Energy conserving schemes in OpenFOAM

Davide Modesti Matte

Matteo Bernardini

Sergio Pirozzoli

Dipartimento di Ingegneria Meccanica ed Aerospaziale Universita' di Roma "La Sapienza"

HPC methods for Engineering - Milan, Italy June 17-19,2015

contact: davide.modesti@uniroma1.it

Index

- 1 Introduction
- 2 Numerical solvers
- 3 Conservation principles
- 4 Is OpenFOAM energy conserving?
- 5 Energy-Conserving Schemes
- 6 Implementation into OpenFOAM:rhoEnergyFoam
- 7 Decaying homogeneous isotropic turbulence
- 8 Taylor-Green flow
- 9 Taylor-Green flow: Kinetic energy spectra
- 10 Circular Cylinder at low Reynolds number
- 11 Compressible channel flow: DNS
- 12 Computational Efficiency
- 13 Scalability
- 14 Conclusions
- 15 Tutorial: Time reversibility on unstructured meshes
- 16 Tutorial: Time reversibility, extremely coarse mesh

Objectives

- Give the idea of "discrete energy consistency"
- Capability of different schemes/solver to satisfy the kinetic energy conservation property of Navier-Stokes equations
- Comparative study: OpenFOAM vs. other CFD solvers

Test Cases:

- 1. Decaying isotropic turbulence
- 2. Taylor-Green flow
- 3. Laminar circular cylinder
- 4. DNS of supersonic channel flows

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).

Commercial Solver

- Proprietary
- Unstructured(FV)
- ► Upwinding, TVD

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).

Commercial Solver

- Proprietary
- Unstructured(FV)
- Upwinding, TVD

Finite Differences in-house solver

- Compressible energy-conserving
- ▶ 3D, Cartesian
- Arbitrary order of accuracy

Conservation principles

Kinetic energy

Conservation principles

Kinetic Energy

It is important to satisfy the conservation of the kinetic energy in the **inviscid** and **incompressible** limit, in an **unbounded domain**

Conservation principles

Kinetic Energy

It is important to satisfy the conservation of the kinetic energy in the **inviscid** and **incompressible** limit, in an **unbounded domain**

Discrete energy conservation:

the nonlinear terms in the Navier-Stokes equations:

- ► do **not** contribute to the **net** variation of kinetic energy
- do not dissipate or inject spurious energy

cfd-online Forum

 May 27, 2011 longamon asked: "Hey Foamers......has anyone used kinetic energy conservative schemes in OF?"

Low-dissipative schemes

- Vuorinen, V., et al. "A low-dissipative, scale-selective discretization scheme for the Navier-Stokes equations." Computers & Fluids 70 (2012): 195-205.
- Vuorinen, V., et al. "On the implementation of low-dissipative Runge-Kutta projection methods for time dependent flows using OpenFOAM." Computers & Fluids 93 (2014): 153-163.

Energy-Conserving Schemes

Numerical Flux:

$$\frac{\partial(\rho \, u \, \varphi)}{\partial x} = \frac{1}{h} \left(\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right), \quad \hat{f}_{j+1/2} = \frac{1}{2} \left(\rho_j \, u_j \, \varphi_j + \rho_{j+1} \, u_{j+1} \, \varphi_{j+1} \right)$$

Numerical Flux:

$$\frac{\partial(\rho \, u \, \varphi)}{\partial x} = \frac{1}{h} \left(\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right), \quad \hat{f}_{j+1/2} = \frac{1}{2} \left(\rho_j \, u_j \, \varphi_j + \rho_{j+1} \, u_{j+1} \, \varphi_{j+1} \right)$$

A conservative and energy-consistent scheme has been proposed by **Ducros et al. (2000)** and generalized by **Pirozzoli (2010)**:

FD:
$$\hat{f}_{j+1/2} = \frac{1}{8} (\rho_j + \rho_{j+1}) (\varphi_j + \varphi_{j+1}) (u_j + u_{j+1})$$

 $j + 1/2$
 $j - - - - j = - - - j$

Implementation into OpenFOAM:rhoEnergyFoam

Space discretization

Energy consistent **numerical fluxes** implemented in the OpenFOAM library:

stability without numerical dissipation

Time integration

Explicit fourth-order Runge-Kutta time integration:

► low-storage implementation, suitable for LES and DNS.

Implementation into OpenFOAM:rhoEnergyFoam

rhoEnergyFoam:

- compressible unsteady solver (subsonic and supersonic shock-free flows)
- exact kinetic energy conservation in the inviscid and incompressible limit
- ▶ 2nd order accurate in space, 4th order in time
- Integration with the OpenFOAM thermodynamic and turbulence libraries
- Suitable for DNS and LES of compressible flows.

Test case proposed by Honein and Moin (2004)

Mesh 64³ $t/\tau = 5$

Mesh 32^3

Test case proposed by Duponcheel et al. (2008)

Initial Conditions

$$u = u_0 \sin(k_0 x) \cos(k_0 y) \cos(k_0 z)$$

$$v = -u_0 \cos(k_0 x) \sin(k_0 y) \cos(k_0 z)$$

$$w = 0$$

Time reversibility

Euler equations are time reversible, that is: $\mathbf{u}(t, \mathbf{x}) \Rightarrow -\mathbf{u}(-t, \mathbf{x})$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

rhoEnergyFoam

Taylor-Green flow: Kinetic energy spectra

 $E(k) \, k^{-2}$

Circular Cylinder at low Reynolds number

	l/d	C_D
rhoEnergyFoam	2.40	1.54
icoFOAM	2.36	1.53
rhoCentralFoam	1.19	1.90
Commercial	1.58	1.63
Taira et al. (2007)	2.30	1.56
Linnick et al. (2005)	2.28	1.54
Coutanceau et al. (1977)*	2.13	1.59

Regimes

Williamson (1996)

- $\blacktriangleright \ {\rm Re} < 49 \ {\rm stationary} \ {\rm laminar}$
- $\blacktriangleright \ 49 < Re < 190 \text{ laminar,} \\ \text{vortex shedding}$
- $\label{eq:rescaled} \bullet \ 190 < {\rm Re} < 260 \ {\rm transitional} \\ {\rm wake}$

Re=40, Mesh=64x64

Circular Cylinder at low Reynolds number

rhoEnergyFoam

Re=200, Mesh=128x128

	C_D	C_L
rhoEnergyFoam	1.33 ± 0.050	± 0.66
icoFoam	1.33 ± 0.045	± 0.69
Commercial	1.26±?	± 0.57
rhoCentralFoam	$1.30 \pm ?$	± 0.40
Taira et al.	1.35 ± 0.044	± 0.69
Linnick et al.*	1.34 ± 0.044	± 0.69

Vorticity

rhoEnergyFoam

Streamwise velocity in the YZ plane

Computational set-up

Parameters:

 $Re_{\tau}(=u_{\tau}h/\nu)=220,$ $M_b(=u_b/a_w)=1.5$

- Forcing: momentum and total energy equation, to maintain constant mass flow rate.
- Box dimensions: $L_x \times L_y \times L_z =$ $4\pi h \times 2h \times 4/3\pi h$
- ► Mesh resolution: $\Delta x^+ \approx 10$, $\Delta y^+ < 4$, $\Delta z^+ \approx 5$ About 9 milions cells

Università di Roma

Streamwise velocity fluctuations

'ersità di Roma

Wall-normal velocity fluctuations

'ersità di Roma

Spanwise velocity fluctuations

versità di Roma

Reynolds stress

rhoCentralFoam gives the same results as the in-house(FD) solver.

Computational Efficiency

rhoCentralFoam gives the same results as the in-house(FD) solver.

What about the computational efficiency ?

Computational Efficiency

rhoCentralFoam gives the same results as the in-house(FD) solver.

What about the **computational efficiency** ?

Computational times							
	FD	rhoEnergyFoam	rhoCentralFoam	dnsFoam	Commercial		
	1.0	5.9	5.9	5.1	20		

Linear Scalability

- ▶ FD: up to 64K CPUs and more
- standard OpenFOAM solvers: up to 1K CPUs. Bottlenecks: I/O and linear solvers
- rhoEnergyFoam: ?

Conclusions

Discrete kinetic energy conservation guarantees:

- stability without addition of artificial dissipation
- ► a greater **fidelity** to the physics
- OpenFOAM/Commercial are not energy-conserving
- OpenFOAM can be modified, the proposed scheme is easy to be implemented in an existing solver

Future work

- Provide rhoEnergyFoam with shock-capturing capabilities
- Scalability analysis of rhoEnergyFoam
- RANS and LES simulations of complex geometries

Tutorial: Time reversibility on unstructured meshes

Tutorial: Time reversibility on unstructured meshes

Initial Time

Reversal Time

Final Time

rhoEnergyFoam

- ► Time reversibility and energy consistency do no depend on the mesh resolution !!!
- Let us consider a coarse mesh, 8^3 .
- ► Kinetic energy conservation is guaranteed ⇒ Time reversibility

Tutorial: Time reversibility, extremely coarse mesh

Tutorial: Time reversibility, extremely coarse mesh

