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Convective flow

B Convective flows start when a
temperature gradients give rise to a
buoyancy force that drives the fluid and
triggers turbulence generation.

B Thermal energy is transported by the flow and transfered to the solid
boundaries of the system. The interaction between solid/fluid starts.

B The heat transfer changes the temperature profile of the solids and
perturbs the fluid flow.
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Applications

B optimization of home appliances

B study the efficiency of heating
and ventilation systems

B develop cooling systems for
electronic devices
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A simplified case: the closed cavity

Rectangular cavity filled with air,
...
...
...
...
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A simplified case: the closed cavity

Rectangular cavity filled with air,
with two differently heated vertical
walls
and conductive horizontal
boundaries
...
...
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A simplified case: the closed cavity

Rectangular cavity filled with air,
with two differently heated vertical
walls
and conductive horizontal
boundaries
isolated from outside with an
insulator.
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Flow sketch

Imposing a difference of temperature
∆T = 40oC , the resulting flow is
characterised by low and localised
turbulence:

Re =
UL

ν
= 5.0× 104 ,

and heat transfer is dominated by
convection instead of conduction:

Ra =
gβ

νk
∆TL3 = 1.58× 109 .
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Simulation methodology

Large-eddy simulation technique: direct computation of large scale of
motion and modelisation of the effects of the not-computed small scale.

Filtering operation:

ui (x, t) =

∫
ui (x′, t)G(x, x′)dx′
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Mathematical model: turbulence

B Eddy viscosity turbulence model: the contribution of small scale
motion is modelled by an increasing of fluid viscosity

∂ui

∂xi
= 0,

∂ui

∂t
+
∂ui uj

∂xj
= − 1

ρ0

∂p

∂xi
− g

∆ρ

ρ0
δi2 + ν

∂2ui

∂xj∂xj
− ∂

∂xj
τ̃ij ,

where the deviatoric part of stress tensor is modelled by

τij = −2cs∆
2|S |S ij ,

with cs the Smagorinsky constant. This is computed with the
Lagrangian dynamic model, using information from the big scale of
motion (Meneveau et al. 1995).
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Mathematical model: temperature and buoyancy
B The Boussinesq approximation is used for buoyancy force:

∆ρ

ρ0
= −β∆T .

B Temperature diffusion in fluid domain follows

∂Tf

∂t
+
∂Tf uj

∂xj
= αf

∂2Tf

∂xj∂xj
− ∂λj

∂xj
,

where the turbulent thermal flux λj = uj Tf − uj T is modelled using the
Lagrangian dynamic method, adapted to scalar quantities (Armenio &
Sarkar, 2002).

B Temperature diffusion in solid domain follows the classical law

∂Ts

∂t
= αs∇2 · Ts

where αs/f is the thermal diffusivity of the solid/fluid.
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Mathematical model: conjugate heat transfer

B Thermal coupling is obtained
enforcing the continuity of
temperature at the solid/fluid
interface

Ts,w = Tf ,w ,

and imposing the balance of heat
fluxes

ks

(
∂Ts

∂n

)
= kf

(
∂Tf

∂n

)
where ks/f is thermal conductivity,
and n is the normal to the interface.
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Implementation in OpenFOAM

Solver is based on PISO algorithm.

Main loop steps:

1 initialisation, load parameters

2 solve temperature for fluid/solid
domains: coupling sub-loop

|Ts,w − Tf ,w | < Terr∣∣∣ks

(
∂Ts

∂n

)
−kf

(
∂Tf

∂n

) ∣∣∣ < HFerr

3 solve the fluid motion equations

for more details
P. Sosnowski, PhD Thesis (2013).
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Validation

Validation of numerical solver is made against experimental and
simulation results:

B Y.S. Tian, T.G. Karayiannis. Low turbulence natural convection in an
air filled square cavity. Part I and II. Int. J. Heat and Mass Transfer 43,
pp. 849–866 (2000)

B S.H. Peng, L. Davidson. Large eddy simulation for turbulent buoyant
flow in a confined cavity. Int. J. Heat and Mass Transfer 22, pp.
323–331 (2001)

B F. Ampofo, T.G. Karayiannis. Experimental benchmark data for
turbulent natural convection in air filled square cavity. Int. J. Heat and
Mass Transfer 46, pp. 3551–3572 (2003)
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Fluid flow
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Fluid flow averaged
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Validation of fluid solver: mean quantities

The following plots are take on a
line close to the hot wall, at half
high of the cavity.
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Validation of fluid solver: first order statistics
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Validation of fluid solver: second order statistics
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Validation of heat transfer: conductor’s temperature

The following plots show the
temperature profile on the top
conductive plate.
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Validation of heat transfer: conductor’s temperature
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Validation of heat transfer: conductor’s temperature
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TRMS on the top solid/fluid interface
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New materials for horizontal sheets

Two cases presented, representatives
of insulator and conductor materials:

B Perfect Insulator → adiabatic;

B Neosyle → good conductor.
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Streamlines

perfect insulator neosyle
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Temperature contour plots

perfect insulator neosyle
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Turbulent thermal fluxes: horizontal and vertical

neosyle

perfect insulator

neosyle p. insulator
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Conclusions

Numerical model and implementation are successfully validated:

• Accurate turbulent model, suitable for anisotropic and localised
turbulence;

• Thermal coupling implementation able to reproduce the heat
transfer mechanism.

Strong influence of conductive solid boundaries on the fluid flow:

• Rise of recirculation bubble near the horizontal walls;

• Higher turbulence in the top and bottom region;

• Weaker temperature stratification in the core region.
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Mathematical model: Lagrangian dynamic model

B Dynamic Lagrangian model: cs is dynamically computed using
information from the big scale of motion: ∆̂ = 2∆

The differences between the two scales can be quantified by

Tij − τ̂ij = ûi uj − ûi ûj
def
= Lij ,

and the analogous turbulent model approximation

Tij − τ̂ij
∼= cs 2∆

2
(
|̂S |S ij − 4|Ŝ |Ŝ ij

)
def
= csMij .

Imposing the equivalence, we obtain an over-determinate system in the
variable cs :

Lij = csMij .
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def
= Lij ,

and the analogous turbulent model approximation

Tij − τ̂ij
∼= cs 2∆

2
(
|̂S |S ij − 4|Ŝ |Ŝ ij
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Mathematical model: Lagrangian dynamic model

B Dynamic Lagrangian model: cs is dynamically computed using
information from the big scale of motion: ∆̂ = 2∆

The differences between the two scales can be quantified by

Tij − τ̂ij = ûi uj − ûi ûj
def
= Lij ,

and the analogous expression of Smagorinsky turbulent model

Tij − τ̂ij
∼= cs 2∆

2
(
|̂S |S ij − 4|Ŝ |Ŝ ij

)
def
= csMij .

An unique solution can be found minimising the error of turbulent
approximation

eij = Lij − csMij .

Simulation of turbulent convective flow with conjugate heat transfer Carlo Cintolesi - carlo.cintolesi@gmail.com



Problem introduction Case presentation Numerical model and implementation Validation New results Conclusions

Mathematical model: Lagrangian dynamic model

• following (Meneveau et al., 1995), error is minimised in a last-square
sense, along the particle trajectories cover in a time t:

∂

∂cs

∫ t

−∞
eij (z , t ′)eij (z , t ′)

1

t
e
−(t−t′)

t dt ′ = 0
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Mathematical model: Lagrangian dynamic model

The coefficient is computer using

cs =
ILM

IMM
,

where the I are integrals that can be computed via PDE

∂ILM

∂t
+ u · ∇ILM =

1

t
(Lij Mij − ILM ) ,

∂IMM

∂t
+ u · ∇IMM =

1

t
(Mij Mij − IMM ) ,

where the characteristic time is

t = θ∆(ILMIMM )−1/8, θ = 1.5 .
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Computation of dynamic Lagrangian turbulent model

The variable cs can be also computer via a sequence specify by recursion I
n+1
LM (x) = ε[Lij Mij ]

n+1(x) + (1− ε) · In
LM (x− un∆t)

I0
LM (x) = cs,0[Mij Mij ]

0(x)
(1)

where cs,0 = 0.0256 is a classical value for the Smagorinsky constant, and I
n+1
MM (x) = ε[Mij Mij ]

n+1(x) + (1− ε) · In
MM (x− un∆t)

I0
MM (x) = [Mij Mij ]

0(x)
(2)

with

ε =
∆t/n

1 + ∆t/tn
, tn = 1.5 ∆(In

LMIn
MM )−1/8.
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Characteristic time for temperature

Non-dimensional analysis shows that
the thermal equilibrium a time is

τ =
L2

α
=
ρCpL2

k
.

For the cases considered we have:

ρCp < 106 ρCp > 106

Neosyle: Lead:

k > 10 τ = 5.6 · 102, τ = 2.3 · 105,

Glass wool: Concrete:

k < 10 τ = 3.65 · 105, τ = 0.9 · 106,
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