Euler-Euler simulation of drifting snow HPC Enabling of OpenFOAM for CFD Applications Cineca

Ziad Boutanios, Hrvoje Jasak FSB, University of Zagreb

March 25, 2015

OUTLINE

- Motivation
- Previous research
- Research objectives
- Research methods
- 2-way Formulation
- Validation experiment
- Numerical results
- Concusions and future work

MOTIVATION 1/2

Aeolian transport modes during drifting snow.

MOTIVATION 2/2

- Substantial northern construction market
- Modern building codes (NBC 2010, ASCE 2010) use 50-year ground snow load corrected for,
 - Building type
 - Roof shape and slope
 - Wind exposure
- Above based on limited type of buildings and empirical cases
- Can seldom be applied to ever-changing modern building shapes and meteorological conditions
- Structural, financial and human consequences often disastrous

Previous Research

- Mostly Eulerian-Eulerian 1-way coupling:
 - Airflow not affected by snow (snow volume fraction < 0.01);
 - Mixture-based, transport of Snow Density (SD) approach (Naaim et al. 1998, Sato et al. 1993, Tominaga et al. 1999, Tominaga et al. 2011, Uematsu et al. 1991);
 - Volume Of Fluid (VOF) approach (Bang et al. 1994, Beyers et al. 2004, Beyers et al. 2008, Moore 95, Sundsbo 1998, Thiis 2000).
- Hybrid approach (Gauer 1999):
 - Eulerian one-way coupling in the suspension layer;
 - Eulerian two-way coupling in the saltation layer based on equilibrium formulations!!!

Research Objectives

- To develop a reliable and accurate CFD tool for prediction of snow loads and snowdrift profiles, on and around building structures.
 - Should be able to account for two-way coupling in the saltation layer.
 - Should work in transient mode to account for non-equilibrium effects.

Research Methods

- Numerical CFD approach based on the OpenFOAM toolkit.
- Existing solver twoPhaseEulerFoam most adapted to present needs:
 - Two-phase flow
 - Eulerian-Eulerian formulation (much less expensive than Eulerian-Lagrangian)
 - Transient
- Requires the following modifications:
 - Particle phase viscosity model appropriate for drifting snow
 - Numerical stability issues to be addressed

2-WAY COUPLING FORMULATION 1/3

Ensemble-averaged incompressible continuity equation,

$$\frac{\partial \alpha_i}{\partial t} + \nabla \cdot \left(\alpha_i \vec{u}_i \right) = 0 \tag{1}$$

Ensemble-averaged incompressible momentum equation:

$$\frac{\partial}{\partial t} (\alpha_i \vec{u}_i) + \nabla \cdot (\alpha_i \vec{u}_i \vec{u}_i) + \nabla \cdot (\alpha_i \bar{\vec{R}}_i) = -\frac{\alpha_i}{\rho_i} \nabla p + \alpha_i \vec{g} + \frac{\vec{M}_i}{\rho_i}$$
(2)

 α_i : volume phase fraction of phase *i*

 \vec{u}_i : velocity of phase *i*

 \bar{R}_i : combined Reynolds and viscous stress

 p, \vec{g}, ρ_i : static pressure, gravitational acceleration and phase density respectively

2-WAY COUPLING FORMULATION 2/3

• \vec{M}_i : averaged inter-phase momentum transfer

$$M_i = \frac{1}{\alpha_i} \left(F_d + F_l + F_{vm} \right) \tag{3}$$

 F_d , F_l , F_{vm} are the drag, lift and virtual mass forces respectively

• Originally classical $\kappa - \epsilon$ model for the continuous phase

• Replaced by the Realizable $\kappa - \epsilon$ model

2-WAY COUPLING FORMULATION 3/3

- new drifting snow viscosity model for high rates of strain,
 - force balance over a sliding and rolling particle
 - accounts for aerodynamic friction and collision forces
 - depends on \(\alpha_i\) and particle-scale rate of strain
- Maxwell viscosity model for low rates of strain
- intermediate treatment is a work in progress... source of instability!

OKAZE WIND TUNNEL EXPERIMENT 1/3

- Wind tunnel experiment (Okaze et al., 2012);
 - Detailed measurements of velocity and snow flux profiles at several stations

Okaze et al. wind tunnel experimental setup.

OKAZE WIND TUNNEL EXPERIMENT 2/3

Experimental inlet boundary conditions.

OKAZE WIND TUNNEL EXPERIMENT 3/3

Closeup of the snow particles used in the experiment.

PRELIMINARY NUMERICAL RESULTS 1/3

▶ Fully structured hexahedral mesh with 313880 cells

Overview of the computational mesh.

PRELIMINARY NUMERICAL RESULTS 2/3

Overview of drifting snow over the snowbed.

PRELIMINARY NUMERICAL RESULTS 3/3

Saltation layer detail.

CONCLUSIONS AND FUTURE WORK

New viscosity model working as expected

- saltation layer thickness
- drifting snow restricted mostly to saltation layer
- Lagrangian rebounding of particles reproduced in Eulerian frame
- Quantitative validation requires tuning of parameters
- Instability due to switching between low and high rate of strain viscosities

Needs to be addressed!