

Virtual Automatic Rapid Prototyping on HPC Platforms + Fast Morphing tutorial

C. Groth, M. E. Biancolini *University of Rome Tor Vergata* corrado.groth@uniroma2.it info@rbf-morph.com

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

(rbf-morph)"

Welcome to the World of Fast Morphing!

Outline

- RBF Morph software line
- Mesh morphing with RBF
- Accelerating the solver
- How it works
- Ongoing RBF researches
- Test Case: video tutorial
- Industrial applications

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

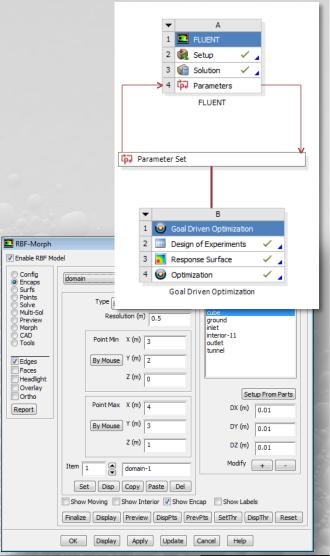
- A mesh morpher is a tool capable to perform **mesh** • **modifications**, in order to achieve arbitrary shape changes and related volume smoothing, without changing the mesh topology.
- In general a morphing operation can introduce a reduction of the mesh quality
- A good morpher has to minimize this effect, and maximize the • possible shape modifications.
- If mesh quality is well preserved, then using the same mesh structure it's a clear benefit (remeshing introduces noise!).

HPC methods for Engineering 17 June 2015 - Cineca - Segrate (MI)

(rbf-morph) RBF Morph software line

- HPC RBF general purposes library (state of the art algorithms, parallel, GPU). This is the numerical kernel of our software. Millions of RBF centers can be fitted in a short time.
- Awarded mesh morphing software available as an add-on for ANSYS Fluent **CFD** solver
- Stand alone morphing software + smoothing commands for different mesh formats
- ANSYS Mechanical ACT extension

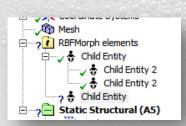
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



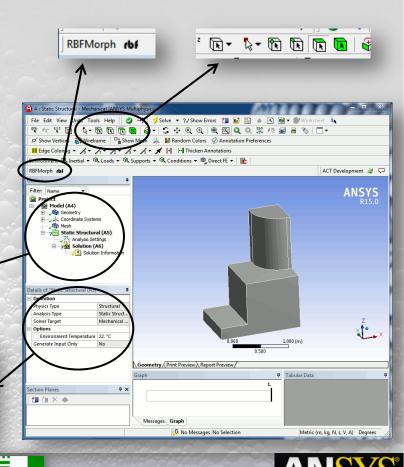
Fluent add-on

- Add on fully integrated within Fluent (GUI, TUI & solving stage), Workbench and Adjoint Solver
- Mesh-independent RBF fit used for surface mesh morphing and volume mesh smoothing
- **Parallel** calculation allows to morph **large size** models (many millions of cells) in a short time
- Management of every kind of mesh element type (tetrahedral, hexahedral, polyhedral, etc.)
- Support of the CAD re-design of the morphed surfaces
- Multi fit makes the Fluent case truly parametric (only 1 mesh is stored)
- **Precision**: exact nodal movement and exact feature preservation (**RBF** are better than **FFD**)

www.rbf-morph.com RBF Morph, an ANSYS Inc. Partner



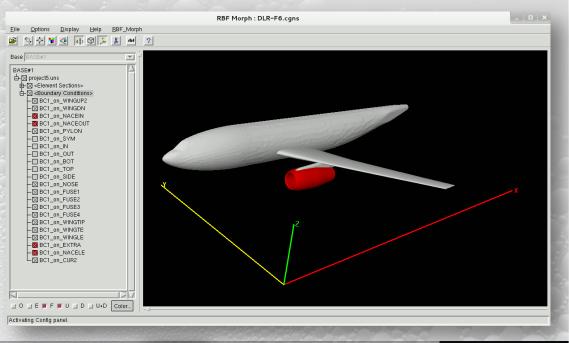
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


(rbf-morph)^M ACT extension for Mechanical Welcome to the World of Fast Morphing!

- Deeply integrated in ANSYS Mechanical: same look & feel, same interaction logic
- Nested in the usual Mechanical tree as an added object, shares its scoping tools for geometrical and mesh elements selections
- Written in python and xml, uses external C++ RBF Morph core libraries
- Cuda and OpenMP acceleration
- Child hierarchical logic for complex morphings (two steps, three steps, ..., n steps setups)

Ξ	Node selection					
	Scoping Method	Geometry Selection				
	Geometry	Apply	Cancel			
=	Definition					
	delta_x	0				
	delta_y	0				
	delta z	0.4				

Tor Vergat



HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

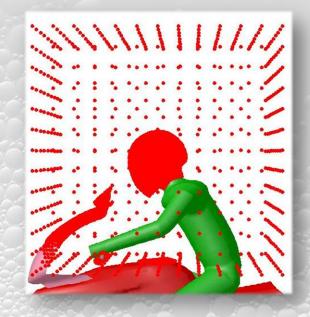
www.rbf-morph.com

(rbf-morph)TM RBF Morph Stand Alone

- RBF solutions are fully compatible and **exchangeable** between add-on and standalone versions
- Support for STL and CGNS file formats. Selected morphed surfaces can be exported in STL format and back to CAD is possible via STEP files
- Add-on-like interface
- Solver independent process currently supports many mesh formats
- · Functions scriptable via tcl
- Global supported bi-harmonic functions and C⁰, C², C⁴ compact supported functions available

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com RBF Morph, an ANSYS Inc. Partner


NNSYS

A system of radial functions is used to fit a solution for the mesh movement/morphing, from a list of source points and their displacements.

Mesh morphing with RBF

- The RBF problem definition does not depend on the mesh
- Radial Basis Function interpolation is used to derive the displacement in any location in the space, each component of the displacement is interpolated:

$$\begin{cases} v_{x} = s_{x}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ v_{y} = s_{y}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ v_{z} = s_{z}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \phi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{cases}$$

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

bf-morph)

RBF Theory

- A radial basis fit exists if desired values are matched at source points with a null poly contribution
- The fit problem is associated with the solution of a linear system
- M is the interpolation matrix
- P is the constraint matrix
- g are the scalar values prescribed at source points
- γ and β are the fitting coefficients

$$s(\mathbf{x}_{k_i}) = g(\mathbf{x}_{k_i}) \quad 1 \le i \le N$$

$$0 = \sum_{i=1}^{N} \gamma_i q(\mathbf{x}_{k_i})$$

$$\begin{pmatrix} \mathbf{M} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\gamma} \\ \mathbf{\beta} \end{pmatrix} = \begin{pmatrix} \mathbf{g} \\ \mathbf{0} \end{pmatrix}$$

$$M_{ij} = \phi(\|\mathbf{x}_{k_i} - \mathbf{x}_{k_j}\|) \quad 1 \le i \quad j \le N$$

$$\mathbf{P} = \begin{pmatrix} 1 & x_{k_1}^0 & y_{k_1}^0 & z_{k_1}^0 \\ 1 & x_{k_2}^0 & y_{k_2}^0 & z_{k_2}^0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{k_N}^0 & y_{k_N}^0 & z_{k_N}^0 \end{pmatrix}$$

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

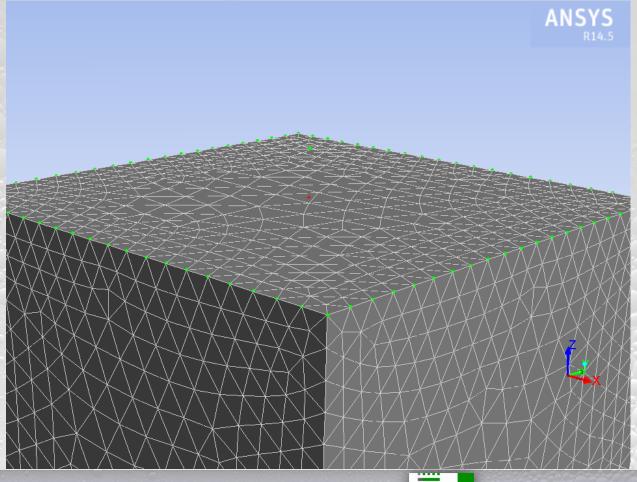
RBF Theory

- The radial function can be fully or compactly supported. The bi-harmonic kernel fully supported gives the best results for smoothing.
- For the smoothing problem each component of the displacement prescribed at the source points is interpolated as a single scalar field.

Radial Basis Function	$\phi(r)$
Spline type (R _n)	$\left r\right ^{n}$, n odd
Thin plate spline (TPS _n)	$\left r\right ^{n}\log\!\left r ight $, n even
Multiquadric(MQ)	$\sqrt{1+r^2}$
Inverse multiquadric (IMQ)	$\frac{1}{\sqrt{1+r^2}}$
Inverse quadratic (IQ)	$\frac{1}{1+r^2}$
Gaussian (GS)	e^{-r^2}

$$\begin{cases} v_x = s_x(\mathbf{x}) = \sum_{i=1}^N \gamma_i^x \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ v_y = s_y(\mathbf{x}) = \sum_{i=1}^N \gamma_i^y \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ v_z = s_z(\mathbf{x}) = \sum_{i=1}^N \gamma_i^z \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{cases}$$

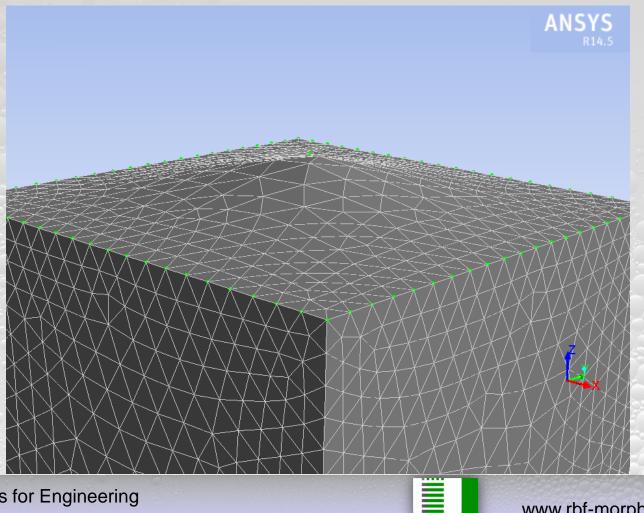
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

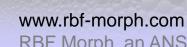


Source point control

One pt at center 80 pts at border

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

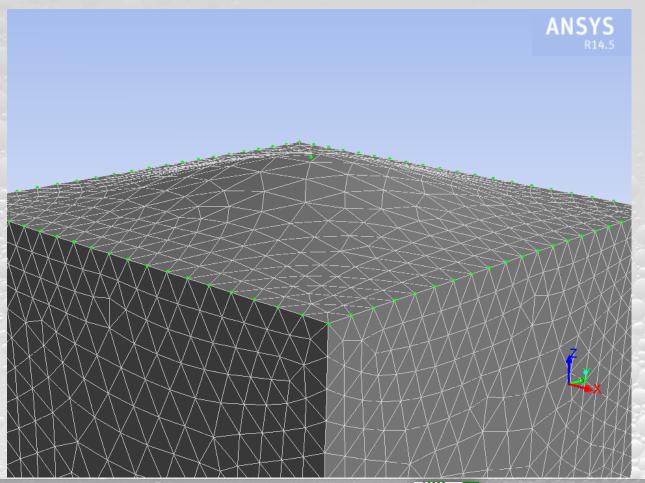




Norph) Source point control-

Effect on surface (gs-r)

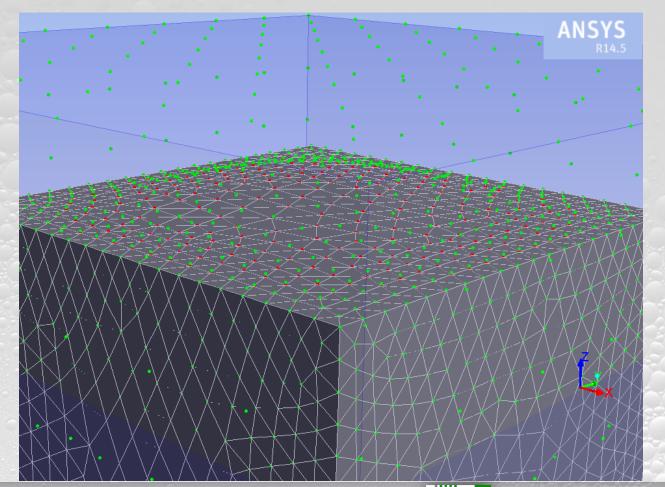
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


Tor Vergati

Source point control-

Effect on surface (cp-c4)

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



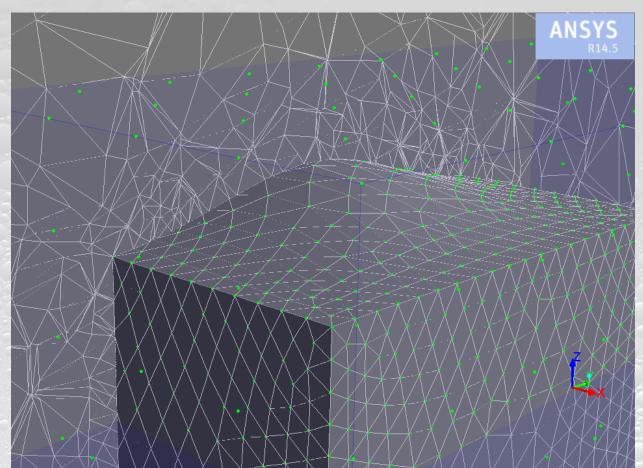
Source point control

(rbf-morph)

Welcome to the World of Fast Morphing!

Control of volume mesh (1166 pts)

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



Source point control-

Morphing the volume mesh

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

RBF Theory

- The radial function can be fully or compactly supported. The bi-harmonic kernel fully supported gives the best results for smoothing.
- For the smoothing problem each component of the displacement prescribed at the source points is interpolated as a single scalar field.

Radial Basis Function	$\phi(r)$
Spline type (R _n)	$\left r\right ^{n}$, n odd
Thin plate spline (TPS _n)	$\left r\right ^{n}\log\!\left r ight $, n even
Multiquadric(MQ)	$\sqrt{1+r^2}$
Inverse multiquadric (IMQ)	$\frac{1}{\sqrt{1+r^2}}$
Inverse quadratic (IQ)	$\frac{1}{1+r^2}$
Gaussian (GS)	e^{-r^2}

$$\begin{cases} v_x = s_x(\mathbf{x}) = \sum_{i=1}^N \gamma_i^x \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^x + \beta_2^x x + \beta_3^x y + \beta_4^x z \\ v_y = s_y(\mathbf{x}) = \sum_{i=1}^N \gamma_i^y \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^y + \beta_2^y x + \beta_3^y y + \beta_4^y z \\ v_z = s_z(\mathbf{x}) = \sum_{i=1}^N \gamma_i^z \phi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + \beta_1^z + \beta_2^z x + \beta_3^z y + \beta_4^z z \end{cases}$$

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

- The evaluation of RBF at a point has a cost of order N
- The fit has a cost of order N³ for a direct fit (full populated matrix); this limit to ~10.000 the number of source points that can be used in a practical problem
- Using an iterative solver (with a good pre-conditioner) the fit has a cost of order N²; the number of points can be increased up to ~70.000
- Using also space partitioning to accelerate fit and evaluation the number of points can be increased up to ~300.000
- The method can be further accelerated using fast preconditioner building and FMM RBF evaluation...

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

Solver performances

10.000 RBF centers FIT

(rbf-morph)

Welcome to the World of Fast Morphing

- 120 minutes Jan 2008
- 5 seconds Jan 2010
- Largest fit 2.600.000 133 minutes
- Largest model morphed 300.000.000 cells
- Fit and Morph a 100.000.000 cells model using 500.000 RBF centers within 15 minutes

#points	2010 (Minutes)	2008 (Minutes)
3.000	0 (1s)	15
10.000	0 (5s)	120
40.000	1 (44s)	Not registered
160.000	4	Not registered
650.000	22	Not registered
2.600.000	133	Not registered

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

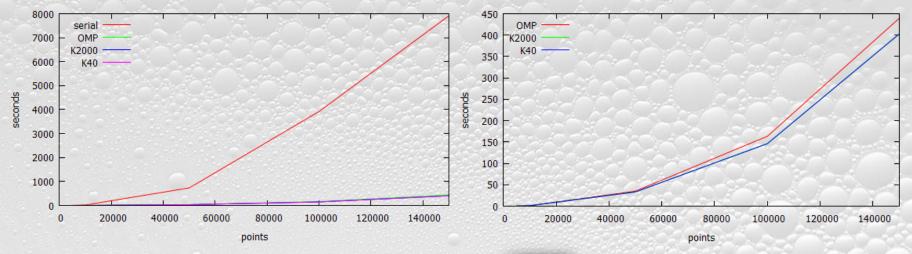
www.rbf-morph.com

GPU acceleration!

(rbf-morph)"

Welcome to the World of Fast Morphing

- Single RBF complete evaluation
- Unit random cube
- Kepler 40: 2880 CUDA cores GPU Clock 0.75 GHz
- Quadro K2000: 384 CUDA cores GPU Clock 0.95 GHz
- CPU: Intel Xeon E5-2680 Clock 2.8 GHz 20 cores


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

GPU acceleration!

#points		CPU serial		CPU OMP		K2000		K40	
		Preconditioner build	iterations	Preconditioner build	iterations	Preconditioner build	iterations	Preconditioner build	iterations
500	00	0.8	4.352	0.955	0.4770	0.94	0.491	2.194	0.060
100	000	2.47	19.867	2.32	1.132	2.41	1.140	3.885	0.17
500	000	47.07	733.463	46.463	35.20	47.510	33.13	48.95	5.12
1000	000	231.03	3922.31	238.68	163.375	238.82	146.20	239.007	21.365
1500	000	375.75	7915.24	379.923	439.546	400.12	402.95	457.597	52.568

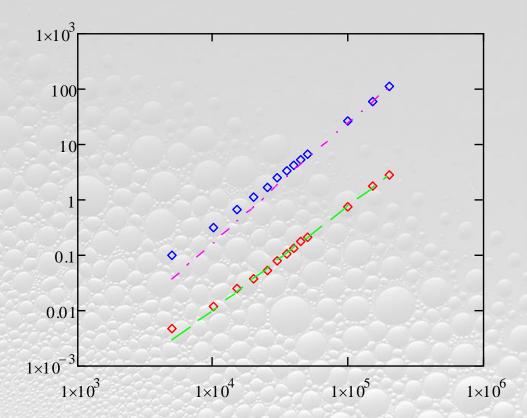
Tor Vergata

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

(rbf-morph)"

Welcome to the World of Fast Morphing!

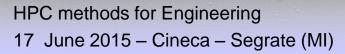
www.rbf-morph.com



Scaling plot

- Complexity is expected to grow as N²
- GPU observed as
 N ^{1.87}
- CPU observed as
 N ^{2.174}
- Estimation at one million points:

GPU: 59 s CPU: 2783 s



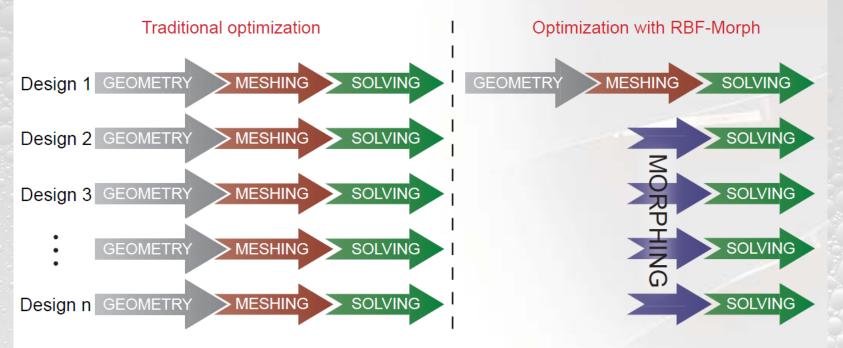
(rbf-morph)^M Key benefits: performances

- 14 mill. cells, 60.000 points, PC 4 cpu 2.67 GHz
 - fitting time: **53 sec**. (serial)
 - smoothing: 3.5 min.
- 50 mill. cells, 30.000 points, HPC 140 cpu
 - fitting time: **25 sec**. (serial)
 - smoothing: **1.5 min**.
- 100 mill. cells, 200.000 points, HPC 256 cpu
 - fitting time: **25 min**.
 - smoothing: 5 min.
- Largest fitted cloud 2 mill. points on 32 cpu in 3 hours.
- Largest model morphed (in our knowledge) 700.mill. cells on 768 cpu in 45 min.

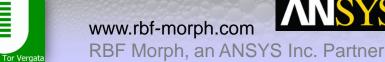
HPC Workflows (rbf-morph)

Welcome to the World of Fast Morphing!

Case	Motorbike windshield	Reference car	Sedan	Hull	Volvo XC60	Sails	DLR-F6	IR5
Organization	MRA/UTV	MIRA	ANSYS	Leeds	ANSYS	New Castle / UTV	MorphLab/ UTV	Dallara
Year	2009	2010	2011	2011	2012	2013	2013	2013
#Mcells	1,5	5,2	6	0,3	50	1,5	14	80
mesh type	tets	poly	tets	hexa	tets	hexa	tets	tets
#par	3	3	2	8	4	4	8	5
#design	45	27	9	45	50	100	81	1
RS Tool	modeF	Mathcad	DX	DX	DX	DX/ Mathcad	DX	FSI
ncores	4	2	12	4	240	16	16	256
RUN (hr)	48	300	24	45	50	26	102	1
Time to set-up one par (hr)	1,5	2,5	2	1	2	2	1	2
Time to set-up (hr)	4,5	7,5	4	8	8	8	8	8
Serial time one design (hr)	4,27	22,22	32,00	4,00	240,00	4,16	20,15	256,00
Serial time one design (hr/Mcells)	2,84	4,27	5,33	13,33	4,80	2,77	1,44	3,2
HPC methods for Engineering					www.rbf-morph.com			


Tor Vergata

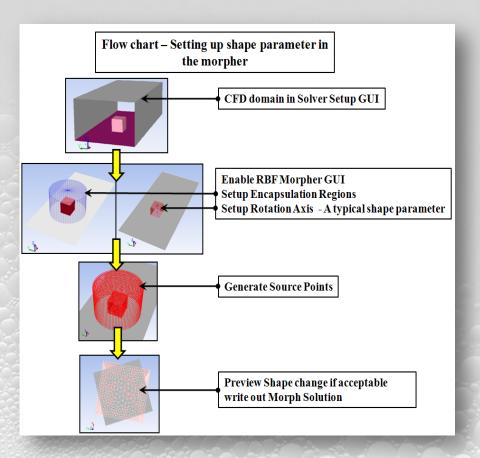
17 June 2015 – Cineca – Segrate (MI)


www.rbf-morph.com

(rbf-morph) Key benefits: automated

- RBF Morph makes the Fluent model **parametric** with respect to the **shape**
- Works for any size of mesh (from small models managed with a WS up to • huge Formula 1 meshes in an HPC environment)
- Exposed parameters can be steered with the **optimizer of choice** (DX, modeFRONTIER, Dakota,...)

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


- *RBF Morph* basically requires three different steps:
- **Step 1 setup** and definition of the problem (source points and displacements).
- Step 2 fitting of the RBF system (write out .rbf + .sol).
- Step 3 [SERIAL or PARALLEL] morphing of the surface and volume mesh (available also in the CFD solution stage it requires only baseline mesh and .rbf + .sol files).

How it Works: the problem setup

- The problem must describe the **desired** correctly changes and must preserve exactly the fixed part of the mesh.
- The prescription of the source points and their displacements fully defines the RBF Morph problem.
- Each problem and its fit define a mesh **modifier** or a shape parameter.

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

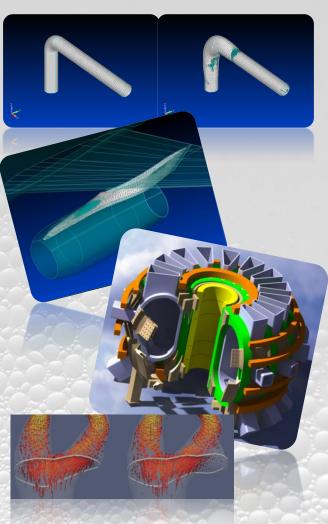
- Interactive update using the GUI Multi-Sol panel and the • Morph/Undo commands.
- Interactive update using sequential morphing by the TUI command ٠ (rbf-smorph).
- Batch update using the single morphing command (rbf-morph) in • a journal file (the RBF Morph DOE tool allows to easily set-up a run).
- Batch update using several sequential morphing commands in a • journal file.
- Link shape amplifications to Fluent custom parameters driven by • Workbench (better if using DesignXplorer).
- More options (transient, FSI, modeFRONTIER, batch RBF fit ...) ٠

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

Ongoing RBF Morph Researches

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com



(rbf-morph) Ongoing RBF researches

- Welcome to the World of Fast Morphing
 - RBF Morph and Adjoint coupling: Adjoint sculpting, Adjoint preview, Augmented DOE
 - STL targeting, CAD controlled surfaces
 - Mesh to CAD features
 - Mapping of magnetic and pressure loads
 - Interpolation of hemodynamic flow fields acquired in vivo
 - Strain and stress calculation (experimental data, coarse FEM, isostatic lines)

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

RBF4AERO EU Project

 "Innovative Benchmark Technology for Aircraft Engineering Design and Efficient Design Phase Optimisation" –

ACP3-GA-2013-605396

www.rbf4aero.eu

RBF4AERO

(rbf-morph)"

Welcome to the World of Fast Morphing!

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

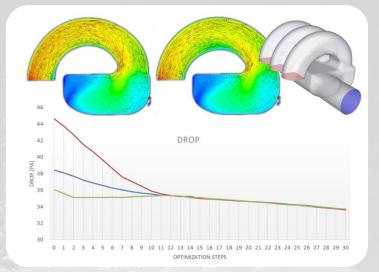
 Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced Structural analysis

JTI-CS-2013-GRA-01-052

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

RIBES

www.rbf-morph.com



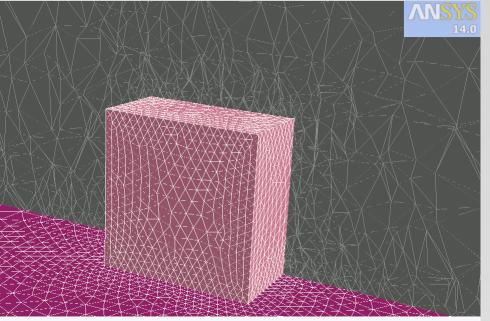
Fortissimo EU Project

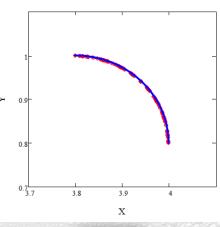
- Factories Of the Future Resources, Technology, Infrastructure and Services for SImulation and MOdelling
- Approved experiment: "Virtual Automatic Rapid Prototyping Based on Fast Morphing on HPC Platforms"

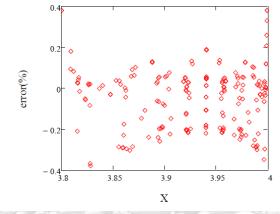
SuperComputing Applications and Innovation

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

ORTISSIMO




CAD controlled surfaces


Welcome to the World of Fast Morphing

bf-morph)

- A new shape known in advance can be inserted using an STL target
- In the example a fillet with radius in the range 20-30 mm is applied to one edge of the 1000 mm side cube
- Shape blending allows a continuous variation
- Accuracy of implicit surface is validated against reference analytic geometry

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

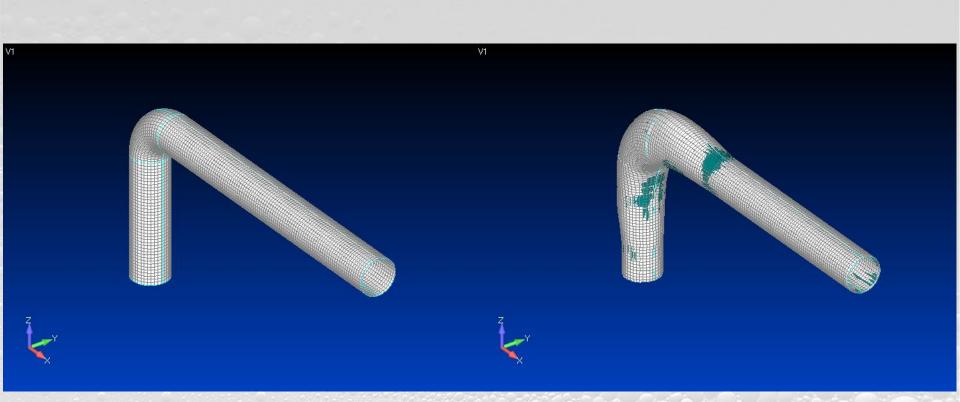
www.rbf-morph.com

RBF Morph, an ANSYS Inc. Partner

NNSYS

(rbf-morph)"

Welcome to the World of Fast Morphing!

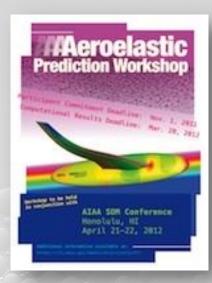

2×10 1.5×10^{-5} 1×10 5×10^{-6} 2×10⁻³ 4×10^{-3} 6×10⁻³ 0 **NSYS**® HPC methods for Engineering www.rbf-morph.com 17 June 2015 – Cineca – Segrate (MI) RBF Morph, an ANSYS Inc. Partner

Tor Vergata

MESH2CAD - NURBS

Adjoint Sculpting

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)



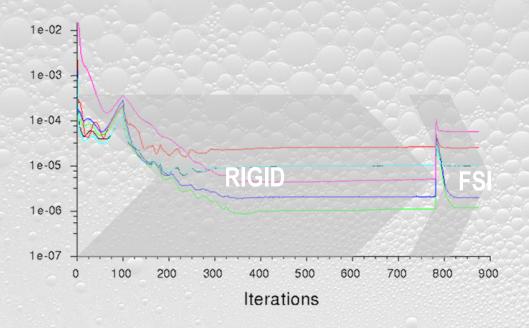
www.rbf-morph.com

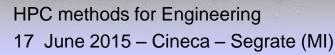
rbf-morph) Fluid Structure Interaction

- Welcome to the World of Fast Morphing!
- Active project with ANSYS Germany & ANSYS Italy focused on HIRENASD case of benchmark of Aeroelastic Prediction Workshop (Thorsten Hansen, Angela Lestari, Benjamin Duda & Domenico Caridi)
- Flexible CFD model allows to do a steady aeroelastic run at the same cost of a rigid one
- Flexible CFD model can be used for transient FSI

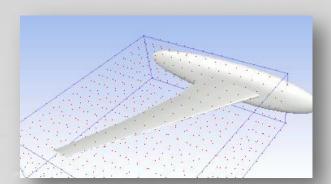
- Actual modal coordinates can be linked to FEM for stress recovery
- Modal Forces are integrated within Fluent over the CFD surface mesh with actual pressure data
- FSI commands to fast update the mesh using current modal coordinates (steady & transient)

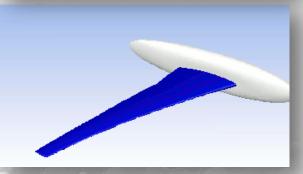
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



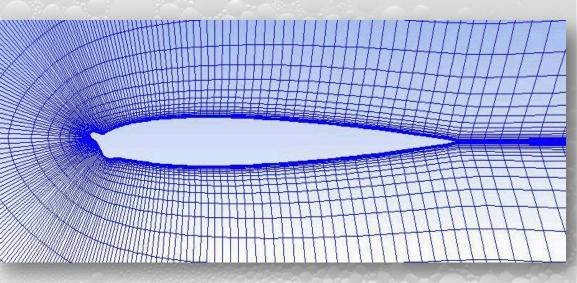


(rbf-morph) Fluid Structure Interaction


Welcome to the World of Fast Morphing!


- Modal basis is validated within Fluent thanks to Preview panel
- Update command defined using a scheme function and invoked each 25 iterations as a Fluent calculation activity




Any Ice accretion model that exposes results can be coupled with RBF Morph

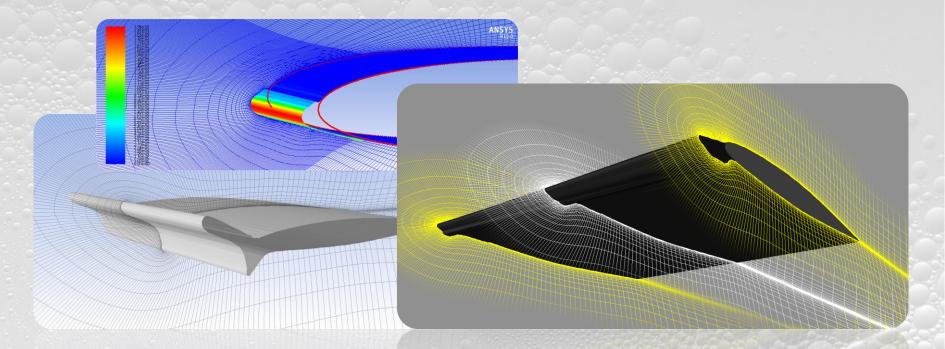
Icing accretion morphing

- Thickness are applied as normal displacements and imported as ٠ meshless points
- At each step the mesh is automatically modified allowing to be used for ٠ the subsequent accretion calculation
- The method is valid • for 2D and 3D cases

(harom-fur

Capability tested • on geometries from **LEWICE 2.0 validation** manual

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


Icing accretion morphing

- The workflow can be automated by using scheme and UDF
- y+ is preserved after morphing

(rbf-morph)

Welcome to the World of Fast Morphing

 Active project with ANSYS india coupling EWF + custom accretion model + RBF Morph to automatically update the mesh during calculation

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

Test case : Glider optimisation

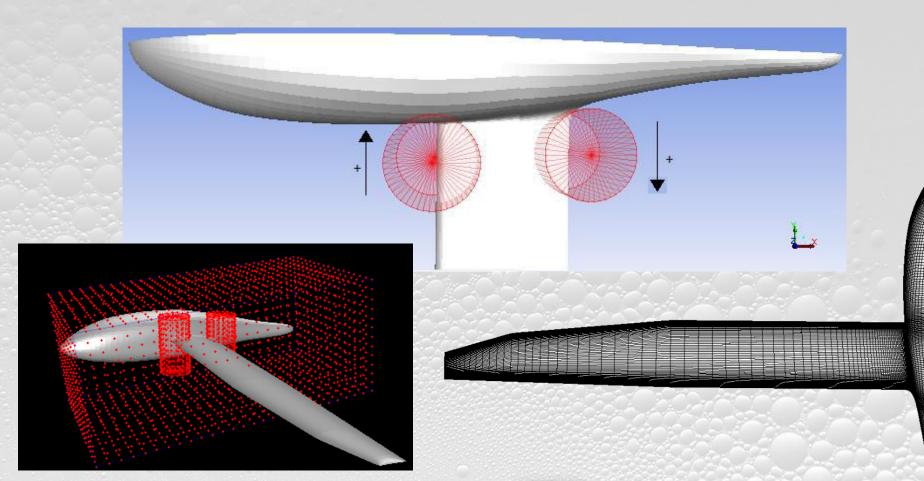
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

(rbf-morph)" Aerodynamic improvement

Welcome to the World of Fast Morphing!

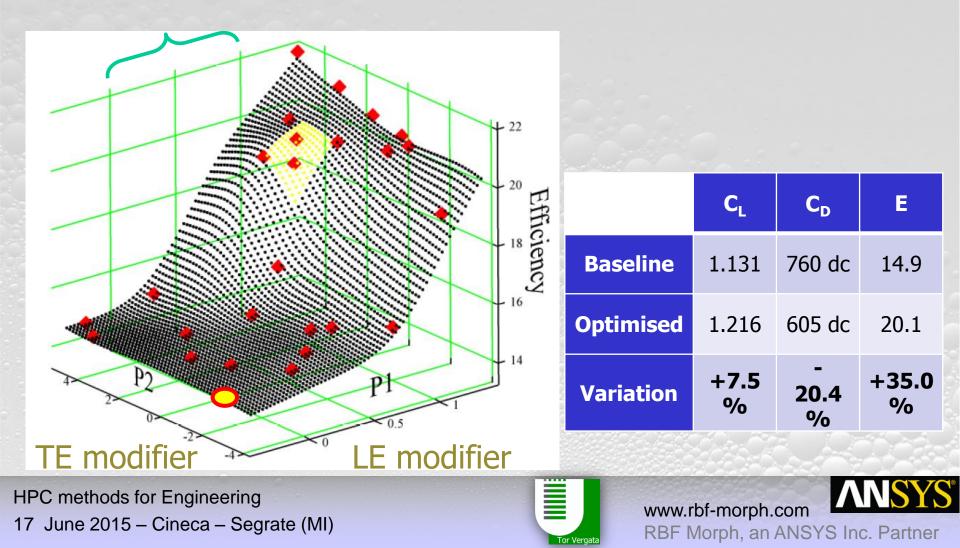
Reynolds 1.24 mill. (c 0.8 m) Alpha 8 deg


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

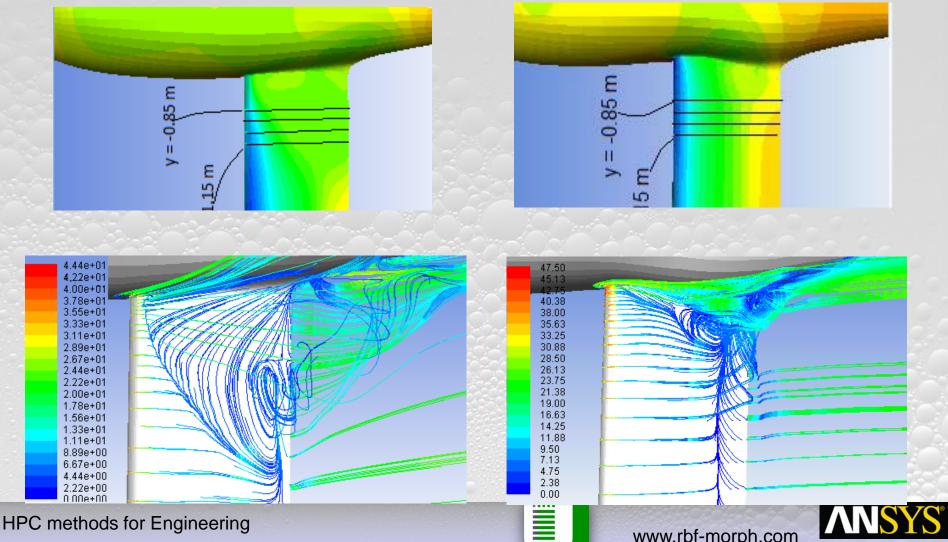
Tor Verga

Problem setup

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

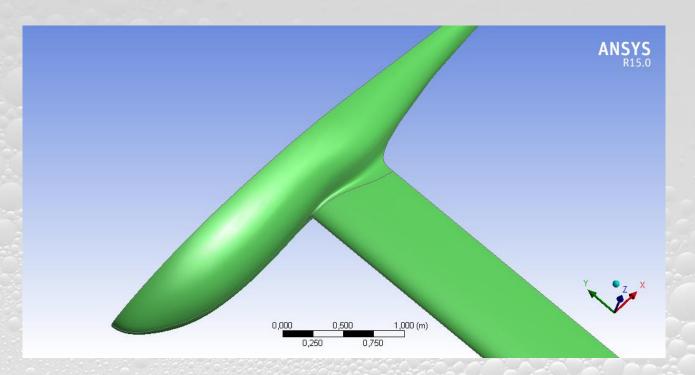


(rbf-morph)" Optimization solution


Welcome to the World of Fast Morphing!

10 cm

Welcome to the World of Fast Morphing!


Tor Vergata

Improvement

17 June 2015 – Cineca – Segrate (MI)

Back To CAD

Optimized morphing action to the baseline CAD model

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

Hands on!

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

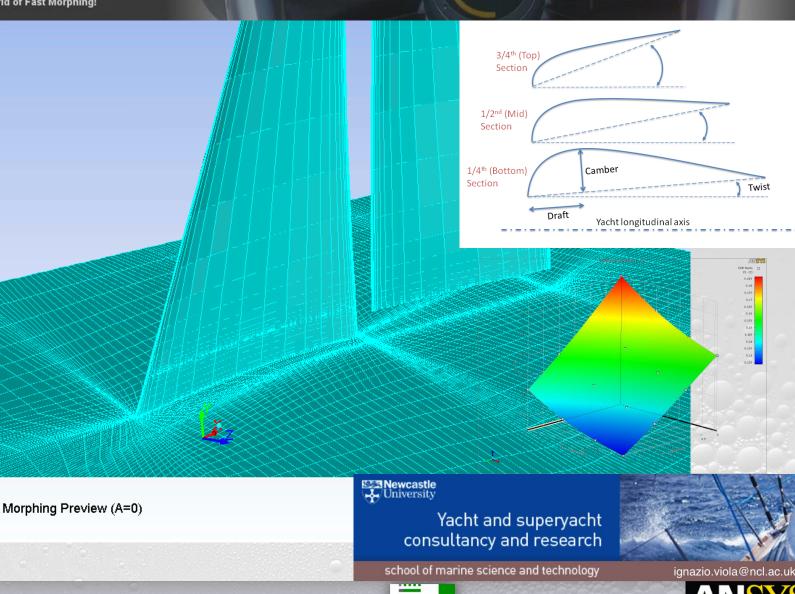
Industrial Applications

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

www.rbf-morph.com

HPC methods for Engineering 17 June 2015 - Cineca - Segrate (MI)



www.rbf-morph.com

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

Tor Vergata

Exhaust manifold

Welcome to the World of Fast Morphing!

/elocity Streamline 1 2.407e+002

1.806e+002

1.204e+002

6.019e+001

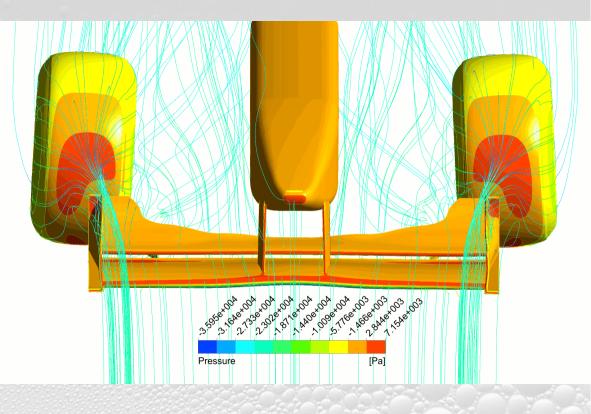
0.000e+000 [m s^-1]

(rbf-morph)"

	A	В	С	D	E	F	G	Н	I
1	Name 💌	P5 - Pipe1Curve1	P6 - Pipe2	P7 - Pipe4Curve1	P8 - Pipe3	P1 - PressureDrop1	P2 - PressureDrop2	P3 - PressureDrop3	P4 - PressureDrop
2						Pa	Pa	Pa	Pa
3	Current	4	4	4	4	12892	11366	13028	16619
ł	DP 1	3	3	3	3	12882	11247	13487	16731
5	DP 2	2	2	2	2	12897	11546	13554	16911
5	DP 3	1	1	1	1	13403	11477	13920	17666
	DP 4	0	0	0	0	13555	11750	13967	17718

ANSYS

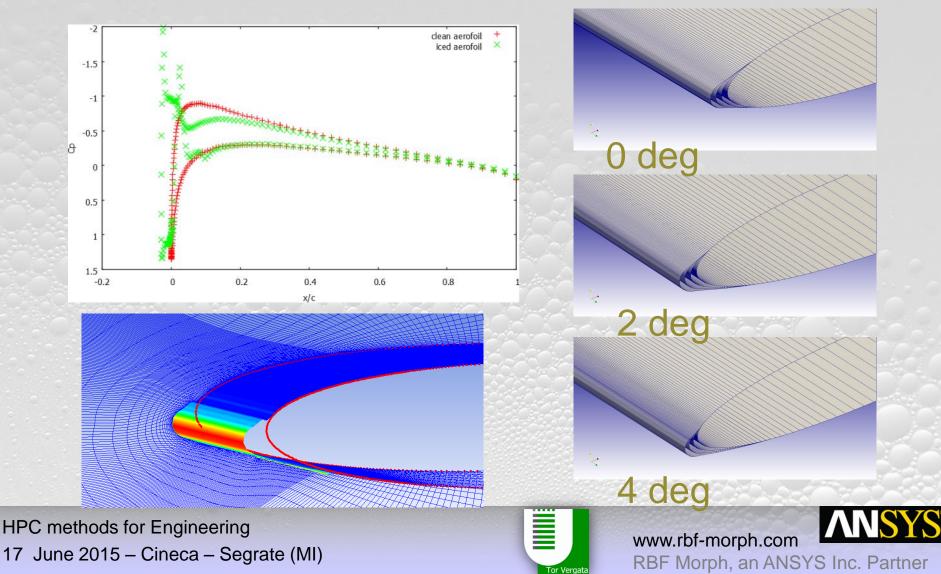

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



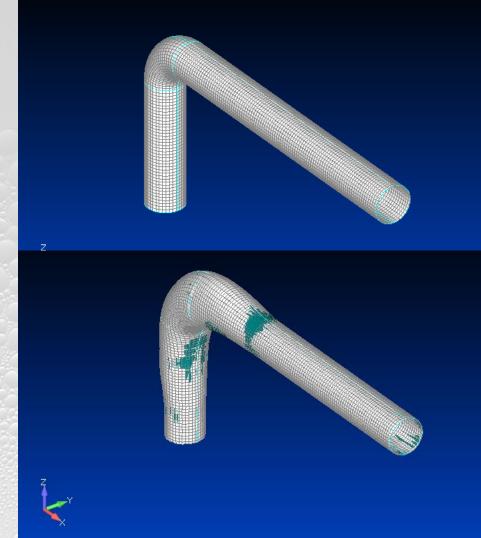
www.rbf-morph.com

(rbf-morph) Steering wheels – lap time Welcome to the World of Fast Morphing! Optimisation

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


www.rbf-morph.com

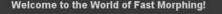
(rbf-morph)[™] Welcome to the World of Fast Morphing!

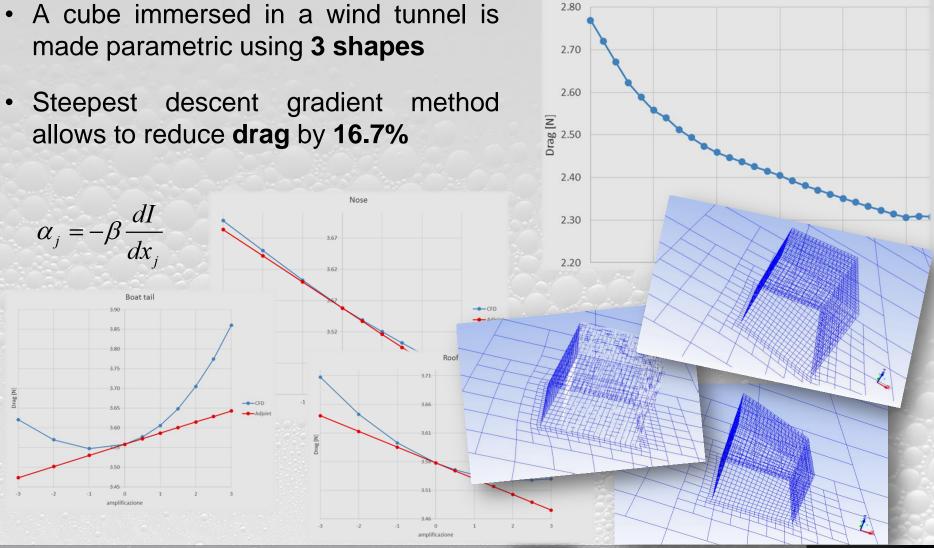

2D - NACA 0012

7, 14, 21 min.

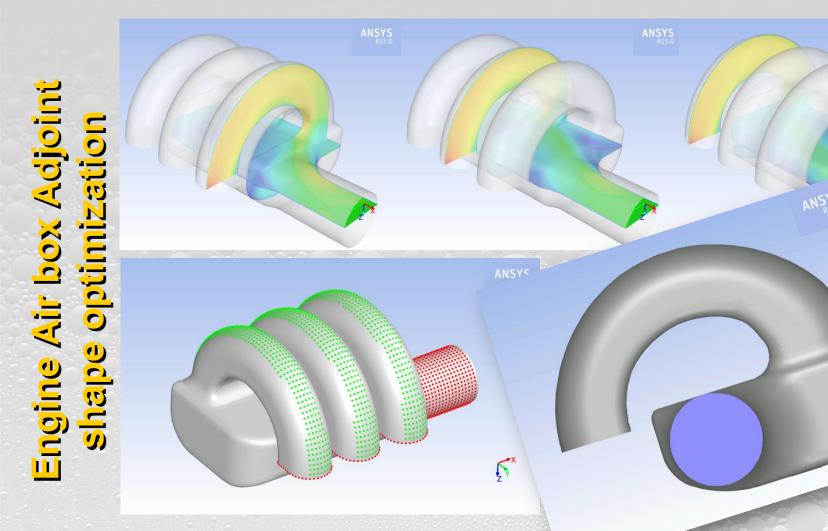
(rbf-morph)[™] Adjoint Self Sculpting

- 90 deg bend optimization
- New shape is sculpted using adjoint data
- Original geometry (2 cylinders and a torus) is transformed in NURBS
- NURBS are morphed using the back to CAD tool of RBF Morph



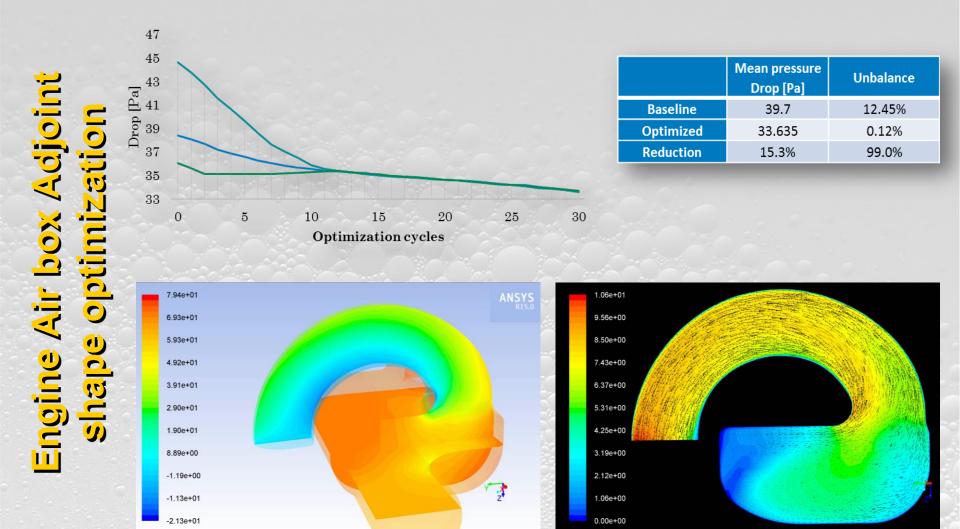

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

(rbf-morph)^M Adjoint preview



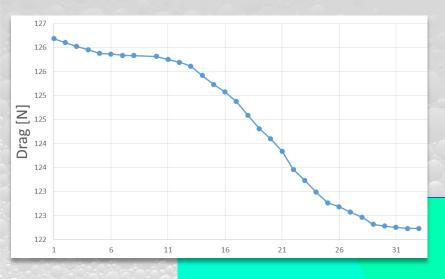
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

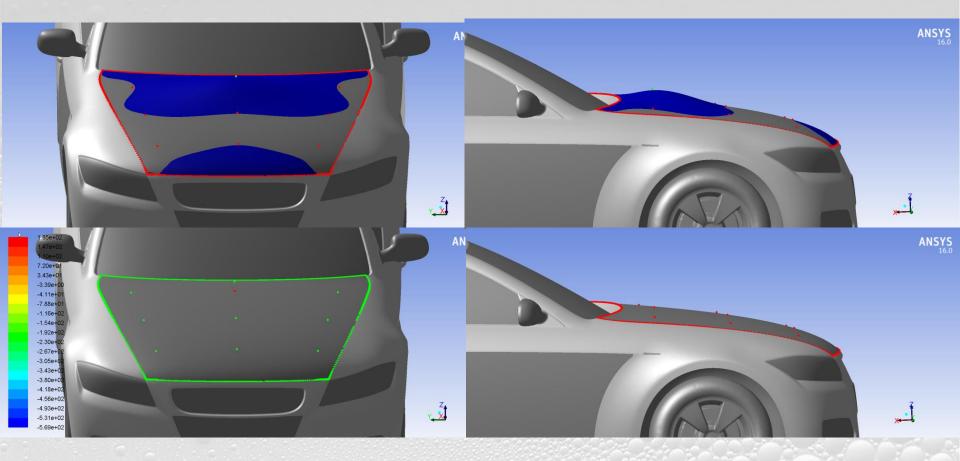
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



Sedan car

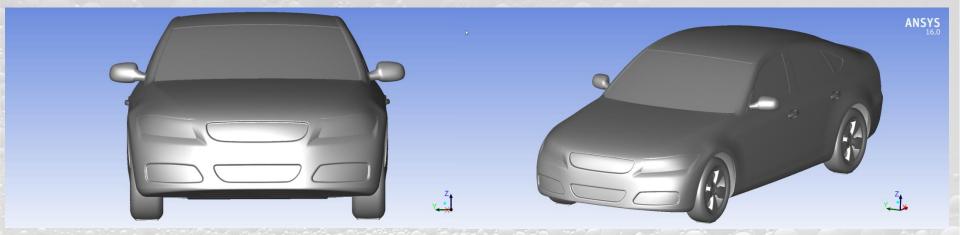
 A 3.13% drag reduction is achieved after 33 cycles

 $\alpha_j = -\beta \frac{dI}{dx_j}$


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

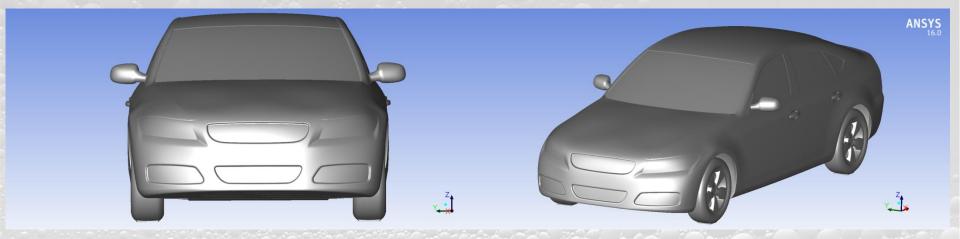
(rbf-morph)[™] DrivAer adjoint sensitivity

Welcome to the World of Fast Morphing!


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

(**rbf-morph**)^M DrivAer adjoint sensitivity

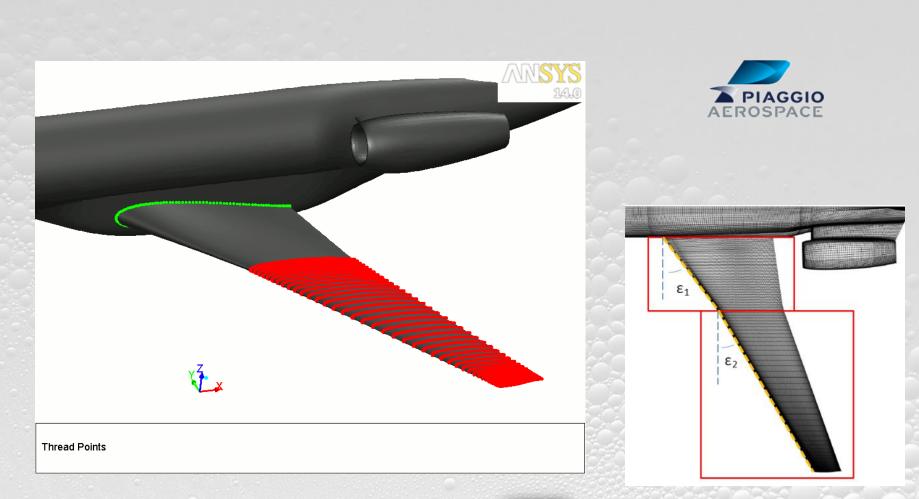
 Adopting a maximum displacement of 5 mm and updating the surface according to gradient data a 0.5% drag reduction is expected.


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

(rbf-morph)[™] DrivAer adjoint sensitivity

Welcome to the World of Fast Morphing!

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

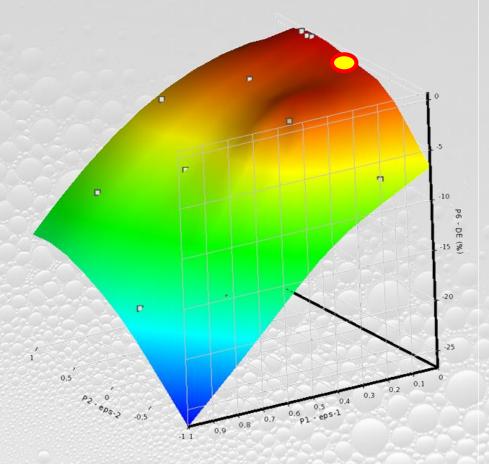


www.rbf-morph.com

(rbf-morph)" Wing sweep parameterization

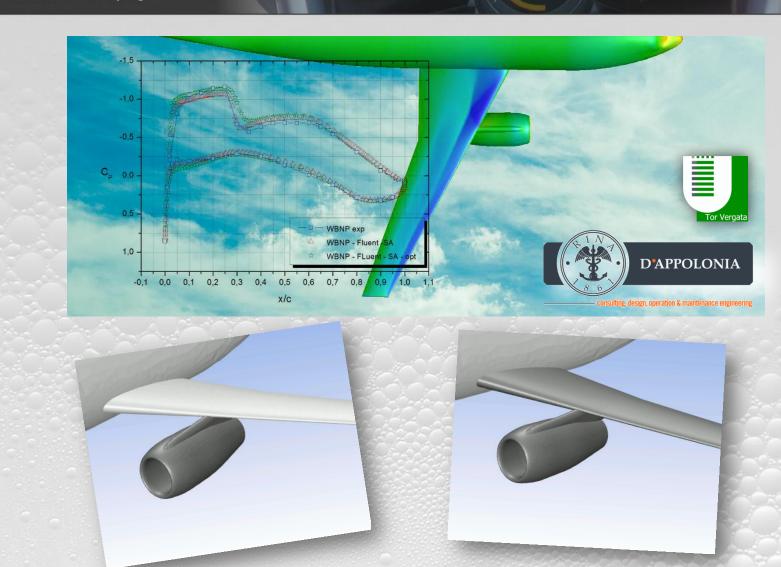
Welcome to the World of Fast Morphing!

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



Sweep angles optimization

- DOE + RSM approach
- 2 design variables
- Maximization of Efficiency in cruising conditions
- Slight improvement (less than 1%).

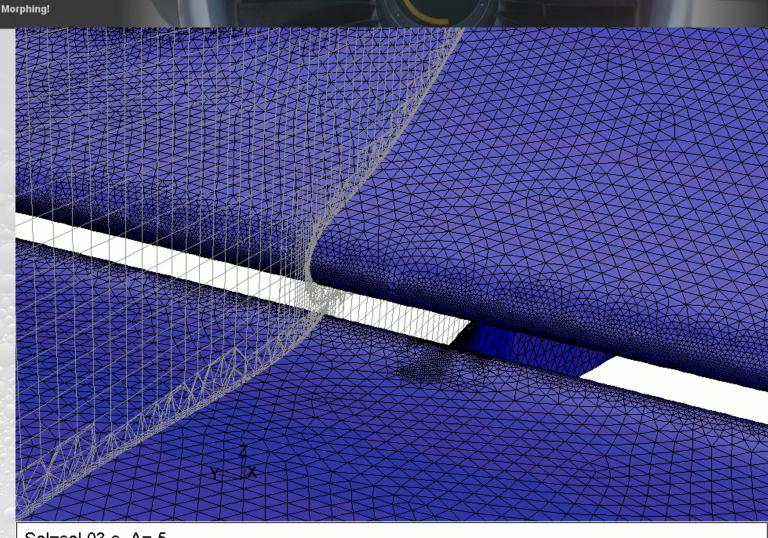


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

50:50:50 Project Volvo XC60 (Ansys, Intel, Volvo) Ansys,

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)


www.rbf-morph.com

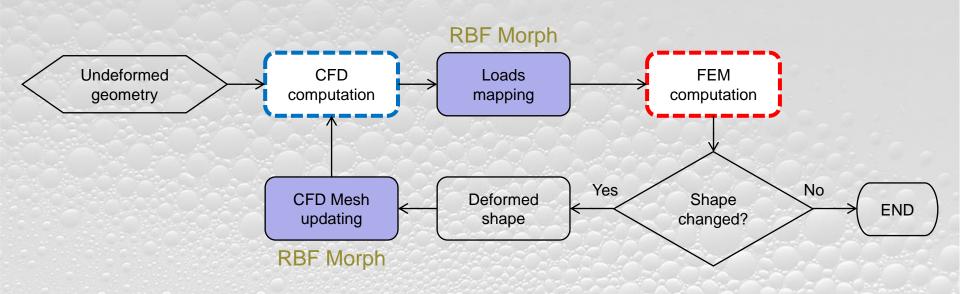
RBF Morph, an ANSYS Inc. Partner

NN

(rbf-morph)"

Welcome to the World of Fast Morphing!

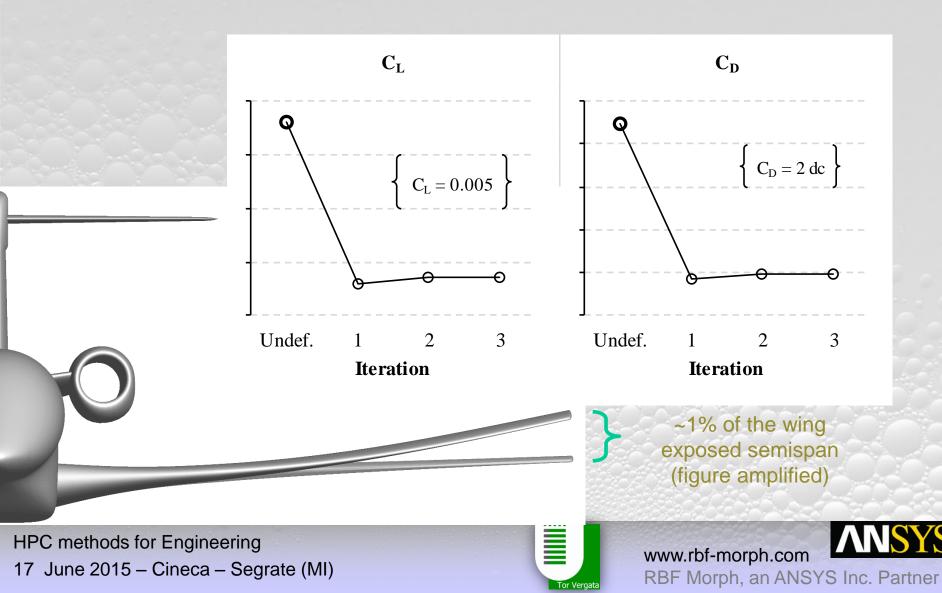
Sol=sol-03-a, A=-5 Surface Grid


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

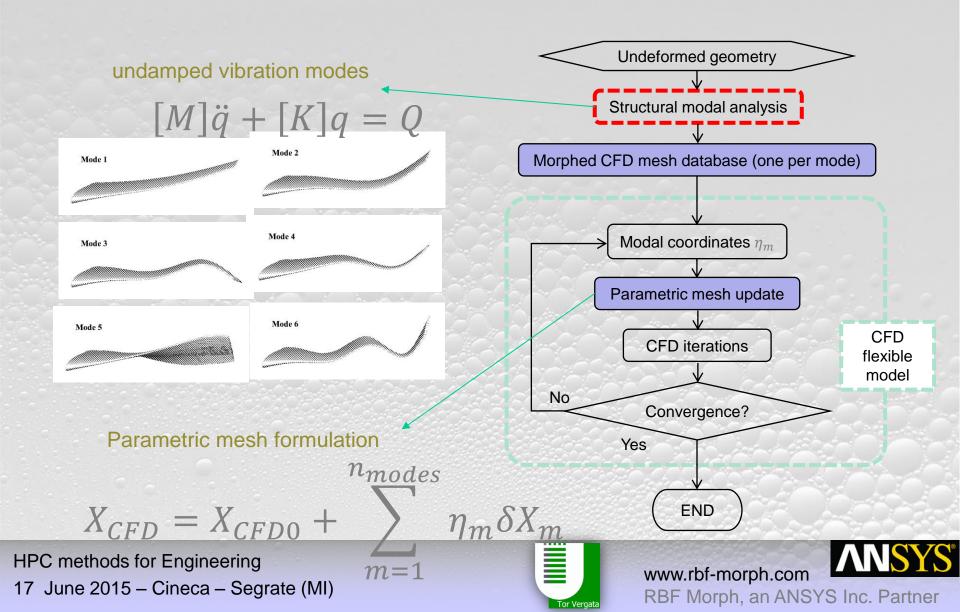
(rbf-morph)[®] 2 ways FSI procedure

Welcome to the World of Fast Morphing!

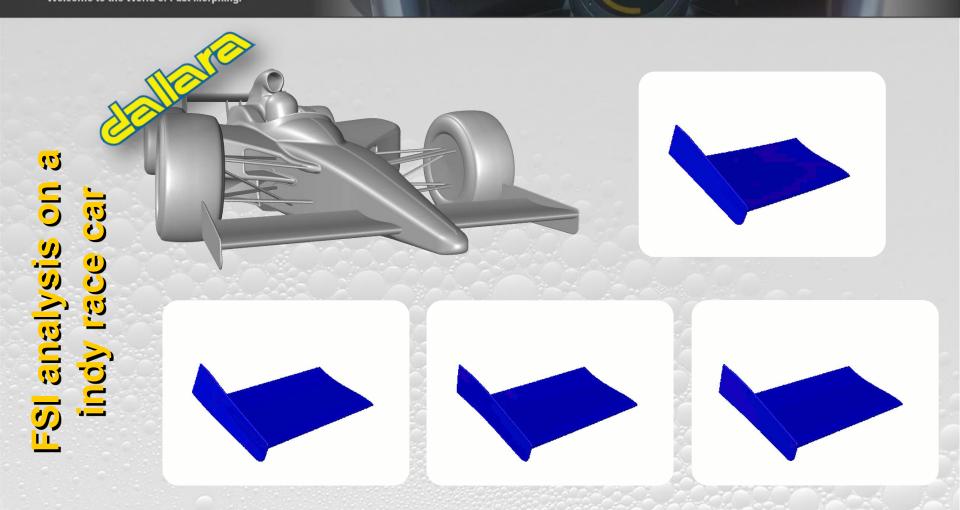
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



www.rbf-morph.com

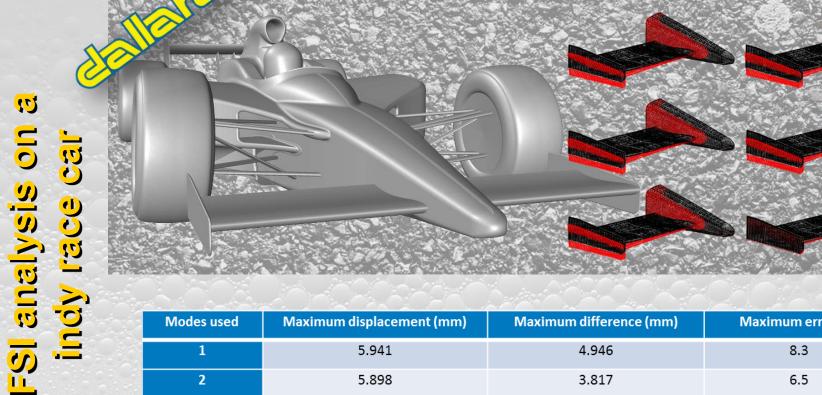


(rbf-morph)" Convergence histories


Welcome to the World of Fast Morphing!

(rbf-morph)TM FSI modal approach

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

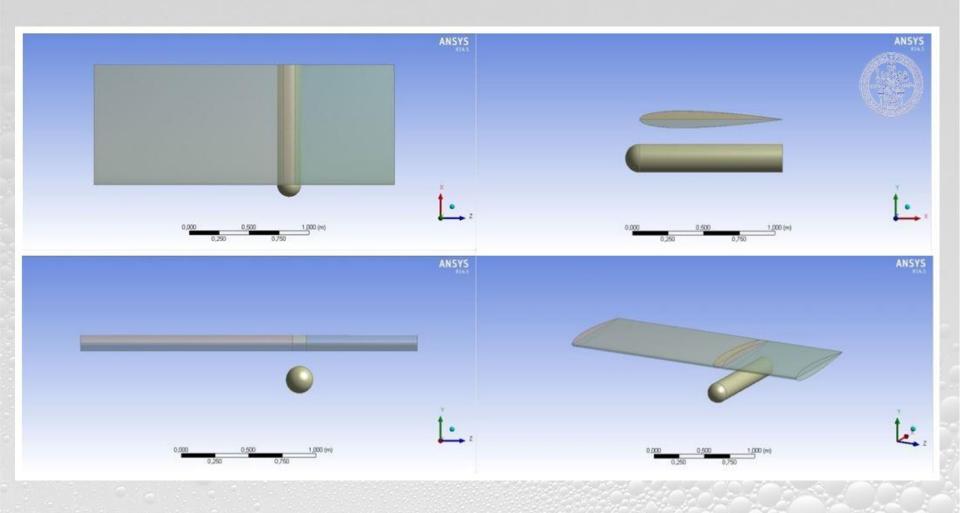


www.rbf-morph.com

Welcome to the World of Fast Morphing!

Modes used	Maximum displacement (mm)	Maximum difference (mm)	Maximum error (%)
1	5.941	4.946	8.3
2	5.898	3.817	6.5
3	5.584	1.483	2.7
4	5.56	7.722	1.4
5	5.555	0	0

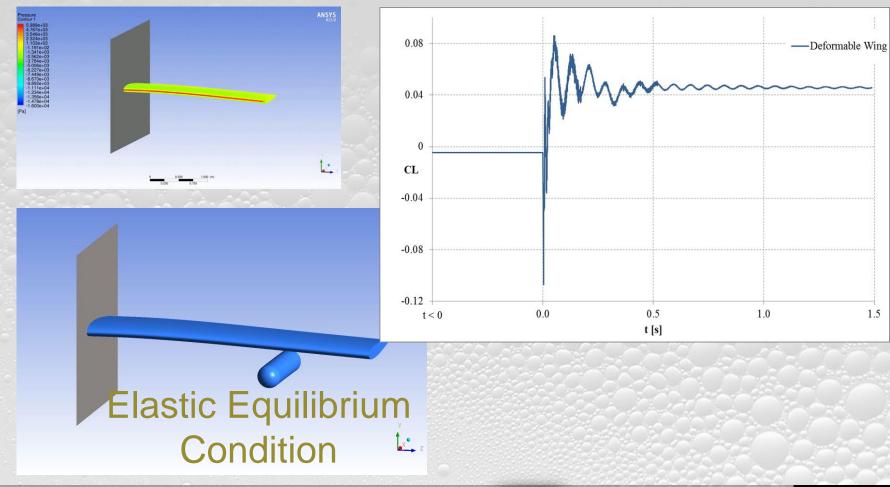
HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)



www.rbf-morph.com

(rbf-morph)^M Unsteady FSI modal analysis

Welcome to the World of Fast Morphing!


HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

(rbf-morph)

Welcome to the World of Fast Morphing!

Lift time history

HPC methods for Engineering 17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

Thank you very much!

Dr. Corrado Groth

E-mail: info@rbf-morph.com

Web: www.rbf-morph.com

YouTube: www.youtube.com/user/RbfMorph

HPC methods for Engineering17 June 2015 – Cineca – Segrate (MI)

www.rbf-morph.com

