
SnappyHexMesh: scalable & automatic
mesh generation for OpenFOAM

A. Montorfano, F. Piscaglia

1Dipartimento di Energia, POLITECNICO DI MILANO

June 19, 2015



Overview

◮ Introduction

• What is SHM

• Why you could need SHM

• Prerequisites

◮ Input geometry

◮ SnappyHexMesh workflow

1. Generate base mesh
2. Refine & select
3. Snap
4. Add layers

◮ Using SHM in parallel

◮ Summary

2/26



What is SnappyHexMesh
◮ SHM is a fully automatic, parallel, octree-refinement-based mesh generation app for Open-

FOAM.

◮ Mesh generation is based on four steps:

1) Background mesh

3) Snapped mesh

2) Castellated mesh

4) Layered mesh

3/26



SnappyHexMesh workflow

Create

castellated mesh

Snap

Error reduction:

undo displacement in

error regions up to a

valid mesh
Quality

check ok?

Add layer

Error reduction:

undo displacement in

error regions up to a

valid mesh

Quality

check ok?

Final mesh

Background mesh

4/26



Prerequisites

,

◮ OpenFOAM – this presentation is based on version 2.4.x

◮ A good amount of memory: SHM uses a lot of RAM during its operation. A rough guide is
4 GB per million cells. Usually computing nodes have little memory per core. Use dedicated
nodes.

◮ MPI environment if you want to run SHM in parallel

◮ ptscotch support in OpenFOAM (enabled by default).

5/26



Input geometry

◮ Input surfaces are used to specify:

• Solid walls

• Refinement regions

• Internal surfaces (baffles, faceZones)

• CellZones

◮ Surface type searchableSurface: STL, OBJ, OpenFOAM primitives (box, sphere, . . . )

6/26



Input geometry

◮ Input surfaces are used to specify:

• Solid walls

• Refinement regions

• Internal surfaces (baffles, faceZones)

• CellZones

◮ Surface type searchableSurface: STL, OBJ, OpenFOAM primitives (box, sphere, . . . )

castellatedMesh true;
snap true;
addLayers true;

geometry { /* ... */ }

castellatedMeshControls { /* ... */ }

snapControls { /* ... */ }

addLayersControls { /* ... */ }

meshQualityControls { /* ... */ }

6/26



Input geometry

◮ Surface must be closed

• Surface may extend its open ends beyond base mesh boundaries

• There cannot be any gap in the surface

◮ Surface must have no degenerate triangles: use surfaceCheck

◮ Face normals must be consistent: a sudden change in surface normal is seen as a feature
edge.

◮ STL solids will become final mesh patches

◮ Open surfaces can be used to specify faceZones, extra refinement regions.

7/26



Input geometry
◮ Surface must be closed

• Surface may extend its open ends beyond base mesh boundaries

• There cannot be any gap in the surface

◮ Surface must have no degenerate triangles: use surfaceCheck

◮ Face normals must be consistent: a sudden change in surface normal is seen as a feature
edge.

◮ STL solids will become final mesh patches

◮ Open surfaces can be used to specify faceZones, extra refinement regions.

Using clean, smooth surfaces can save you a lot of time later on

7/26



Example of application: the Ahmed body

8/26



1. Generate the base mesh
◮ Cell aspect ratio must be ≈ 1

◮ Base mesh must be generated with other tool than SHM (blockMesh, ICEM, . . . )

◮ tip: Orient base mesh to adapt it to geometry/flow

9/26



2. Define geometry
◮ Each STL solid will be a patch in the final mesh (ASCII format required!)

◮ Solid name in the file can be redefined

◮ Define also refinement boxes, etc. . . ICEM, . . . )

10/26



3. Explicit feature extraction (optional)

◮ Use surfaceFeatureExtract

◮ Can use ParaView to select angle (filter: Feature Edges)

◮ Can use ParaView to load edgeMesh.obj

11/26



tool: surfaceFeatureExtract

ahmedBody.stl
{

extractionMethod extractFromSurface;

extractFromSurfaceCoeffs
{

includedAngle 150;
geometricTestOnly yes;

}
// for post-processing
writeObj yes;

}

angle

STL

12/26



4. Select refinement levels

◮ refinementSurfaces: cells are refined if intersected

refinementSurfaces
{

ahmedBody
{

level (0 0);

regions
{

body { level (3 4); }
legs { level (4 5); }

}
}

}

◮ refinementRegions: cells are refined if inside/outside/within distance from surface:

refinementRegions
{
refinementBox
{

mode inside; //outside, distance
levels ((1e15 3 ));

}
}

13/26



Select feature angle
◮ if angle > featureAngle, cells are refined up to the maximum level

angle

STL

• angle = 10◦

• angle = 50◦

14/26



Check refinement levels

◮ You can save scalarField cellLevels for later post-processing

writeFlags
(

scalarLevels
);

15/26



5. Snap the mesh

// Settings for the snapping.
snapControls
{

nSmoothPatch 3;
tolerance 2.0;
nSolveIter 30;
nRelaxIter 5;
nFeatureSnapIter 10;

implicitFeatureSnap false;
explicitFeatureSnap true;
multiRegionFeatureSnap false;

}

tolerance = 0.1 tolerance = 2.0

16/26



Snap controls: tips

◮ Default values are OK for most situations

◮ Increasing the number of iterations can increase a lot the generation time. . .

◮ . . . But may produce a mesh with less errors

◮ Explicit feature recognition produce always best results. . .

◮ . . . but requires additional steps

// Settings for the snapping.
snapControls
{

nSmoothPatch 3;
tolerance 2.0;
nSolveIter 30;
nRelaxIter 5;
nFeatureSnapIter 10;

implicitFeatureSnap false;
explicitFeatureSnap true;
multiRegionFeatureSnap false;

}

17/26



6. Adding wall layers

18/26



6. Adding wall layers

relativeSizes true;

// Per final patch
layers
{

body
{

nSurfaceLayers 3;
}
legs
{

nSurfaceLayers 3;
}

}

expansionRatio 1.3;
finalLayerThickness 0.4;

minThickness 0.1;

◮ Thickness in absolute units or relative to cell size

◮ Different methods to specify thickness:

• expansionRatio and finalLayerThickness (cell
nearest internal mesh)

• expansionRatio and firstLayerThickness (cell on
surface)

• overall thickness and firstLayerThickness

• overall thickness and finalLayerThickness

• overall thickness and expansionRatio

18/26



7. Wall layers: advanced settings

nGrow 0;

featureAngle 60;
slipFeatureAngle 30;

nRelaxIter 3;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

maxFaceThicknessRatio 0.5;
maxThicknessToMedialRatio 0.3;
minMedianAxisAngle 90;

nBufferCellsNoExtrude 0;
nLayerIter 50;
nRelaxedIter 20;

19/26



7. Wall layers: advanced settings

nGrow 0;

featureAngle 60;
slipFeatureAngle 30;

nRelaxIter 3;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

maxFaceThicknessRatio 0.5;
maxThicknessToMedialRatio 0.3;
minMedianAxisAngle 90;

nBufferCellsNoExtrude 0;
nLayerIter 50;
nRelaxedIter 20;

19/26



7. Wall layers: advanced settings

nGrow 0;

featureAngle 60;
slipFeatureAngle 30;

nRelaxIter 3;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

maxFaceThicknessRatio 0.5;
maxThicknessToMedialRatio 0.3;
minMedianAxisAngle 90;

nBufferCellsNoExtrude 0;
nLayerIter 50;
nRelaxedIter 20;

19/26



8. Wall layers: tips

◮ layerFields can help you to find what is wrong

writeFlags
(

scalarLevels
layerFields

);

20/26



9. Mesh quality controls

meshQualityControls
{

maxNonOrtho 65;
maxBoundarySkewness 20;
maxInternalSkewness 4;
maxConcave 80;
minVol 1e-13;
minTetQuality 1e-15;
minArea -1;
minTwist 0.02;
minDeterminant 0.001;
minFaceWeight 0.05;
minVolRatio 0.01;
minTriangleTwist -1;
//minVolCollapseRatio 0.1;

nSmoothScale 4;

errorReduction 0.75;

relaxed
{

maxNonOrtho 75;
maxBoundarySkewness 25;
maxInternalSkewness 8;

}
}

◮ If a constraint is not fulfilled, the action (snap,
layer addition) is undone and another trial is
made with a relaxed displacement

◮ Too loose constraints may result in a poor
mesh

◮ Too tight constraint will result in a long process
and, possibly, in no result (esp. layers)

◮ If the layer loop exits because nLayerIter has
been reached, additional nRelaxedIter with
looser quality constraints are performed

21/26



SnappyHexMesh on parallel architectures

Create

castellated mesh

Snap

Background mesh

imbalance < max?

redistribute mesh

Select cells to re�ne 

Re�ne cells

Check processor balance

...

◮ SnappyHexMesh can be run on any number of processors, thus achieving parallel mesh
generation

◮ Exploits ptscotch parallel decomposition library

◮ Mesh needs to be redistributed so long as cells are refined, to maintain a balanced decom-
position

22/26



SnappyHexMesh on parallel architectures

Create

castellated mesh

Snap

Background mesh

imbalance < max?

redistribute mesh

Select cells to refine 

Refine cells

Check processor balance

...

◮ Mesh redistribution is very time-consuming: a tradeoff must be sought

◮ Inter-processor communication is required also during snap and layer addition

22/26



Conclusions

◮ SnappyHexMesh is a tool for automatic mesh generation.

• SHM is not a CAD tool: supplied geometry must be already ‘clean’

• Algorithm parameters must be supplied by the user (for some of them, default values
are OK)

• Perfect for parametric/optimization studies

◮ SnappyHexMesh is a tool for parallel mesh generation

• Very convenient for large cases (up to 100M cells)

• Works on any cluster with MPI architecture

• Mesh redistribution is an actual bottleneck

• Drawback: non-negligible memory consumption

◮ Mesh is hex-dominant: very good performance with OpenFOAM numerical solvers

23/26



SnappyHexMesh

◮ Why should I need snappyHexMesh? ,

• You want an open-source tool capable of dealing with complex geometries

• You want a cheap, hex-dominant mesh

• You work with large cases, so scalability is important

• You carry out parameter studies/optimization, so automatic operation is sought

◮ When is it better not to use snappyHexMesh? ,

• you feel uncomfortable with dictionary interfaces (though some alternatives exist. . . )

• you want a 101% control on mesh quality

• you want a pure-hex mesh or an oriented mesh

24/26



Thank you for your attention!

25/26



Andrea Montorfano, Ph.D.
Post-doc Researcher

CONTACT INFORMATION

Address Dipartimento di Energia, Politecnico di Milano

via Lambruschini 4, 20156 Milano (ITALY)

E-Mail: andrea.montorfano@polimi.it

Phone: (+39) 02 2399 3804

Web page: http://www.engines.polimi.it/

@ICEPoliMi

26/26


	Introduction
	Geometry
	Ahmed Body
	Parallel snappy
	Summary
	Contact

