Pore-scale simulation of particle transport and deposition in 3D porous media

G. Boccardo, E. Crevacore, R. Sethi, D. Marchisio

Department of Applied Science and Technology, Politecnico di Torino, Italy Department of Environment and Infrastructure, Politecnico di Torino, Italy

March 25, 2015

Motivation of the work

Many fields of interest

- Packed bed reactors
- Filtration
- Chromatographic Separation
- Aquifer Remediation
- Enhanced Oil Recovery

- Fluid flowing through an arrangement of stationary solid grains.
- The flowing fluid can contain liquid droplets, gas bubbles or solid particles.

Necessity of mathematical modeling for porous media

- More info w.r.t. experiments
- Possible to explore micro-scale behaviour

Necessity of mathematical modeling for porous media

- More info w.r.t. experiments
- Possible to explore micro-scale behaviour

Necessity of mathematical modeling for porous media

- More info w.r.t. experiments
- Possible to explore micro-scale behaviour
- Estimation of parameters:

Porosity	ε
Permeability	k
Dispersion	D

Deposition eff. η

Necessity of mathematical modeling for porous media

- More info w.r.t. experiments
- Possible to explore micro-scale behaviour
- Estimation of parameters:

Porosity	ε
Permeability	k
Dispersion	D
Deposition eff.	η

- VERIFICATION AND VALIDATION:
 - experimental data
 - empirical relationships
 - theoretical models (analytical solutions)

< □ > < ---->

Computational models structure

3 1 4

POROUS MEDIUM GENERATION

Experimental:

 \cdot $\mu\text{-}\text{CT}$, X-ray, SEM

3 🕨 🖌 3

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot μ -CT, X-ray, SEM
- Algorithmic reconstruction:
 - · DEM, particle-based

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot $\mu\text{-}\mathsf{CT},$ X-ray, SEM
- Algorithmic reconstruction:
 - \cdot DEM, particle-based
 - \cdot Rigid body simulation
 - \rightarrow Blender (opensource)

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot $\mu\text{-}\mathsf{CT},$ X-ray, SEM
- Algorithmic reconstruction:
 - \cdot DEM, particle-based
 - \cdot Rigid body simulation
 - \rightarrow Blender (opensource)

FLOW, TRANSPORT SIMULATION

Computational Fluid Dynamics

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot μ -CT, X-ray, SEM
- Algorithmic reconstruction:
 - \cdot DEM, particle-based
 - \cdot Rigid body simulation
 - \rightarrow Blender (opensource)

FLOW, TRANSPORT SIMULATION

- Computational Fluid Dynamics
 - · Ansys FLUENT (commercial)

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot $\mu\text{-}\mathsf{CT},$ X-ray, SEM
- Algorithmic reconstruction:
 - \cdot DEM, particle-based
 - \cdot Rigid body simulation
 - \rightarrow Blender (opensource)

FLOW, TRANSPORT SIMULATION

- Computational Fluid Dynamics
 - \cdot Ansys FLUENT
 - \cdot OpenFOAM

(commercial) (opensource)

POROUS MEDIUM GENERATION

- Experimental:
 - \cdot $\mu\text{-}\mathsf{CT},$ X-ray, SEM
- Algorithmic reconstruction:
 - \cdot DEM, particle-based
 - \cdot Rigid body simulation
 - \rightarrow Blender (opensource)

FLOW, TRANSPORT SIMULATION

- Computational Fluid Dynamics
 - \cdot Ansys FLUENT
 - · OpenFOAM
- (commercial) (opensource)

- \Rightarrow Model of porous medium with **Blender**
- \Rightarrow Meshing and CFD simulation with OpenFOAM

MODEL GENERATION

A grain shape and grain size distribution is chosenThe porous media model is generated with **Blender**

Mesh Generation

SNAPPYHEXMESH

- Good control of final mesh quality (care must be given to meshing parameters)
- Simple handling of zone refinement
- Contact points are not problematic

 \Rightarrow Description of contacts is as precise as mesh resolution is, and is never a problem during meshing

Mesh Quality

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

MESHING

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Meshing

SIMULATION

・ロト ・ 日 ・ ・ 目 ト ・

Meshing

SIMULATION

OpenFOAM is used both for the meshing process and the CFD simulation

Macroscale Continuum Approach

<u>~</u> .			
(12 m	1100	Receird	-
onani.	ilit.a	DUCCALU	U.

Macroscale Continuum Approach

Re < 1: creeping flow / linear relationship

DARCY'S LAW

$$\frac{\Delta P}{L} = \frac{\mu}{k}q$$

Macroscale Continuum Approach

■ **Re** < 1: creeping flow / linear relationship $\frac{\Delta P}{L} = \frac{\mu}{k}q$

DARCY'S LAW

• Extension to $\mathbf{Re} > 1$: linear + nonlinear relationship

FORCHHEIMER'S LAW

$$\frac{\Delta P}{L} = \frac{\mu}{k}q + \beta\rho q^2$$

Gianluca Boccardo

Macroscale Continuum Approach ■ **Re** < 1: creeping flow / linear relationship $\frac{\Delta P}{L} = \frac{\mu}{k}q$ DARCY'S LAW Extension to $\mathbf{Re} > 1$: linear + nonlinear relationship $\frac{\Delta P}{L} = \frac{\mu}{k}q + \beta\rho q^2$ FORCHHEIMER'S LAW Packing of spherical particles (wide range of Re) $\Delta P^* = \frac{\Delta P \rho D_g \varepsilon^3}{L G_c^2 (1 - \varepsilon^3)}$ $\Delta P^* = \frac{150}{\mathrm{Re}^*} + 1.75 \qquad \begin{array}{c} \mathrm{Re}^* = \frac{D_g^{'} \tilde{G}_0}{(1-\varepsilon)\mu} \\ G_0 = \rho q \end{array}$ Ergun's Law

< 3 > < 3 >

Macroscale Continuum Approach ■ **Re** < 1: creeping flow / linear relationship $\frac{\Delta P}{L} = \frac{\mu}{k}q$ DARCY'S LAW Extension to $\mathbf{Re} > 1$: linear + nonlinear relationship $\frac{\Delta P}{I} = \frac{\mu}{k}q + \beta\rho q^2$ FORCHHEIMER'S LAW Packing of spherical particles (wide range of Re) $\Delta P^* = \frac{\Delta P \rho D_g \varepsilon^3}{L G_c^2 (1 - \varepsilon^3)}$ $\Delta P^* = \frac{150}{\text{Re}^*} + 1.75 \qquad \begin{array}{c} \text{Re}^* = \frac{D_g \overset{\circ}{G}_0}{(1-\varepsilon)\mu} \\ G_0 = \rho q \end{array}$ ERGUN'S LAW Extension of Ergun's law to non-spherical objects

< 3 > < 3 >

Simulation Setup

 Different grain shapes analyzed (spheres, cylinders, trilobes)

Range of fluid flow velocity: $10^{-3} < {\rm Re} = \frac{qD_g}{\nu} < 100$

Pressure drop calculated and compared with Ergun's law predictions

Gianluca Boccardo

HPC FOAM Workshop

2015/03/25 10 / 24

< □ > < ---->

Validation: Pressure Drop

Model: Spheres

Relative error between Ergun's law predictions and CFD results are less than 10%

< 注 → < 注

Validation: Pressure Drop

Pressure drop is correctly predicted with Ergun's law even in the case of cylindrical and trilobe-shaped grains

Dispersion in 3D Porous Media

Simulation Setup

Geometry

- 2mm cubic sample
- 3000 grains
- 40M cells

Operating Conditions

- Particle diameter:
 d_p = 1 ÷ 1000 nm
- Superficial velocity: $q = 10^{-6} \div 0.1 \text{ ms}^{-1}$

■
$$10^{-4} < \text{Re} < 300$$

•
$$10^{-2} < \text{Pe} = \frac{qD_g}{\mathcal{D}_m} < 10^7$$

Dispersion in 3D Porous Media

Simulation Setup

Geometry

- 2mm cubic sample
- 3000 grains
- 40M cells

NEED FOR HPC!

- Very large domains needed for realistic geometries
- DISPERSION: long time scales needed to study transient behaviour
- \blacksquare $\ensuremath{\operatorname{DEPOSITION}}$: high concentration gradients at the walls require finer mesh

 \Rightarrow Huge memory requirements

Hydrodynamic Dispersion

Snapshots of particle concentration at three different times

Hydrodynamic Dispersion

Snapshots of particle concentration at three different times

 Hydrodynamic dispersion enlarges and smoothens out the particle concentration front over time

Hydrodynamic Dispersion

Snapshots of particle concentration at three different times

- Hydrodynamic dispersion enlarges and smoothens out the particle concentration front over time
- This effect increases for higher Péclet numbers

< □ > < ---->

Validation: Hydrodynamic Dispersion

э.

→ ∃ →

Validation: Hydrodynamic Dispersion

Values of hydrodynamic dispersion \mathcal{D} are favourably comparable experimental data and empirical relationships

Particle Deposition

Particle Deposition

Particle Deposition

Particles Modeling

- Particles are transported by convective and diffusive phenomena BOUNDARY CONDITION
 - C = 1 at inlet
 - C = 0 on grain surface (assumed "perfect sink" B.C.)
- **Operating Conditions**
 - Particle diameter:
 - $d_p = 1 \div 1000 \text{ nm}$
 - Superficial velocity: $q = 10^{-6} \div 0.01 \text{ ms}^{-1}$

Collector deposition efficiency, η calculated with packed bed performance equation

dr

rkshop

2015/03/25 18 / 24

Image: Image:

Results: Particle Deposition

Deposition Efficiency: Overview

<u>~</u> .				
-120		\mathbf{R}	CCON	a o
Jialli	iuca -	DU	CCal	uu
	aca		- ccui	

Deposition Efficiency: Overview

- Efficiency η decreases for higher superficial velocities q (low residency times)

- 一司

Gianluca Boccardo

Deposition Efficiency: Overview

- Efficiency η decreases for higher superficial velocities q (low residency times)

- Efficiency η decreases for higher particle diameter (low \mathcal{D}) until a certain d_p value, then increases for the steric interception effect.

Deposition Efficiency: Brownian Diffusion

Deposition Efficiency: Brownian Diffusion

Deposition Efficiency: Brownian Diffusion

 $\eta_B = 4.04 P e^{-3}$

5

VALIDATION

 $= 0.193 Pe^{-0.520}$

1e+06

1e+06

1e+08

10000

Pe η_B

10000

Pe

As3

Results: Particle Deposition

Deposition Efficiency: Brownian Diffusion

HPC FOAM Workshop

Algorithmic packing generation and CFD simulation: viable methodology?

Algorithmic packing generation and CFD simulation: viable methodology?

 \rightarrow Possibility to treat packings of arbitrary grain shape

Algorithmic packing generation and CFD simulation: viable methodology?

 \rightarrow Possibility to treat packings of arbitrary grain shape

 \rightarrow Results validated by experimental data

pressure drop prediction, hydrodynamic dispersion

Algorithmic packing generation and CFD simulation: viable methodology?

 \rightarrow Possibility to treat packings of arbitrary grain shape \rightarrow Results validated by experimental data **pressure drop prediction, hydrodynamic dispersion** \rightarrow Micro-scale modeling essential

Algorithmic packing generation and CFD simulation: viable methodology?

→POSSIBILITY TO TREAT PACKINGS OF ARBITRARY GRAIN SHAPE
 →RESULTS VALIDATED BY EXPERIMENTAL DATA
 ■ pressure drop prediction, hydrodynamic dispersion

 \rightarrow Micro-scale modeling essential

OPENFOAM AND HPC

Algorithmic packing generation and CFD simulation: viable methodology?

 \rightarrow Possibility to treat packings of arbitrary grain shape \rightarrow Results validated by experimental data

 \blacksquare pressure drop prediction, hydrodynamic dispersion $\rightarrow Micro-scale$ modeling essential

OpenFOAM and HPC

Meshing of complicated geometries easy with snappyHexMeshLarge memory requirements to simulate realistic domains

Acknowledgements - People

DIATI - Politecnico di Torino (I)

- Tiziana Tosco (Ass. Prof.)
- Francesca Messina (PhD stud.)

KAUST (SA) - U. Texas Austin (USA)

Matteo Icardi (Post-doc. res.)

IFP Energies nouvelles (F)

- Frederic Augier (Res.)
- Yacine Haroun (Res.)
- Daniel Ferre (Res.)

Univ. Cal. San Diego (USA)

Daniel Tartakovsky (Full Prof.)

.∃ >

Acknowledgements - Resources

Financial Resources

- AQUAREHAB (FP7, Grant Agreement no. 226565)
- PRIN Project 2008:

"Disaggregazione, stabilizzazione e trasporto di ferro zerovalente nanoscopico"

Computational Resources

- PRACE Research Infrastructure
- CINECA

.∃ >

< ≥ > < 3

Thank you!

Gianluca Boccardo

Validation: Porosity (radial distribution)

э

Validation: Porosity (radial distribution)

Validation: Porosity (radial distribution)

Good accordance between experimental radial distribution profiles and Blender simulation results

Validation: Porosity (radial distribution)

Also for non-spherical catalytic particles:

 \rightarrow good accordance with experiments

Theoretical Background: Particle Deposition

Macroscale 1D Advective-Diffusion Equation

$$\frac{\partial C}{\partial t} + q \frac{\partial C}{\partial x} - \mathcal{D} \frac{\partial^2 C}{\partial x^2} = \text{Source}$$

Source
$$= -K_d C$$

$$K_d = \frac{3}{2} \; \frac{1-\varepsilon}{\varepsilon} \; \frac{q}{D_g} \; \alpha \; \eta$$

η :Collector Deposition Efficiency

Gianluca Boccardo

HPC FOAM Workshop

2015/03/25 24 / 24

Image: A matrix

Conclusions

Darcy's law and permeability limit

$$\frac{\Delta P}{L} = \frac{\mu}{k}q \rightarrow \frac{q\mu}{\Delta P/L} = k$$

э

Darcy's law and permeability limit

$$\frac{\Delta P}{L} = \frac{\mu}{k}q \rightarrow \frac{q\mu}{\Delta P/L} = k$$

<ロ> (日) (日) (日) (日) (日)

fragile,t]

Comparison of the term $\langle v'c' \rangle$ with $-\mathcal{D}_L \frac{\mathrm{d}C}{\mathrm{d}x}$ demonstrates the assumption of Fickian transport in the system for the dispersive term $z \to z \to z$

Gianluca Boccardo

2015/03/25 24 / 24

<ロ> (日) (日) (日) (日) (日)

fragile,t]

Deposition Efficiency: Interception 0.01 圡 1E-6 (m/s)0.001 1E-5 (m/s)Ē 0.0001 (m/s) \wedge 0.001 (m/s)0.0001 0.01 (m/s)0 1e-05 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 N_R 0.01 0.001 Ē 0.0001 1e-05 0.003 0.004 0.005 0.006 0.007 0.008 N_p

Theoretical law: $\eta_I = \frac{3}{2}AsN_R^2$ $As = As(\varepsilon); N_R = \frac{d_p}{D_q}$

- Results appear in line with theoretical predictions but are strongly dispersed, with great variations at different q

 $\eta_I = 1.116 As N_R^2 \text{Re}^{0.145}$