

Design Optimization and Design Exploration using an Open Source Framework on HPC facilities

Joel GUERRERO Wolf Dynamics, Genova

Haysam TELIB OPTIMAD engineering, Turin

Outline

- 1. Introduction to DE/DO; the role of HPC
- 2. Geometry parametrization
- 3. Data Analytics *
- 4. Open Source Framework *
- 5. Conclusions *

Aerodynamic shape optimization is done only if strategic

2 major burdens to aerodynamic shape optimization

1. Difficult

- you have to know/explore a lot (physics, uncertainty, parameterization)
- automatize everything (geometry creation, pre /processing/ post)
- especially critical if at advanced design due to project constraints and time

2. Expensive

- computing resources sized for analysis
- licenses CAD, CFD...
- specialized technical staff

(on demand) HPC

FFD parameterization

OS CAE software

Data Analytics for DE

Free-Form Deformation using Level-Sets

Free-Form deformation vs CAD-in-the-loop

- CAD software often not suited for HPC (licenses and platform)
- ad-hoc CAD needs to be created (which parameters?) -> critical if at advanced design phase
- CAD needs to be re-created from FFD surface mesh
- FFD has difficulty to impose manufacturing constraints

Surface Constraints via Level-Set information

Free-Form Deformation applies a displacement vector $N_i = S_i + D(S_i)$;

excellent for global deformations

Difficult to impose localized deformations

- often addressed by constraining the CP or ad-hoc shape functions
- ineffective if boundaries do not correspond to the deformation kernel

Surface Constraints via Level-Set information

Our approach introduces a weight function

$$N_i = S_i + w[LS(S_i | \Gamma)]D(S_i)$$

with

Γ boundary non/deformable

LS($S_i|\Gamma$) represents a topological information of S_i wrt to Γ and must satisfy LS($\Gamma|\Gamma$) =0

with
$$w(0) = 1$$
 for G^{-1} condition

with
$$w(0) = 0$$
 for G^0 condition

with
$$w(0) = 0$$
, $w'(0) = 0$ for G^1 condition

with
$$w(0) = 0$$
, $w'(0) = 0$, $w''(0)=0$ for G^2 condition

The weight kernels are chosen in order to **minimize the risk of inflection** (change of curvature) but cannot be guaranteed

LS($S_i | \Gamma$) must be C^p if G^p continuity is required

Toplogical information: Eikonal equation vs heat kernel

- distance function wrt to boundary
- C⁰ function
- ca 0.01s for 100K triangles on Intel Xeon

- as close as possible to geodesic LS to keep topology
- constraint on C² continuity
- ca 3s for 100K triangles on Intel Xeon

Deformation using C⁰ constraint

Deformation using C¹ constraint

Deformation using C² constraint

Control of penetration

Distance to a given surface should be maintained

bounds on CP non-intuitive and often not efficient

User should indicate only intuitive information

- surface (open or closed)
- distance to be maintained

Combined control algorithm

- Ray-tracing
- Level Set

Two different types of rescaling algorithms available

choice depends on case considered

Control of penetration – Controll off

Control of penetration – Local rescaling

distance wrt tangential projection

Control of penetration – Global rescaling

identification of critical point

CAMILO – description of work flow

- 1. install **GUI on workstation** and put **executable on cluster**
- 2. import geometry and surfaces to be used as constraints in GUI
- play with GUI in order to impose parameterization and constraints
- 4. export control and load file and copy file on cluster
- 5. let Dakota change load file and call executable with control and load file as argument -> modified geometry file (e.g. stl)
- 6. ... pass geometry to pre-processing ...

end of my part.....

→>>> Joel G

>>> happy to discuss any question at the end of JG's part

