.0052	1 1 3 7 4
SA-DES	0.3300	1.1077	0.0091	1.1071
LES-SMAG [Lysenko et al., 2012]	0.444	1.19	0.44	1.18
LES-TKE [Lysenko et al., 2012]	0.089	0.97050	0.09	0.97
[Ouvrard et al., 2010] LES	0.092	_	_	0.99
[Meyer et al., 2010] LES	_	_	_	1.05
[Kravchenko and Moin, 2000] LES	_	_	_	1.04
[Mittal and Moin, 1997] LES	_	—	—	1.00
[Franke and Frank, 2002] LES	_	_	_	0.99
[Alkishriwi et al., 2006] LES	_	_	—	1.05
[Mani et al., 2009] LES	_	—	—	0.99
[Wornom et al., 2011] LES	0.11	—	_	0.99
[Lourenco, 1993] PIV	—	—	_	0.99
[Norberg, 1994] HWA	_	_	_	0.98

Conclusions

- OpenFOAM scalability have been tested on GALILEO with good results.
- NL-DES (using a simple quadratic constitutive relation) and SA-DES97 have been compared in this work. NL-DES seems to be promising (our results are not still full converged).
- Further topics must be addressed:
 - span-wise resolution
 - others constitutive relations
 - DDES/IDDES

Acknowlegments

- We acknowledge Dr Ivan Spisso and CINECA for the invitation to this workshop and for the activation of a trial project on GALILEO for its testing.
- We acknowledge Dr D. A. Lysenko and Prof. I.S. Ertesvag, Norwegian University of Science and Technology (NTNU), who provided to us their computational data

Reference: Valerio D'Alessandro Università Politecnica delle Marche v.dalessandro@univpm.it

Bibliography I

-

Alkishriwi, N., Meinke, M., and Schrder, W. (2006).

A large-eddy simulation method for low mach number flows using preconditioning and multigrid. Computers and Fluids, 35(10):1126–1136.

Culpo, M. (2011).

Current Bottlenecks in the Scalability of OpenFOAM on Massively Parallel Clusters. PRACE white paper, available on www.prace-ri.eu.

Franke, J. and Frank, W. (2002).

Large eddy simulation of the flow past a circular cylinder at red = 3900. Journal of Wind Engineering and Industrial Aerodynamics, 90(10):1191–1206.

Kravchenko, A. and Moin, P. (2000).

Numerical studies of flow over a circular cylinder at $\text{Re}_d = 3900$. Physics of Fluids, 12(2):403–417.

Lourenco, L. e. a. (1993).

Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Technical Report.

Lysenko, D. A., Ertesvag, I., and Rian, K. E. (2012).

Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow, Turbulence and Combustion, 89:491–518.

Mani, A., Moin, P., and Wang, M. (2009).

Computational study of optical distortions by separated shear layers and turbulent wakes. Journal of Fluid Mechanics, 625:273–298.

Bibliography II

Meyer, M., Hickel, S., and Adams, N. (2010).

Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. International Journal of Heat and Fluid Flow, 31(3):368 – 377. Sixth International Symposium on Turbulence and Shear Flow Phenomena.

Mittal, R. and Moin, P. (1997).

Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA Journal, 35(8):1415–1417.

Norberg, C. (1994).

Experimental investigation of the flow around a circular cylinder: influence of aspect ratio. Journal of Fluid Mechanics, 258:287–316.

Ong, L. e. a. (1996).

The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids, 20:441–453.

Ouvrard, H., Koobus, B., Dervieux, A., and Salvetti, M. V. (2010).

Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Computers & Fluids, 39(7):1083 - 1094.

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008).

Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. *Phys. Fluids*, 20.

Spalart, P. (2000).

Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3):252 – 263.

Bibliography III

Vratis Ltd (2015).

SpeedIT FLOW accelerates OpenFOAM. http://vratis.com/blog/.

Wilcox, D. and Rubesin, M. (1980).

Proposal in Turbulence Modelling for Complex Flow–Fields. NASA Technical Paper-1517.

Wornom, S., Ouvrard, H., Salvetti, M., Koobus, B., and Dervieux, A. (2011).

Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Computers and Fluids, 47(1):44–50.