The Alya System: HPC simulations for real world problems.

M. Avila, M. Vázquez, G. Houzeaux and CASE Department Barcelona Supercomputing Center

Spain

HPC methods for Engineering Workshop - Milano, Italy, June 2015

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Barcelona Supercomputing Center

Background

BSC-CNS is the Barcelona Supercomputing Center - Centro Nacional de Supercomputación, the Spanish national supercomputing center

It is a **public center**, co-financed by the Spanish Ministry of Science, the regional government of Catalonia and the UPC (Technical University of Catalonia)

Around 300 researchers from several disciplines

It hosts the MareNostrum, 3rd supercomputer in Europe in Nov 2007. 76th in Nov 2008.

Mare nostrum today: 49 000 cpu's, 1PFlop. 19th in Europe and 57th in the World.

Barcelona Supercomputing Center

2005. Barcelona Supercomputing Center - BSC VIIIe.

BSC Research Departments

<u>Computer Science</u> Tools, storage, cloud... Computer architectures Programming models

Earth Science Climate Air quality

Hardware and software technologies for efficient use supercompute technologies

Life Science **Bioinformatics for Genomics Computational Biochemistry**

Computer Applications in Science and Engineering

CASE: The BSC's applications department

"Computers are not the thing, computers are the thing that gets you to the thing."

From AMC TV Show Halt and Catch Fire

Computer Applications in Science and Engineering (CASE)

Computational Physics and Engineering Interdisciplinary research unit of the BSC-CNS

Our mission:

To develop computational tools to simulate highly complex problems adapted to run onto high-end parallel supercomputers

More than 65 researchers:

Post-docs, students, programmers

Computer Science, Physicists, Mathematicians, Engineers

Barcelona Supercomputing Center Nacional de Supercomputaciór

Research in Computational Physics and Engineering

Computer Science

Understand the problem

Research in Computational Physics and Engineering

Write a code

CASE Research lines

Physical and Numerical Modeling

Numerical Solution Algorithms: from stabilisation to solvers Multi-physics and multi-scale coupling

High Performance Computing in CM (HPCM)

Parallelisation in Distributed and Shared memory machines

Mesh Generation

Scientific Visualisation & Big Data

Optimisation

CASE Application lines

Meteorology Energy Trains and Automotive Ship hydrodynamics Oil and Gas Industry

Artificial Societies (Population dynamics)

High Energy Physics Materials Sciences

Biomechanics

Application projects' keywords:

- Complex geometries
- Complex, unconventional physical / mathematical models
- Complex pre-process (meshing) and post-process (visualization and analysis)
- Large-scale simulations
- Multi-physics problems
- Automatic optimization
- Big data management and visualization

Efficient and accurate software for supercomputers

The BSC's simulation software

CASE simulation parallel software stack

<u>Alya</u>: non-structured meshes, coupled multi-physics, complex geometries.

<u>Waris</u>: cartesian (staggered) meshes, well-defined numerics, one code - one problem - one physics.

Pandora: agent-based simulations.

Parallel multi-physics code developed at BSC

Coupled PDEs: loosely, strongly, both Unstructured meshes Explicit and implicit schemes Finite Element Variational Multiscale Method Modular: kernel, modules, services Parallelization based on:

MPI tasks and automatic mesh partition using METIS OpenMP threads on loops Both Portability is a must Porting to new architectures: Cells, GPUs

<u>Parallel multi-physics</u> code developed at BSC Physics:

- In / Compressible flow, Turbulence, Level Sets Chemical reactions, Combustion
- Heat transport
- Non-linear solid mechanics, contact, N-bodies
- Electromagnetism
- Excitable media
- Acoustics
- ALE for FSI
- Adjoint-based optimisation
- Particles (tracers) and Immersed bodies

<u>Parallel multi-physics</u> code developed at BSC Meshing and preprocess:

Integrated meshing issues Mesh multiplication Implicit Chimera and overset meshes Iris Mesh: octree mesh generator from cloud points Hybrid meshes

ALYA – Automatic DIVISOR

Guillaume Houzeaux, Raúl de la Cruz, Herbert Owen, and Mariano Vázquez. Parallel uniform mesh multiplication applied to a Navier- Stokes solver. *Computers and Fluids*

<u>Parallel multi-physics</u> code developed at BSC Code features:

Born 2004

- +- 700K code lines
- +- 40 researchers
- +- 10 organisations
- Centralized SVN repository

Nightly test suites

- One code, no multiple versions

Solvers in-house, no 3rd-party libraries (just METIS) Main code architects: Guillaume Houzeaux and Mariano Vázquez

Lindgren (Sweden), Cray XE system at PDC, incompressible flow 12.288 CPU's (collaboration with Jing Gong from PDC) Huygens, (The Netherlands), IBM power 6, incompressible flow, 2.128 CPU's

Jugene BG (Germany): 16.384 CPU's, incompressible flow (Prace project for Mesh multiplication) and, running first tests of FSI in collaboration with Paolo Crosetto (Julich)

Fermi BG (Italy): 16.384 CPU's, incompressible flow + species transport + Lagrangian particles (Prace project for nose)

Curie Bullx (France): 22.528 CPU's, incompressible flow (collaboration with Jing Gong - PDC)

Marenostrum: 5.000 CPU's compressible flow, incompressible flow, thermal flow (scalability test)

superMUC (Germany): 125.000 CPU's, incompressible flow & combustion NCSA Blue Waters (USA): 100.000 CPU's, incompressible flow & combustion, electromechanics cardiac coupling

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Selection of a Unified European Application Benchmark Suite

J. Mark Bull^a*, Andrew Emerson^b

*EPCC, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK. ^bCINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy.

respective user communities, as well the coverage of scientific a a final list of 12 codes to form the initial version of UEABS, whi

Particle Physics: Classical MD: Quantum MD: CFD: Earth Sciences: Plasma Physics: Astrophysics:

OCD NAMD, GROMACS Quantum Espresso, CP2K, GPAW Code_Saturne, ALYA NEMO, SPECEEM3D GENE GADGET

Alya is one of the two CFD codes of the PRACE benchmark suite

Collaboration project with Seid Koric NCSA

Collaboration project with Seid Koric NCSA

Defining parallel multi-physics coupling

Very generally speaking and to fix ideas..

Fluid-structure interaction Contact and impact problems N-bodies collisions Heat transfer Meshes can/cannot coincide

Very generally speaking and to fix ideas...

Overlapping domains: Overset meshes and Chimera Electromechanical cardiac model RANS modelled turbulence Multi-scale problems Particles and immersed bodies Meshes can/cannot coincide

Coupling connectivity among MPI tasks

- Numerically stable coupling algorithms
- Preconditioners for the coupled scheme
- Time-scale disparity
- Synchronous/Asynchronous schemes
- Coupling different codes (multicodes)

<u>Parallel multi-physics</u> code developed at BSC Parallel coupling strategies:

Code coupling Several instances of Alya Alya with other codes Couplers In-house, integrated in Alya PLE (with EDF, France) PreCICE (with TUM, Germany) Adan (with LNCC, Brazil)

Simulations for Industry

Aerodynamics of vehicles

LES TURBULENCE MODELING

2 4 6 8 10

0.00675

11.7

BASIC RUN DATA

TIME STEP SIZE = 0.005 sec.

LES MODEL: WALE by Nicoud

MESH: 6M Nodes & 33M Elements Tetrahedras, prisms and pyramids

NUMERICAL METHOD: Variational Multiscale Stabilized Finite Element Method implemented in the code ALYA

RESULTS WITH HULL

Forces on the sails

Vehicle aerodynamics Nissan Juke

Spoiler force

Multi-physics: Chemical reactions and Combustion

Motivation

Compressible flow Turbulence Multi-species flow Combustion Heat transfer Aeroelasticity

Modelling approach summary

Low-Mach/compressible

- Finite-rate kinetics:
 - Dynamic Thickened Flame Model
- Tabulated chemistry
- CFI combustion model (FGM-based)
- Manifold $\phi\left(\widetilde{c}, \widetilde{c^{\prime\prime 2}}, \widetilde{f}, \widetilde{f^{\prime\prime 2}}, h\right)$
- Premixed/Non-premixed & partially premixed combustion
- **RANS/LES** formulation
- Conjugate-heat transfer (CHT) coupling (cooling, heat losses, thermal stresses)

Speed-up

VALIDATION OF 1D LAMINAR FLAME AGAINST OPENFOAM

2D LAMINAR FLAME

2D bunsen flame: T=298K, ER=0.9, p=1bar, Le=1

FLOX[®] combustor - DLR **Turbulent Flame**

O. Lammel et al., J. Eng. Gas Turbines Power, 2012

FLOX[®] combustor - DLR

Experiments

Alya - LES-CFI Combustion Model

FLOX[®] combustor - DLR

Validation LES

Profiles of time-averaged axial and transversal velocity and temperature for the LES simulations (dots: experiments, red: non-adiabatic, green: non-adiabatic with heat loss in chemistry).

Turbulent flames

Impinging flames with conjugateheat transfer

Configuration setup

inlet

isothermal

LES-CHT coupling for an impinging flame

(Ongoing work)

Turbulent flames

PREdiction and **C**ontrol of **C**ombustion **INSTA**bilities in Industrial Gas Turbines (**PRECCINSTA**)

Collaboration with:

Simon Gövert and J.W.B. Kok, *Department of Thermal Engineering, University of Twente* B. Cuenot and L.Y. Giquel, *Combustion Group, CERFACS*

UNIVERSITY OF TWENTE.

PRECCINSTA - DLR

Flow configuration

PRECCINSTA - DLR

Mesh

PRECCINSTA - DLR Alya - LES

PRECCINSTA - DLR Alya - LES vs Experiments

Mean velocity

Simulations for Biomedical Research

Cardiac Electromechanical computational model

X-Aris

Effect of infarction on the cardiac pumping action

Severo Ochoa Excellence Program

Effect of Quinidine in heart tissue (simulated with Alya)

Brugada 52-510

Cardiac Electromechanical computational model

Anti-arrhythmic drugs action

Severo Ochoa Excellence Program

user: rutharis Thu Jul 5 11:47:12 2012

Cardiac Electromechanical computational model

Coupling with the arterial system (Alya + ADAN)

European FP7 Project "EUBrazil-CC"

<u>2</u>0

10

0

Respiratory system

Drug delivery and massive particle tracking

Particle 4

Respiratory system

Drug delivery and massive particle tracking

Particle deposition

Simulations for Energy The wind and the environment

ATMOST Spanish project

Wind in urban environments

Partnership: IBERDROLA – BSC - CENER

Wind Energy Project objectives:

1. Phase 1: wind farm planning

- Goal: to predict long-term wind farm production using CFD.
- Mast measurements during a number of years (wind statistics).
- Determine the optimal wind turbine positions to obtain the best profitability.

2.Phase 2: wind farm exploitation

- Goal: to predict short-term wind farm production using CFD.
- **Downscaling** from mesoscale NWP models (model chain).

on using CFD. s (wind statistics). to obtain the best

on using CFD. nodel chain).

- Solution of the RANS equations coupled with a κ-ε length-limited turbulence model;
- Horizontal mesh resolution ~10s of meters. ullet
- Coriolis, canopy, thermal coupling, actuator disc. \bullet

PreProcess in Google Earth Before Meshing

Optimization of the surface mesh (**Topography mesh generation** procedure

- 1. Generate an initial surface mesh
- 2. **Optimize mesh**: find the location of the nodes that improves the quality of the elements
- 3. Smooth topography (if desired)

Optimization of the surface mesh

Center

Centro Nacional de Supercomputación

Update 2: volume mesh generation algorithm

Mesh generation extruding in vertical direction

Mesh generation using the 3d optimization approach

CFDWind: high resolution wind modelling

Tailored post-process in Google Earth.

PostProcess in Google Earth

Google Earth

📕 🍪 🖨 🛃 🕙 🕴 🔿 🐗 mié 11:34 Q

Acceder

Image Landsat Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google earth 📰

14 P 294955.87 m E 1630724.00 m N elev. -3388 m alt. ojo 3389.12 km 🔘

Actuator Disc

Hybrid conformal mesh generation procedure

Examples: several discs

VALIDATION

VALIDATION (SEXBIERUM)

Wind Speed Deficit 2.5D downstream

WODS (just Iberdrola)

WODS (complete)

Sisante (with topography)

XX

contact: matias.avila@bsc.es

