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Motivation of the work

Many fields of interest

Packed bed reactors

Filtration

Chromatographic Separation

Aquifer Remediation

Enhanced Oil Recovery

asd

Fluid flowing through an arrangement of stationary solid grains.

The flowing fluid can contain liquid droplets, gas bubbles or solid
particles.
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Necessity of mathematical modeling for porous media

More info w.r.t. experiments

Possible to explore micro-scale behaviour

Estimation of parameters:
Porosity
Permeability
Dispersion
Deposition eff.

ε
k
D
η

Verification and validation:

experimental data
empirical relationships
theoretical models (analytical solutions)

casella
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Computational models structure

Porous medium generation

Experimental:
· µ-CT, X-ray, SEM

Algorithmic reconstruction:
· DEM, particle-based

· Rigid body simulation
→ Blender (opensource)

Flow, transport simulation

Computational Fluid Dynamics

· Ansys FLUENT
· OpenFOAM

(commercial)
(opensource)

asd

⇒ Model of porous medium with Blender
⇒ Meshing and CFD simulation with OpenFOAM
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Workflow

Model generation

A grain shape and grain size distribution is chosen

The porous media model is generated with Blender
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Mesh Generation

snappyHexMesh

Good control of final mesh quality
(care must be given to meshing parameters)

Simple handling of zone refinement

Contact points are not problematic

⇒ Description of contacts is as precise as mesh resolution is, and is never
a problem during meshing
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Mesh Quality
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Workflow

Meshing

c
c
c
c
c

Simulation

OpenFOAM is used both for the meshing process and the CFD simulation
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Theoretical Background: Fluid Flow

Macroscale Continuum Approach

Re < 1: creeping flow / linear relationship

Darcy’s Law
∆P

L
=
µ

k
q

Extension to Re > 1: linear + nonlinear relationship

Forchheimer’s Law
∆P

L
=
µ

k
q + βρq2

Packing of spherical particles (wide range of Re)

Ergun’s Law ∆P ∗ =
150

Re∗
+ 1.75

∆P ∗ =
∆PρDgε3

LG2
0(1−ε3)

Re∗ =
DgG0

(1−ε)µ
G0 = ρq

Extension of Ergun’s law to non-spherical objects
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Simulation Setup

Different grain shapes analyzed

(spheres, cylinders, trilobes)

Range of fluid flow velocity:

10−3 < Re =
qDg

ν
< 100

Pressure drop calculated and compared with Ergun’s law predictions
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Validation: Pressure Drop

Model: Spheres

Relative error between Ergun’s law predictions and CFD results are
less than 10%
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Validation: Pressure Drop

Models: Cylinders and Trilobes

Pressure drop is correctly predicted with Ergun’s law even in the case
of cylindrical and trilobe-shaped grains
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Dispersion in 3D Porous Media

Simulation Setup

Geometry

2mm cubic sample

3000 grains

40M cells

Operating Conditions

Particle diameter:
dp = 1÷ 1000 nm

Superficial velocity:
q = 10−6 ÷ 0.1 ms−1

10−4 < Re < 300

10−2 < Pe =
qDg

Dm
< 107
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Dispersion in 3D Porous Media

Simulation Setup

Geometry

2mm cubic sample

3000 grains

40M cells

Need for HPC!

Very large domains needed for realistic geometries

Dispersion: long time scales needed to study transient behaviour

Deposition: high concentration gradients at the walls require finer mesh

⇒ Huge memory requirements
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Hydrodynamic Dispersion

Snapshots of particle concentration at three different times

Hydrodynamic dispersion enlarges and smoothens out the particle
concentration front over time

This effect increases for higher Péclet numbers
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Validation: Hydrodynamic Dispersion

Values of hydrodynamic dispersion D are favourably comparable
experimental data and empirical relationships
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Particle Deposition

Deposition Efficiency

Brownian Diffusion

ηB = 4.04Pe−
2
3 Yao-Levich

ηB = 4As
1
3 Pe−

2
3 Happel

Interception

ηI =
3

2

(
dp
Dg

)2

=
3

2
N2
R Yao-Levich

ηI =
3

2
AsN2

R Happel
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Particles Modeling

Particles are transported by
convective and diffusive phenomena
Boundary Condition

C = 1 at inlet

C = 0 on grain surface
(assumed ”perfect sink” B.C.)

Operating Conditions

Particle diameter:
dp = 1÷ 1000 nm

Superficial velocity:
q = 10−6 ÷ 0.01 ms−1

Collector deposition efficiency, η
calculated with packed bed
performance equation

dC

dx
= −3

2

1− ε
εDg

ηC
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Results: Particle Deposition

Deposition Efficiency: Overview

- Efficiency η decreases for
higher superficial velocities
q (low residency times)

- Efficiency η decreases for
higher particle diameter
(low D) until a certain dp
value, then increases for
the steric interception
effect.
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Results: Particle Deposition

Deposition Efficiency: Brownian Diffusion
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Conclusions

Algorithmic packing generation and CFD simulation:
viable methodology?

→Possibility to treat packings of arbitrary grain shape

→Results validated by experimental data

pressure drop prediction, hydrodynamic dispersion

→Micro-scale modeling essential

OpenFOAM and HPC

Meshing of complicated geometries easy with snappyHexMesh

Large memory requirements to simulate realistic domains
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Thank you!
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Validation: Porosity (radial distribution)

Good accordance between experimental radial distribution profiles and Blender
simulation results
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Validation: Porosity (radial distribution)

Also for non-spherical catalytic particles:
→ good accordance with experiments
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Theoretical Background: Particle Deposition

Macroscale 1D Advective-Diffusion Equation

∂C

∂t
+ q

∂C

∂x
−D∂

2C

∂x2
= Source

Source = −KdC

Kd =
3

2

1− ε
ε

q

Dg
α η

η :Collector Deposition Efficiency
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Darcy’s law and permeability limit

∆P

L
=
µ

k
q → qµ

∆P/L
= k
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fragile,t]

J = 〈v′c′〉
?
≈ −DL

dC

dx

Comparison of the term 〈v′c′〉 with −DL
dC

dx
demonstrates the assumption

of Fickian transport in the system for the dispersive term
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fragile,t]

Deposition Efficiency: Interception

Theoretical law:
ηI = 3

2AsN
2
R

As = As(ε);NR =
dp

Dg

- Results appear in line with
theoretical predictions but are
strongly dispersed, with great
variations at different q

ηI = 1.116AsN2
RRe0.145
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