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         Pipistrel, Sloveniawww.pipistrel.si
www.panthera-aircraft.com

Taurus Apis
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         Pipistrel, Sloveniawww.pipistrel.si
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Sinus VirusSW
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         Pipistrel, Sloveniawww.pipistrel.si
www.panthera-aircraft.com

Taurus Electro Alpha Electro
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         Pipistrel, Sloveniawww.pipistrel.si
www.panthera-aircraft.com

Taurus G4 Panthera
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• Fortissimo

• rbf4aero

• Mikelangelo

• Hypstair

         Pipistrel, Sloveniawww.pipistrel.si
www.panthera-aircraft.com
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Fortissimo

I4MS  ICT Innovation for Manufacturing SMEs
(within Factories of the Future initiative)

• Fortissimo

• Experiment: 
Cloud-based simulation of aerodynamics 

           of light aircraft
• Partners:

End User: PIPISTREL
HPC Expert: XLAB
HPC Provider: ARCTUR

• Application: 
OpenFOAM
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Motivation

• Pipistrel cluster (2014): 2 x (8 cores, 66GB RAM)

• Typical simulations: - fully turbulent RANS simulations
- low-Re airfoil simulations
- 5M (15M max) cells mesh

• Arctur's HPC (2014): - 84 x (12 cores, 32GB RAM)
       - high performance node: 144GB RAM
        - visualization node: 66GB RAM
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Experiment

• Experiment:
- OpenFOAM 2.2.0
- laminar-turbulent transition modeling 
  with RANS simulations: k - kL - omega turbulence model
- complete Panthera aircraft at cruise speed (Re=5.7e6)

• Validation and performance criteria
- successful scale up from local cluster to HPC
- working remote visualization directly on HPC (TurboVNC)
- this routine runs smoothly and completely remote on HPC
- the same convergence time for much larger cases
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Experiment

Course of action:

• Simple test cases with turbulent 
model k - kL - omega 

• A wing at smaller velocities

• A wing at cruise velocity

• Complete Panthera aircraft at 
smaller velocities

• Complete Panthera aircraft at 
cruise speed

In house 
cluster 

Arctur’s 
HPC

mesh size 5 -10M cells 115M cells

thinnest 
layer

~ 0.1mm ~ 0.006mm

No.  cores 8 60 - mesh
180 - simul.

simulation 
time

1-2 days 2-3 days
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Simulation

k - kL - omega  turbulence model 1

• low-Re model

• Three additional transport equations:
k  - turbulent kinetic energy
kL - laminar kinetic energy = pretransitional (nonturbulent) velocity    

           fluctuations
omega - specific dissipation rate

• RASProperties:
RASModel    kkLOmega;

1 Walters, D. K., and Cokljat, D., "A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes 
Simulations of Transitional Flow,'' J. Fluids Eng., Vol. 130, Iss. 12, 2008, pp. 1-14, doi:10.1115/1.2979230
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kl

{
    inlet
    {
        type            fixedValue;
        value      uniform 0;
    }
    outlet
    {
        type            zeroGradient;
    }
    symmetry
    {
        type            symmetryPlane;
    }
    body_patch0
    {
        type            fixedValue;
        value           uniform 0;
    }
}

kt

{
    inlet
    {
        type            fixedValue;
        value uniform 1.5e-8;
    }
    outlet
    {
        type            zeroGradient;
    }
    symmetry
    {
        type            symmetryPlane;
    }
    body_patch0
    {
        type            fixedValue;
        value           uniform 0;
    }
}

omega

{
    inlet
    {
        type            fixedValue;
        value uniform 0.771;
    }
    outlet
    {
        type            zeroGradient;
    }
    symmetry
    {
        type       symmetryPlane;
    }
    body_patch0
    {
        type            zeroGradient;
    }
}

Simulation
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U

{
    inlet
    {
        type            fixedValue;
        value   uniform (1 0 0);
    outlet
    {
        type            zeroGradient;
    }
    symmetry
    {
        type            symmetryPlane;
    }
    body_patch0
    {
        type            fixedValue;
        value           uniform (0 0 0);
    }
}

p

{
    inlet
    {
        type            zeroGradient;
    }
    outlet
    {
        type            fixedValue;

value         uniform 0;
    }

    symmetry
    {
        type            symmetryPlane;
    }

    body_patch0
    {
        type            zeroGradient;
    }
}

Simulation
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fvSchemes

ddtSchemes
{
    default         steadyState;
}
gradSchemes
{
    default         Gauss linear;
}
divSchemes
{
    div(phi,U)                          Gauss linearUpwind grad(U);
    div(phi,kt)                              Gauss linearUpwind grad(turb);
    div(phi,kl)                              Gauss linearUpwind grad(turb);
    div(phi,omega)                      Gauss upwind;
    div((nuEff*dev(grad(U).T()))) Gauss linear;
    div((nuEff*dev(T(grad(U)))))  Gauss linear;
}
laplacianSchemes
{
    default                        none;
}
interpolationSchemes
{
    default         linear;
}

fvSolution

solvers
{
    p
    {
        solver          GAMG;
    }
    (''U,kl,kt,omega'')
    {

solver      smoothSolver;
    }
}
SIMPLE
{
    nNonOrthogonalCorrectors 1;
 }

relaxationFactors
{
        p                   0.5;
        U                  0.2;
        nuTilda         0.3;
        kt                  0.5;
        kl                   0.5;
        omega          0.5;
}

Simulation
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Mesh
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Mesh
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snappyHexMeshDict:

addLayersControls
{    

relativeSizes false;
    layers
    {  "(body).*"     

{   
         nSurfaceLayers 13;   
}

}
    expansionRatio 1.5;
    finalLayerThickness 0.0008;
 

featureAngle 30;
slipFeatureAngle 0;

}

meshQualityControls
{   

maxNonOrtho 65;

    maxBoundarySkewness -20;
    maxInternalSkewness      -4;

minDeterminant  1e-6;
}

Mesh



Milan, 17th June Workshop HPC Methods for 
Engineering

19

Results
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Results
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Lessons learned

Learn how to:

• make a proper mesh - such a fine mesh at the surface

• use symmery plane

• preview the decomposed case – reconstruction takes a lot of time

• extract only necessary data and preview it with paraView

• automaticaly consecutively run all steps of the simulation process

• how to run, handle and postprocess such big cases

• persuade HPC provider to increase RAM
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Successes and Impact

• Deeper knowledge of running, handling and postprocessing 
very big cases

• Better estimate of the time and the cost

• Deeper knowledge of CFD simulations, what are its 
boundaries and capabilities

• Better designs and faster design cycles
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Thank you!!!

Any questions or comments?

Dr. Matej Andrejašič
R&D, Pipistrel, Slovenia

matej.andrejasic@pipistrel.si


