Disperse Multiphase Turbulence with OpenFOAM Gas-particle decoupling in volcanic plumes and density currents

Matteo Cerminara¹ and Tomaso Esposti Ongaro¹

¹Istituto Nazionale di Geofisica e Vulcanologia Sezione di Pisa, Italy

March 27, 2015

CINECA

Outline

Introduction

- Physical assumptions and mathematical model
- 3 Algorithm, boundary conditions and LES models
- 4 Monophase case testing
- 5 Large scale Multiphase simulations
- Future work and conclusions

Geophysical phenomenon

Eruption occurred at Sakurajima volcano (South Japan) in 2012

M. Cerminara & T. Esposti Ongaro (INGV)

Geophysical phenomenon: Volcanic Ash Plume

- Compressibility
- Momentum and Buoyancy at the vent
- Particle grain size distribution
- Particle settling
- Turbulent entrainment and heating of atmospheric air
- Buoyancy reversal
- Atmospheric stratification
- Turbulent infrasound
- Wind effects

Figure: Volcanic ash plume (Woods, *Bulletin of Volcanology*, 1988).

Motivation

- Large scale: Geophysical phenomena are intrinsically large scale and do not scale to the laboratory scale
- Hazard: Understanding volcanic plumes and pyroclastic density currents is very important for risk assessment
- Real-time monitoring: 3D numerical simulations are a tool to calibrate fast empirical models used for the real-time monitoring of active explosive volcanoes
- Moreover, numerically simulate such a kind of extreme phenomena is an excellent test bench for compressible multiphase CFD solvers

Short term objectives

2-3D models and simulations

- To write a well posed mathematical model based on clear physical assumptions.
- To discretize it implementing a new solver in OpenFOAM equilibriumEulerianFoam
- To model accurately volcanic ash dynamics, in particular:
 - turbulence
 - preferential concentration (i.e. disequilibrium between the solid and gaseous phase)
- To study the dependence of the plume observables on the input parameters:
 - velocity
 - temperature
 - total ejected mass
 - particle size distribution

• Discrete number of particle classes (polydispersed grain size)

- Heavy particles: ^{p̂s}/_{ρ̂g} ≫ 1 (p̂s ≈ 400 − 3000 kg/m³). Two-way coupling.
- Low concentration V_s/V := ε_s < 10⁻³. Particles are non-interacting (pressureless).
- Large number of particles. Each class can be described as a continuum (Eulerian approach)

All these assumptions are valid for volcanic ash when you are sufficiently higher than the vent and the deposition layer.

M. Cerminara & T. Esposti Ongaro (INGV)

• Discrete number of particle classes (polydispersed grain size)

- Heavy particles: $\frac{\hat{\rho}s}{\hat{\rho}g} \gg 1$ ($\hat{\rho}_s \approx 400 3000 \text{ kg/m}^3$). Two-way coupling.
- Low concentration $V_s/V := \epsilon_s < 10^{-3}$. Particles are non-interacting (pressureless).
- Large number of particles. Each class can be described as a continuum (Eulerian approach)

All these assumptions are valid for volcanic ash when you are sufficiently higher than the vent and the deposition layer.

M. Cerminara & T. Esposti Ongaro (INGV)

• Discrete number of particle classes (polydispersed grain size)

- Heavy particles: $\frac{\hat{\rho}s}{\hat{\rho}g} \gg 1$ ($\hat{\rho}_s \approx 400 3000 \text{ kg/m}^3$). Two-way coupling.
- Low concentration V_s/V := ε_s < 10⁻³. Particles are non-interacting (pressureless).
- Large number of particles. Each class can be described as a continuum (Eulerian approach)

All these assumptions are valid for volcanic ash when you are sufficiently higher than the vent and the deposition layer.

M. Cerminara & T. Esposti Ongaro (INGV)

• Discrete number of particle classes (polydispersed grain size)

- Heavy particles: $\frac{\hat{\rho}s}{\hat{\rho}g} \gg 1$ ($\hat{\rho}_s \approx 400 3000 \text{ kg/m}^3$). Two-way coupling.
- Low concentration V_s/V := ε_s < 10⁻³. Particles are non-interacting (pressureless).
- Large number of particles. Each class can be described as a continuum (Eulerian approach)

All these assumptions are valid for volcanic ash when you are sufficiently higher than the vent and the deposition layer.

M. Cerminara & T. Esposti Ongaro (INGV)

Discrete number of particle classes (polydispersed grain size)

- Heavy particles: $\frac{\hat{\rho}s}{\hat{\rho}g} \gg 1$ ($\hat{\rho}_s \approx 400 3000 \text{ kg/m}^3$). Two-way coupling.
- Low concentration V_s/V := ε_s < 10⁻³. Particles are non-interacting (pressureless).
- Large number of particles. Each class can be described as a continuum (Eulerian approach)

All these assumptions are valid for volcanic ash when you are sufficiently higher than the vent and the deposition layer.

M. Cerminara & T. Esposti Ongaro (INGV)

- For relative Reynolds number, $\frac{\rho_g |\mathbf{u}_s \mathbf{u}_g|d}{\mu} < 1000$, the Stokes law is valid: $\mathbf{f}_d = \frac{\rho_s}{\tau_s} (\mathbf{u}_s \mathbf{u}_g)$, where the Stokes time is: $\tau_s = \frac{\hat{\rho}_s d_s^2}{18\mu\phi}$ and the empirical correction $\phi = 1 + 0.15 \text{Re}_r^{0.687}$
- In turbulent flows, the time scale is $\tau_{\eta} = \frac{\eta^2}{\nu}$, thus the Stokes number is St $\equiv \frac{\tau_s}{\tau_{\eta}} = \frac{\hat{\rho}_s}{18\phi\hat{\rho}_g} (\frac{d_s}{\eta})^2$
- A LES method with grid scale $\xi > \eta$ widens the applicability of the Eulerian approach: St_{LES} = $\frac{\hat{\rho}_s}{18\phi\hat{\rho}_a}(\frac{d_s}{\xi})^2(\frac{\xi}{\eta})^{4/3}$
- The gas-particles thermal equilibrium characteristic time is $\tau_T = \frac{\hat{\rho}_s C_{v,s} d_s^2}{4k_s}$, so that $\frac{\tau_T}{\tau_s} = \frac{3}{2} \frac{C_{v,s} \mu}{k_s} = \frac{3}{2} \Pr_s \simeq 10^{-2}$.

- For relative Reynolds number, $\frac{\rho_g |\mathbf{u}_s \mathbf{u}_g|d}{\mu} < 1000$, the Stokes law is valid: $\mathbf{f}_d = \frac{\rho_s}{\tau_s} (\mathbf{u}_s \mathbf{u}_g)$, where the Stokes time is: $\tau_s = \frac{\hat{\rho}_s d_s^2}{18\mu\phi}$ and the empirical correction $\phi = 1 + 0.15 \text{Re}_r^{0.687}$
- In turbulent flows, the time scale is $\tau_{\eta} = \frac{\eta^2}{\nu}$, thus the Stokes number is $St \equiv \frac{\tau_s}{\tau_{\eta}} = \frac{\hat{\rho}_s}{18\phi\hat{\rho}_g} (\frac{d_s}{\eta})^2$
- A LES method with grid scale $\xi > \eta$ widens the applicability of the Eulerian approach: St_{LES} = $\frac{\hat{\rho}_s}{18\phi\hat{\rho}_g}(\frac{d_s}{\xi})^2(\frac{\xi}{\eta})^{4/3}$
- The gas-particles thermal equilibrium characteristic time is $\tau_T = \frac{\hat{\rho}_s C_{v,s} d_s^2}{4k_s}$, so that $\frac{\tau_T}{\tau_s} = \frac{3}{2} \frac{C_{v,s}\mu}{k_s} = \frac{3}{2} \Pr_s \simeq 10^{-2}$.

- For relative Reynolds number, $\frac{\rho_g |\mathbf{u}_s \mathbf{u}_g|d}{\mu} < 1000$, the Stokes law is valid: $\mathbf{f}_d = \frac{\rho_s}{\tau_s} (\mathbf{u}_s \mathbf{u}_g)$, where the Stokes time is: $\tau_s = \frac{\hat{\rho}_s d_s^2}{18\mu\phi}$ and the empirical correction $\phi = 1 + 0.15 \text{Re}_r^{0.687}$
- In turbulent flows, the time scale is $\tau_{\eta} = \frac{\eta^2}{\nu}$, thus the Stokes number is $St \equiv \frac{\tau_s}{\tau_{\eta}} = \frac{\hat{\rho}_s}{18\phi\hat{\rho}_q} (\frac{d_s}{\eta})^2$
- A LES method with grid scale $\xi > \eta$ widens the applicability of the Eulerian approach: St_{LES} = $\frac{\hat{\rho}_s}{18\phi\hat{\rho}_a}(\frac{d_s}{\xi})^2(\frac{\xi}{\eta})^{4/3}$
- The gas-particles thermal equilibrium characteristic time is $\tau_T = \frac{\hat{\rho}_s C_{v,s} d_s^2}{4k_s}$, so that $\frac{\tau_T}{\tau_s} = \frac{3}{2} \frac{C_{v,s\mu}}{k_s} = \frac{3}{2} \Pr_s \simeq 10^{-2}$.

- For relative Reynolds number, $\frac{\rho_g |\mathbf{u}_s \mathbf{u}_g|d}{\mu} < 1000$, the Stokes law is valid: $\mathbf{f}_d = \frac{\rho_s}{\tau_s} (\mathbf{u}_s \mathbf{u}_g)$, where the Stokes time is: $\tau_s = \frac{\hat{\rho}_s d_s^2}{18\mu\phi}$ and the empirical correction $\phi = 1 + 0.15 \mathrm{Re}_r^{0.687}$
- In turbulent flows, the time scale is $\tau_{\eta} = \frac{\eta^2}{\nu}$, thus the Stokes number is $St \equiv \frac{\tau_s}{\tau_{\eta}} = \frac{\hat{\rho}_s}{18\phi\hat{\rho}_q} (\frac{d_s}{\eta})^2$
- A LES method with grid scale $\xi > \eta$ widens the applicability of the Eulerian approach: St_{LES} = $\frac{\hat{\rho}_s}{18\phi\hat{\rho}_a}(\frac{d_s}{\xi})^2(\frac{\xi}{\eta})^{4/3}$
- The gas-particles thermal equilibrium characteristic time is $\tau_T = \frac{\hat{\rho}_s C_{v,s} d_s^2}{4k_s}$, so that $\frac{\tau_T}{\tau_s} = \frac{3}{2} \frac{C_{v,s}\mu}{k_s} = \frac{3}{2} \Pr_s \simeq 10^{-2}$.

Dispersed Multiphase Flows: approaches

Figure: Approaches to turbulent multiphase flow. Their applicability is separated in terms of time and length scale ratios. *Balachandar & Eaton*, 2010

M. Cerminara & T. Esposti Ongaro (INGV)

Dispersed Multiphase Flows: approaches

Figure: We focus on the Eulerian case, the Stokes number has to be smaller than 1 and the particle diameter smaller than a threshold.

Polydispersed Eulerian model

$$\partial_t(\rho_i) + \nabla \cdot (\rho_i \, \mathbf{u}_f) = \mathbf{0}, \quad i = 1 \dots I$$
 (1a)

$$\partial_t(\rho_j) + \nabla \cdot (\rho_j \, \mathbf{u}_j) = \mathbf{0} \,, \quad j = 1 \dots J$$
 (1b)

$$\partial_t(\rho_f \mathbf{u}_f) + \nabla \cdot (\rho_f \mathbf{u}_f \otimes \mathbf{u}_f) + \nabla \boldsymbol{\rho} = \nabla \cdot \mathbb{T} + \rho_f \mathbf{g} - \sum_{j=1}^{3} \mathbf{f}_j$$
(1c)

$$\partial_t(\rho_j \,\mathbf{u}_j) + \nabla \cdot (\rho_j \,\mathbf{u}_j \otimes \mathbf{u}_j) = \rho_j \,\mathbf{g} + \mathbf{f}_j \,, \quad j = 1 \dots J \tag{1d}$$

$$\partial_t(\rho_f \boldsymbol{e}_f) + \nabla \cdot (\rho_f \boldsymbol{u}_f \boldsymbol{e}_f) + \boldsymbol{\rho} \nabla \cdot \boldsymbol{u}_f =$$
(1e)

$$= \mathbb{T} : \nabla \mathbf{u}_{\mathsf{f}} - \nabla \cdot \mathbf{q} + \sum_{j=1}^{J} [(\mathbf{u}_{\mathsf{f}} - \mathbf{u}_{j}) \cdot \mathbf{f}_{j} - Q_{j}] \qquad (1\mathsf{f})$$

.

$$\partial_t(\rho_j \, \boldsymbol{e}_j) + \nabla \cdot (\rho_j \, \boldsymbol{u}_j \boldsymbol{e}_j) = \boldsymbol{Q}_j \,, \quad j = 1 \dots J$$
 (1g)

1

Constitutive equations

- perfect gas law for the gases (N₂, O₂, H₂O, CO₂, SO₂)
- Constant specific heats for both gas and solid phases
- Sutherland viscosity law for the gases

Particle dynamics in near-equilibrium regime.

Balance of particles momentum.

$$\partial_t \mathbf{u}_s + \mathbf{u}_s \cdot \nabla \mathbf{u}_s = \frac{1}{\tau_s} (\mathbf{u}_g - \mathbf{u}_s) + \mathbf{g}$$

Asymptotic expansion in $1/\tau_s$

Let $\mathbf{a} := \mathsf{D}_t \mathbf{u}_g$ and $\mathbf{w} = \tau_s \mathbf{g}$. Then we find [Ferry & Balachandar (2001)]:

$$\mathbf{u}_{m{s}} = \mathbf{u}_{m{g}} + \mathbf{w} - au_{m{s}}(\mathbf{a} + \mathbf{w} \cdot
abla \mathbf{u}_{m{g}}) + m{O}(au_{m{s}}^2)$$

• If $a \ll g$, at the first order in τ_s we get $\mathbf{u}_s = \mathbf{u}_g + \mathbf{w}$.

• If $u_g = A\sin(\omega t)$, using the balance equation we find $u_s = \frac{A}{1+\tau_s^2\omega^2}[sin(\omega t) - \tau_s\omega\cos(\omega t)] + u_0e^{-\frac{t}{\tau_s}}$. On the contrary, using the first order approximation: $u_s = u_g - \tau_s a = A[sin(\omega t) - \tau_s\omega\cos(\omega t)]$.

The equilibrium-Eulerian approximation

The period is the typical time of this motion. Comparing it with the particles Stokes time, we get St = 0.2.

M. Cerminara & T. Esposti Ongaro (INGV)

The Equilibrium-Eulerian model

By using the first order approximation of the particle velocity into the Eulerian transport equations, and assuming local thermal equilibrium, we get:

$$\partial_t \beta + \nabla \cdot (\beta \mathbf{u}_\beta) = \mathbf{0}$$
 (2a)

$$\partial_t(\beta y_i) + \nabla \cdot (\beta \mathbf{u}_g y_i) = 0, \quad i = 1 \dots l$$
 (2b)

$$\partial_t(\beta y_j) + \nabla \cdot [\beta(\mathbf{u}_g + \mathbf{v}_j)y_j] = 0, \quad j = 1 \dots J$$
 (2c)

$$\partial_t (\beta \mathbf{u}_{\beta}) + \nabla \cdot (\beta \mathbf{u}_{\beta} \otimes \mathbf{u}_{\beta} + \beta \mathbb{T}_r) + \nabla \boldsymbol{\rho} = \nabla \cdot \mathbb{T} + \beta \mathbf{g}$$
(2d)
$$C_{\beta} [\partial_t (\beta T) + \nabla \cdot (\beta \mathbf{u}_{\beta} T) + \beta \mathbf{v}_r \cdot \nabla T] =$$

$$\mathcal{P}_{\beta}[\partial_{t}(\beta T) + \nabla \cdot (\beta \mathbf{u}_{\beta} T) + \beta \mathbf{v}_{r} \cdot \nabla T] =$$

$$= -\rho \nabla \cdot \mathbf{u}_{g} + \mathbb{T} : \nabla \mathbf{u}_{g} - \nabla \cdot \mathbf{q} - \sum_{j} \mathbf{v}_{j} \cdot \mathbf{f}_{j}, \qquad (2e)$$

Equivalent to the Navier-Stokes equations for (β, u_β, T) plus some term due to particle decoupling, coupled with a particle transport equation. u_β = u_g + Σ_i y_jv_j

• The speed of sound turns out to be $c_{DG} = \sqrt{\gamma_{\beta} p / \beta}$, with $\gamma_{\beta} = 1 + (\sum_{i} R_{i} y_{i}) / (\sum_{i} C_{i} y_{i} + \sum_{j} C_{j} y_{j})$

Advantages of the Equilibrium-Eulerian model

- The contribution of the particle inertia can be accurately taken into account by using standard Navier-Stokes numerical algorithm, without needing to implicitly solve the drag term f_i
- Particle decoupling and preferential concentration well modelled up to St \simeq 0.2, keeping the advantages of the Dusty Gas model
- Total number of equation highly reduced for a polydispersed mixture. Eulerian: *I* + 3 + 5*J*; Equilibrium-Eulerian: *I* + 3 + *J*.
- Allows to solve efficiently the multiphase dynamics at geophysical scale for particles of size up to ~ 1 mm.

Non-equilibrium effects in turbulent flows

Preferential Concentration (Equilibrium-Eulerian). St = 0.2.

The equilibriumEulerianFoam solver algorithm

We modified the compressible monophase PISO-PIMPLE algorithm

- predictor for the mixture density β
- solve for the mass fractions y_{i,i}
- predictor for the mixture velocity **u**_β
- solve for the mixture temperature T
- corrector loop
 - find correction to solid phases velocity v_i based on acceleration
 - solve for pressure p
 - correct velocity and fluxes
- correct mixture density

Large Eddy Simulation models

We implemented the following LES models for the subgrid terms of the compressible equilibrium-Eulerian model:

- Compressible Smagorinsky (static and dynamic)
- Moin model (dynamic)
- TKE model (static and dynamic)
- WALE model (static and dynamic)

Numerical benchmark: compressible, homogeneous and isotropic turbulence

Decaying turbulence with initial kinetic energy spectrum:

$$E(k) \propto \left(\frac{k}{k_0}\right)^4 \exp\left(-2\left(\frac{k}{k_0}\right)^2\right)$$
. Here *k* is the eddy wavenumber.

Compressible homogeneous and isotropic turbulence with $Ma_{rms} = 0.2$, compressibility factor $\chi_0 = 0$ and $Re_{\lambda} = 116$, in a box with 256³ cells.

M. Cerminara & T. Esposti Ongaro (INGV)

Numerical benchmark: compressible, homogeneous and isotropic turbulence

The solver is able to simulate accurately the turbulence.

(a) Evolution of the turbulent kinetic energy spectrum. The straight line is the $k^{-5/3}$ behavior predicted by Kolmogorov.

(b) Test case validation: comparison with an eight order DNS after one large-eddy turnover time (10000 time steps).

Numerical benchmark: compressible, homogeneous and isotropic turbulence

Figure: Scalability test on PLX and FERMI environments (with little output work). Collaboration between us and *Paride Dagna*.

In order to fix ideas, the solver reach a velocity in the range $1\div10$ Mcells/s on 1024 cores (multiphase÷monophase).

M. Cerminara & T. Esposti Ongaro (INGV)

LES vs DNS

Static — Dynamic

M. Cerminara & T. Esposti Ongaro (INGV)

LES vs DNS

Static — Dynamic

M. Cerminara & T. Esposti Ongaro (INGV)

Heat transfer

The reference value Nu = 8.800 is taken from V.A.F. Costa, Double diffusive natural convection in a square enclosure with heat and mass diffusive walls, *Int. J. Heat Mass Transfer*, 40 (1997) 4061–4071.

Natural convection/heat transfer in a square cavity with the top and bottom walls insulated and the left (hot) and right (cold) walls with a fixed temperature.

Experimental forced plume

Experimental plume (domain height 1.14 m) with initial momentum and buoyancy. 11 Mcells. Re \simeq 2000. The inlet boundary condition has been implemented in order to take into account the mean inlet velocity shape, turbulent fluctuations and forcing.

M. Cerminara & T. Esposti Ongaro (INGV)

Pyroclastic density currents benchmark

Geometry

2D Cartesian domain (L×H) (in 3D assume symmetric initial conditions) L=10 km H=1 km (non-dimensionalization is possible)

 $\alpha = 15 \text{ deg } (\pi/12 \text{ rad})$ Aspect ratio AR=h₀/l₀=0.8

Initial conditions

Difference and the second second

200000 m ²
P ₀) 5×10 ⁻⁴
1 kg/m ³
2×10 ⁵ kg/m
-9.81 m/s ²
125 µm
2000 kg/m ³
300 K / 500 K
A) B)

Pyroclastic density currents benchmark

Resolution 1 m vs 10 m with the dynamic WALE LES model (5 Mcells vs 50 kCells)

Pyroclastic density current benchmark

Starting from this simple case, we are studying the effect of:

- turbulent mixing
- subgrid model
- 3D vs 2D
- obstacles
- slope
- topography
- polydispersity of the mixture (up to 10 particle classes)
- dense deposit layer (comparing with other codes)

Volcanic plumes

We are participating to an international benchmark initiative involving two numerical simulations:

weakPlume

- o duration: 0.2 hours
- Mass flow rate: 1.5 * 10⁶ kg/s
- Exit velocity: 135 m/s
- Exit temperature: 1273 K
- Exit gas fraction: 3 wt%
- Grain size distribution:
 - o coarse: 1 mm
 - fine: 62.5 μm

strongPlume

- o duration: 2.5 hours
- Mass flow rate: 1.5 * 10⁹ kg/s
- Exit velocity: 275 m/s
- Exit temperature: 1053 K
- Exit gas fraction: 5 wt%
- Grain size distribution:
 - coarse: 0.5 mm
 - fine: 15.6 μm

weakPlume - dynamic WALE - 200 kCells

M. Cerminara & T. Esposti Ongaro (INGV)

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 1 mm ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 1 mm ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 1 mm ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 1 mm ash mean mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 1 mm ash mass fraction fluctuations and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 15.6 μ m ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 15.6 μ m ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 15.6 μ m ash mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 15.6 μ m ash mean mass fraction and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: 15.6 μ m ash mass fraction fluctuations and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Temperature and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Mean temperature and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Temperature fluctuations and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Mixture density and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Mixture density and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Acceleration and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Acceleration and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Subgrid kinetic energy and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Turbulent viscosity and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Figure: Second invariant of the velocity gradient *Q* and total deposit thickness.

M. Cerminara & T. Esposti Ongaro (INGV)

Volcanic plume analysis

We are interested in:

- Effect of the subgrid model
- Effect of grid refinement
- Comparison with integral 1D models and other 3D codes
- Entrainment coefficient evolution (key parameter for 1D integral models)
- Effect of decoupling
- Effect of polydispersion
- Effect of wind and humidity
- Deposit evolution
- Interaction between settling particles and entraining air
- Interaction between pyroclastic density currents and the plume
- Infrasound generation

Future work

- Construct a good mesh in presence of wind
- Include topography
- Include particle aggregation
- Include water condensation
- Implement non-reflecting boundary conditions
- Increment the number of cores and cells

Conclusions

- We have developed the compressible version of the equilibrium-Eulerian model (two-way coupling)
- We have implemented it into the OpenFOAM infrastructure
- The new solver is able to accurately and efficiently capture clustering, preferential concentration and settling up to 1 mm particles
- the solver has been tested up to 1024 cores. It shows a good efficiency (> 60%) on the Cineca Fermi infrastructure

Thank You!

Contacts

- email: matteo.cerminara@ingv.it
- research web-page: https://sites.google.com/site/matteocerminara
- CFD movies: https://www.youtube.com/user/MatteoCerminara