

HPC on Cloud for SMEs. The case of bolt tightening.

A. Gómez, C. Cotelo (CESGA)

G. Rodríguez (Texas Controls), J. Souto (AIMEN)

18/06/2015

ESTABLISHED IN 1993 IN SANTIAGO DE COMPOSTELA (SPAIN)

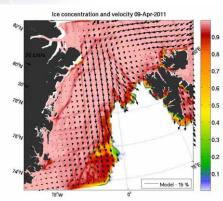
Mission Statement

To provide high performance computing and advanced communications resources and services to the scientific community of Galicia and to the Spanish National Research Council (CSIC), as well as, to institutions and enterprises with R&D&I activity.

To promote high quality research in Computational Science in close collaboration with the research community from Galicia as well as from other regions or countries all over the world; contributing in this way to the advancement of science, to transfer technology to industry and administrations, and as consequence, to the welfare of society as a whole.

Examples of services

Simulations for the Regional Weather Office


meteogalicia

"Una manera de hacer Euro

Examples of use

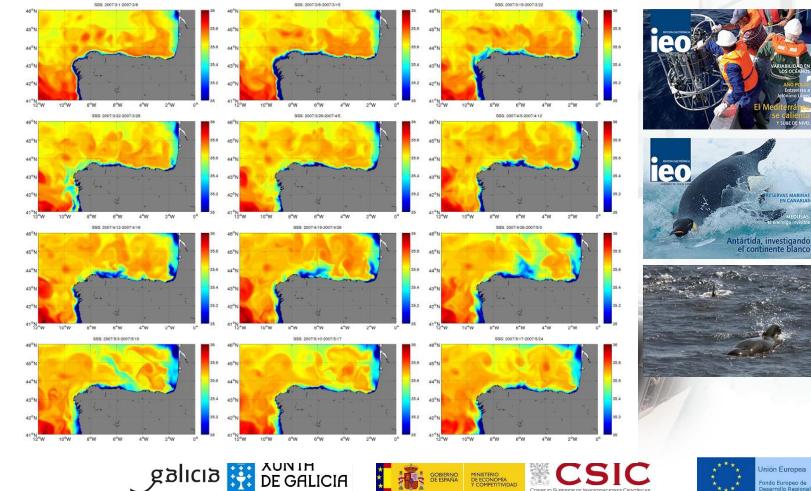
European IBI Area: Ocean Forecasting Service

ອອໄເເອ 🙀 XUNTA DE GALICIA

Puertos del Estado

Spanish Port Authority Empique Ally mez Fanjul

meteogalicia



111111111

my Ocean

Examples of use

Oceanographic simulation to better understand fisheries population dynamics

MINISTERIO

CONSEJO SUPERIOR DE I

SERVAS MARINAS EN CANARIAS

el continente blanco

Colaborative Research with universities

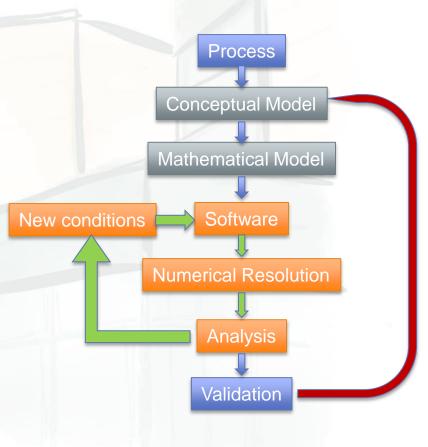
Large scale electromagnetism simulation for improved radar systems

HPC for SMEs

"... HIGHLIGHTS that HPC is a crucial asset for the EU's innovation capacity and STRESSES its **strategic importance** to benefit the EU's industrial capabilities as well as its citizens, by innovating industrial products and services, increasing competitiveness, and addressing grand societal and scientific challenges more effectively."

Draft Council Conclusions on 'High Performance Computing: Europe's place in a Global Race'' of March 27th, 2013

But for SMEs, HPC does not always mean big supercomputers

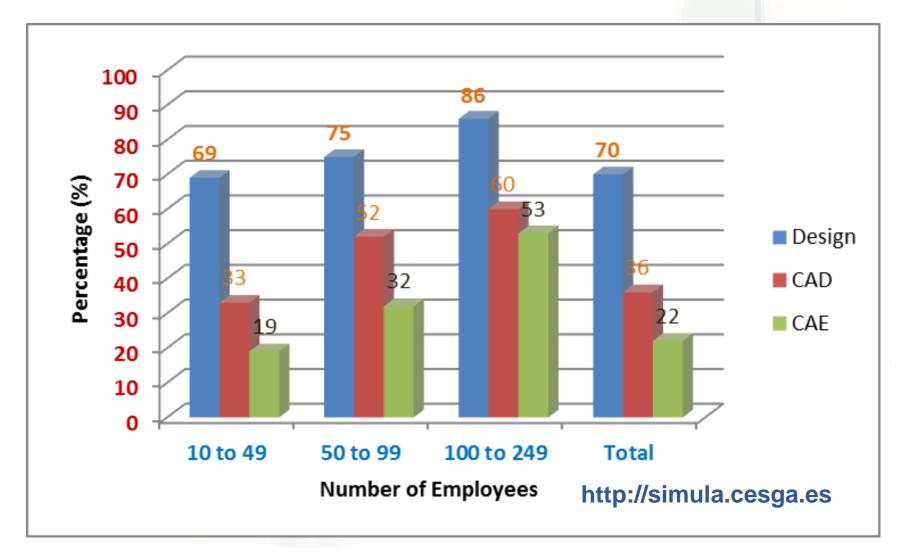


What is HPC?

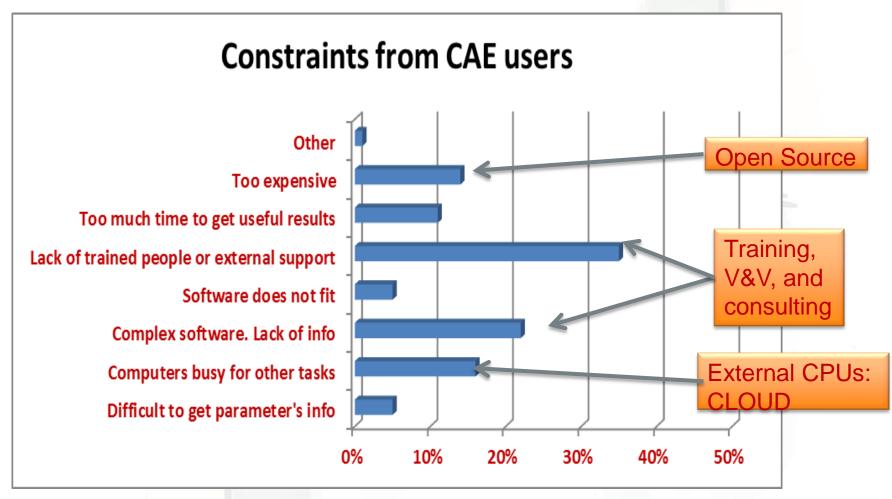
High Performance Computing

(HPC) is the use of servers, clusters, and supercomputers – plus associated software, tools, components, storage, and services – for <u>scientific</u>, engineering, or analytical tasks that are particularly intensive in computation, memory usage, or data management

Intersec360



Una manera de nacer Europa



una manera de nacer Europa

Constraints

http://simula.cesga.es

Initial solution: Cloud services in net

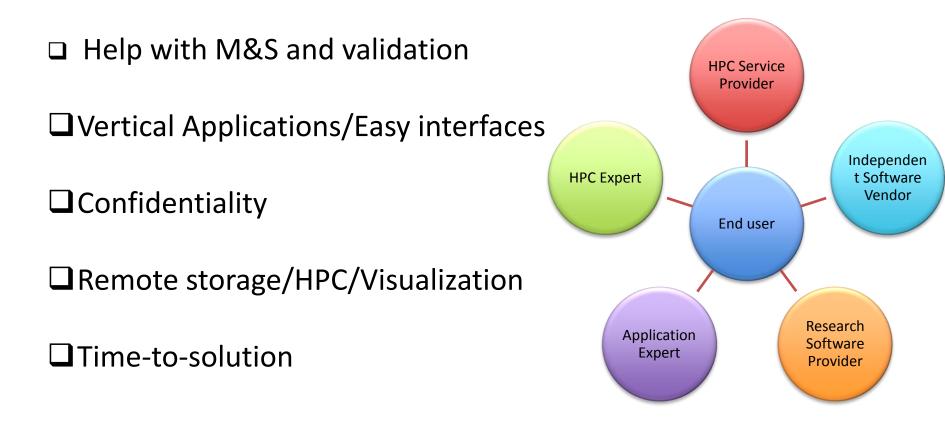
ອອໄເເອ 👯 XUNTA DE GALICIA

* * *

6ł GOBIERNO DE ESPAÑA MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

<u> </u>		tp://portal. cloudp on Ver Favoritos	y me.eu / Herramientas Ayuda	- ۵	CloudPyme Portal ×			ñ★₽
		Skyscanner 🥞 S	· · · · · · · · · · · · · · · · · · ·					
					oud PYME			
		Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο		RTE DOCUMENTACIÓN				LOGIN -
			CÓMPUTO Infraestructura de Computación. Gestión de maquinas virtuales. Acceder	<image/> <image/> <section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header>	SOPORTE Sistema de gestión de solicitudes de soporte técnico. Acceder	DOCUMENTACIÓN Documentos, tutoriales e información útil para el usuario CloudPYME. Acceder		
	COOPERACIO ESPAÑA	NI TANSFONTERIZA			🤌 catim 🎵	CESGA	nión Euro FEL timos en su t	DER

CSIC CONSELO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS


Unión Europea

Fondo Europeo de Desarrollo Regional

* * *

"Una manera de hacer Europa"

What do they need?

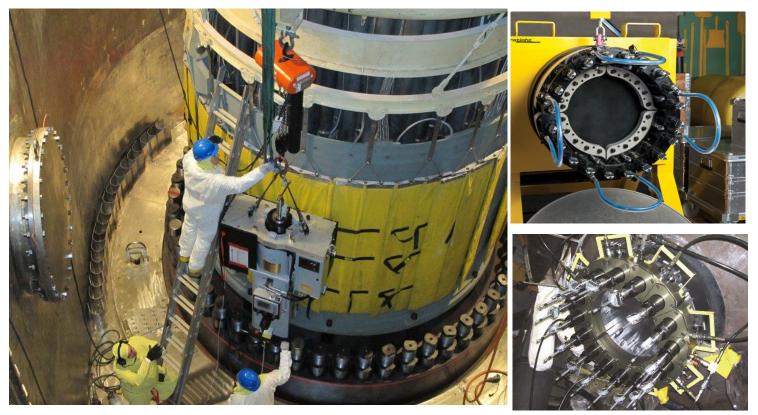
FORTISSIMO has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 609029

Why M&S Tightening?

- TEXAS Controls core business.
- □ There is **no software solution in the market.**
- Let the seems feasible to do it with open source software.
- □ The SME does not have the required computer capacity.
- A challenge regarding modelling, simulation, and execution.

FORTISSIMO has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 609029

End User/Company Profile:



Tightening examples

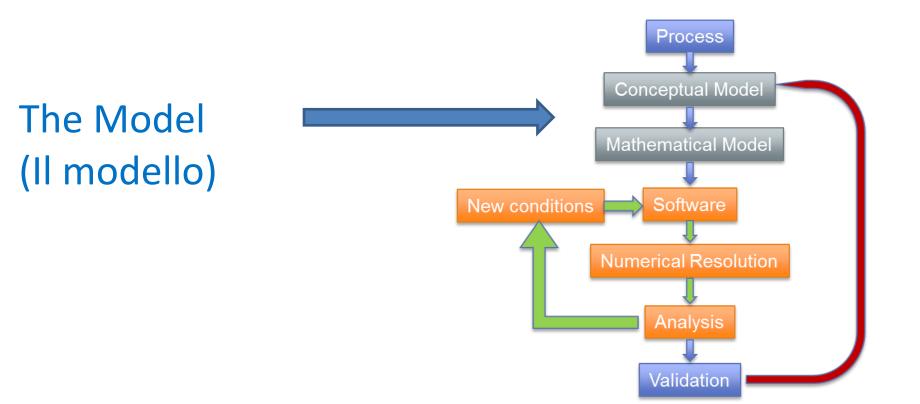
Nuclear plants

Try to Reduce operational time & the time exposure to radiation.

Copyright 2014 Members of the Fortissimo Consortium

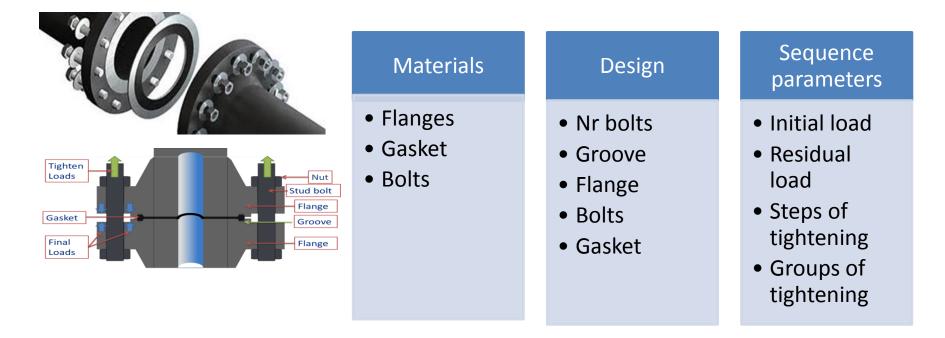
The process Process (Il processo) **Conceptual Model** Mathematical Model Software New conditions **Numerical Resolution** Analysis Validation

Tightening process

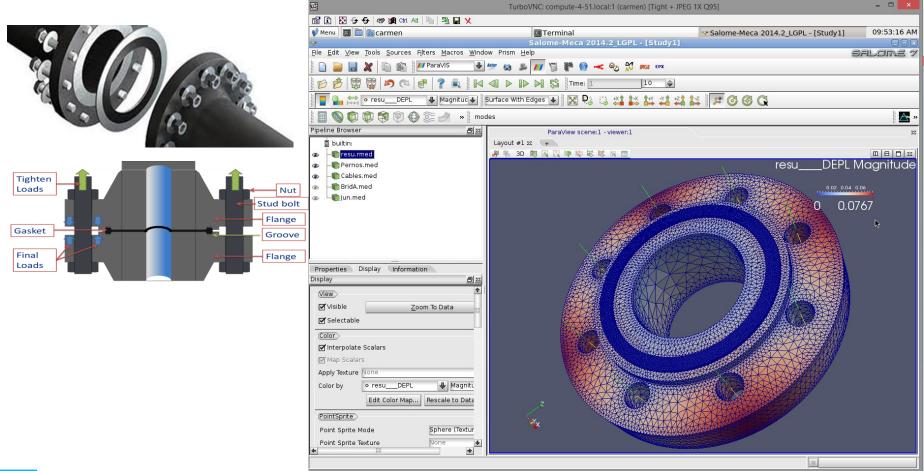

Study and prediction of flanges behavior during tightening process.

Tighten Loads Gasket Final Loads

What is the best strategy to execute it?



Contact-Friction model


Parametric simulations: huge number of cases to obtain the optimal design

The model

Contact-Friction model

Taguchi method

The <u>Taguchi method</u> is a standardized approach for determining the best combination of inputs to produce a product or service.

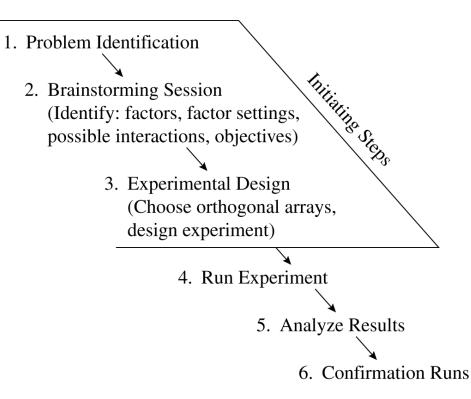


Image source: Chapter 7S ©2001 Slides Prepared by Bruce R. Barringer University of Central Florida S. Thomas

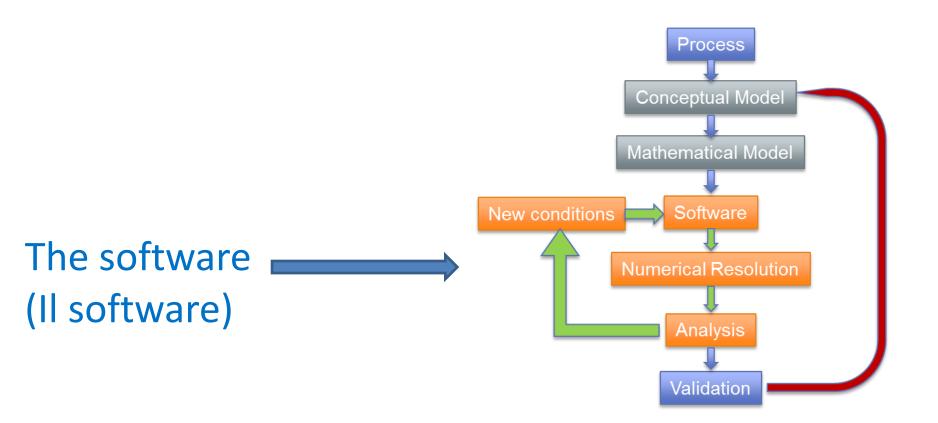
Parametric jobs: Taguchi

TAGUCHI METHOD:

The approach for this experiment corresponds to the Taguchi L'16 orthogonal array (up to 4 levels & 5 parameters), i.e. <u>up to 16 parametric jobs</u>. The runtimes for each of these parametric jobs are very similar.

PARAMETERS:

- Materials for flanges and gaskets
- Number of bolts for each subset (strategy);
- □ Final load value (minimum load).
- Maximum load for each step.


Taguchi L'16 orthogonal array

Experiment	P1	P2	P3	P4	P5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	3	3	3	3
4	1	4	4	4	4
5	2	1	2	3	4
6	2	2	1	4	3
7	2	3	4	1	2
8	2	4	3	2	1
9	3	1	3	4	2
10	3	2	4	3	1
11	3	3	1	2	4
12	3	4	2	1	3
13	4	1	4	2	3
14	4	2	3	1	4
15	4	3	2	4	1
16	4	4	1	3	2

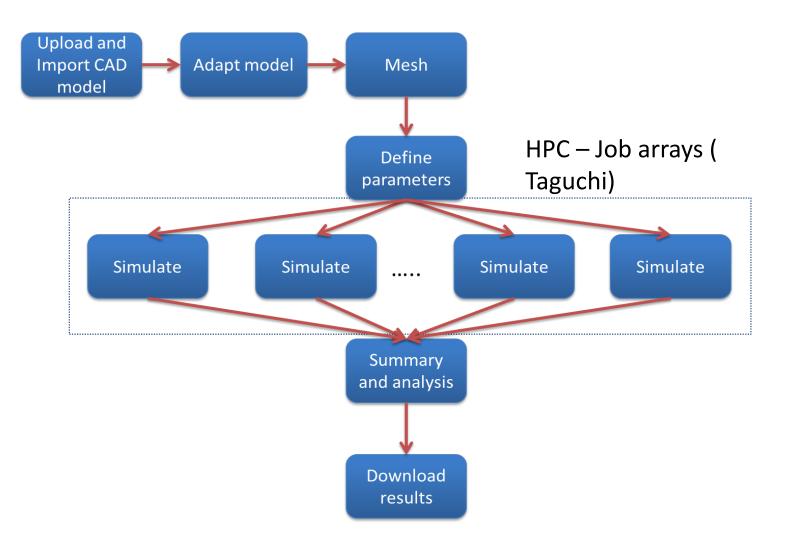
Contact-friction model

- **Code_aster** (and Abaqus for initial model verification)
- Taguchi implementation:
- Python script which receives the number of parameters/levels from the web application and generates the different number of .comm files (input) for the parametric jobs.
- Embedded python in the Code_Aster .comm file for controlling the tightening workflow .
- Job arrays : same job using different .comm file.
- Symmetries, Choices of surfaces main and slaves and Quality of the mesh
- Numerical Resolution:
 - Discrete formulation: ALGO_CONT , ALGO_FRO. Options: LAGRANGIAN or GCP algorithm
 - Formulation continue: ALGO_RESO_CONT, ALGO_RESO_FROT, ALGO_RESO_GEOM. Options: POINT_FIX or NEWTON algorithm.
- Solvers: MULT_FRONT, MUMPS, LDLT, PCG, PETSC or FETI
- In case of MPI solvers: PARALLELISME = CENTRALISE, GROUP_ELEM, MAIL_DISPERSE, MAIL_CONTIGU, SOUS_DOMAINE

Contact-friction model

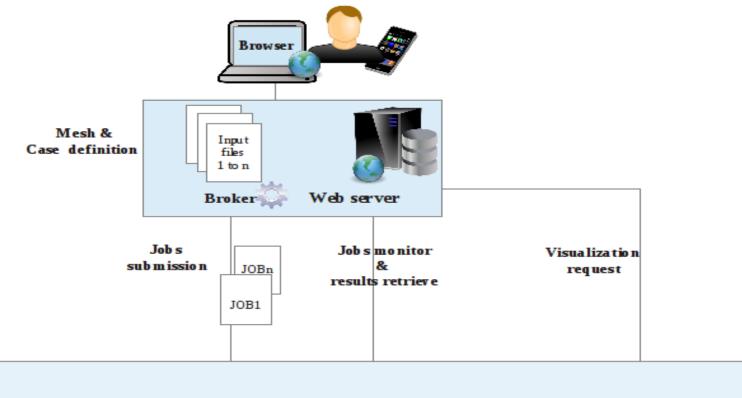
- Code_aster (and Abaqus for initial model verification)
- Taguchi implementation:
- Python script which receives the number of parameters/levels from the receives the and generates the different number of .comm files (input) for the parametric s.
- Embedded python in the Code_Aster .comm file for controlling the tightening workflow .
- Job arrays : same job using different .comm fig
- Symmetries, Choices of surface nor and Javes and Quality of the mesh
- Numerical Resolution:
 - Discrete Triulatin: ALGO_CONT, ALGO_FRO. Options: LAGRANGIAN or GCP algorithm

Ormution continue: ALGO_RESO_CONT, ALGO_RESO_FROT, ALGO_RESO_GEOM. Options: NT_FIX or NEWTON algorithm.


Solvers: MULT_FRONT, MUMPS, LDLT, PCG, PETSC or FETI

In case of MPI solvers: PARALLELISME = CENTRALISE, GROUP_ELEM, MAIL_DISPERSE, MAIL_CONTIGU, SOUS_DOMAINE

Case workflow

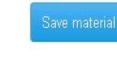


System architecture

18-06-2015

Copyright 2014 Members of the Fortissimo Consortium

GUI: Experiments manager


Experiments manager								+ New	expe	riment
	Q									
Created Modified	Name	Nr bolts	Strategy	Load min.	Load levels	Nr Jobs	Actions			
01/09/14 11:40 12/11/14 01:11	Gasket FF	8	25%,50%	75000	4	8	42	×		
01/09/14 11:40 12/11/14 01:11	Copy of Barcelona test 1	8	25%,50%	75000	4	8	ľ	×	Þ	п
01/09/14 11:43 03/11/14 01:11	Arabia Saudi	8	25%,50%,100%	6500	4	12		×	Þ	_
05/11/14 14:26 09/12/14 01:12	Test 24	24	25%,33%,50%	50500	4	12	ľ	×	•	Ξ
30/10/14 19:25 11/11/14 05:11	Final test	8	25%,50%	67000	2	4	43	×		_
Previous Next										

GUI: Define material

sh name			.d
erial properties			
Young module (N/m2)	Poisson ratio		
/oung module	Poisson ratio		
Ultimate tensile stress	Yield Strength (MPa)	B(x,y)	↑
(MPa)	Elastic limit	bx	ssants

GUI: Define simulation

asket FF					
Bolts number	Title			Comments	
8 -	Gasket FF			New material	
Meshes & Materials					
Bolts mesh		Flange mesh		Gasket mesh	Wire mesh file
8 Bolts Simple v1	-	Flange stress group	s -	Gasket 👻	Cables -
Flange material	Gasket material				
M Flange and Gasket	Select	+			
	M Bolts				
		and Gasket			
Jobs parameters	M Cables Select				
Groups		Max Cyc	es	Stopping criteria (MPa)	
25%, 50% -		4	-	(Fmax-Fmin)/Wm1	
Minimum load applied (kN)		# Leve	ls	% Increment Fmin -> Fr	nax

18-06-2015

Copyright 2014 Members of the Fortissimo Consortium

GUI: Submit simulations

lew Submi	Submit experiment				
Please check th	ne experiment configura	ation before submission:			
Nr of bolts: 8	Strategy: 25%,50%	Load min: 67000kN	Load levels: 4	Increment: 5 %	Nrjobs:8
trategy 25%: Level	FA	FB	FC	FD	
1	70350kN	69234 kN	68117 kN	67000 kN	
2	73868kN	71579 kN	69290 kN	67000 kN	
3	77561kN	74041 kN	70521 kN	67000 kN	
4	81439kN	76626 kN	71813 kN	67000 kN	

Copyright 2014 Members of the Fortissimo Consortium

🗙 🕑 🌐 🗆

🗙 🕣 🆽 😐

0.0000F

0.00000E+00

18-06-2015

8.36062E+01 4.50200E+01 5.49546E+01 0.00000E+00

Gasket FF

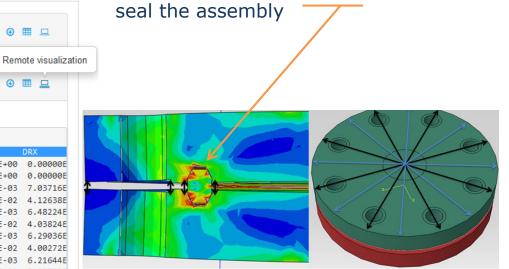
Job 1

Job 2

FORTISSIMO

Displacements

Job can be stopped if this results show wrong values.


0.00000E+00

Intermediate results for each tightening step.

2.02597E+01 4.50200E+01 9.79773E+01 0.00000E+00 0 00000F+00 8.36062E+01 4.50200E+01 5.49546E+01 3.76901E-03 2 31844E-03 7.03716E -2.67562E-02 2.02597E+01 4.50200E+01 9.79773E+01 2.95612E-03 -5.34853E-02 1.35491E-02 4.12638E 8.36062E+01 4.50200E+01 5.49546E+01 3.48461E-03 -3.49386E-02 2.13671E-03 6.48224E 2.02597E+01 4.50200E+01 9.79773E+01 2.89821E-03 -6.19878E-02 1.32608E-02 4.03824F 8.36062E+01 4.50200E+01 5.49546E+01 3.35717E-03 -3.85014E-02 2.07394E-03 6 29036F 2.02597F+01 4.50200E+01 9.79773E+01 2.86454E-03 -6.57067E-02 1.31446E-02 4.00272F 6.21644F 8.36062E+01 4.50200E+01 5.49546E+01 3.30060E-03 -4.00672E-02 2.04977E-03 2.02597E+01 4.50200E+01 9.79773E+01 2.84803E-03 -6.73531E-02 1 30963E-02 3.98797F 8.36062E+01 4.50200E+01 5.49546E+01 3.27548E-03 -4.07585E-02 2.03988E-03 6.18617F 2.02597E+01 4.50200E+01 9.79773E+01 2.84040E-03 -6.80831E-02 1.30758E-02 3.98170E 8.36062E+01 4.50200F+01 5.49546E+01 3.26439E-03 -4.10646E-02 2.03569E-03 6.17336E 2.02597E+01 2.83702E-03 -6.84072E 9.79773E+01 2 250475 02

Values around the groove are critical to

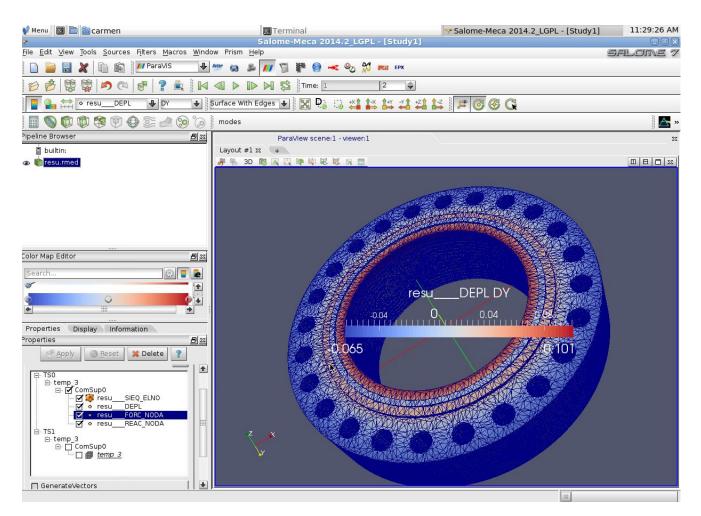
GUI: Results in critical points

Critical distortion points

GUI: Jobs monitor

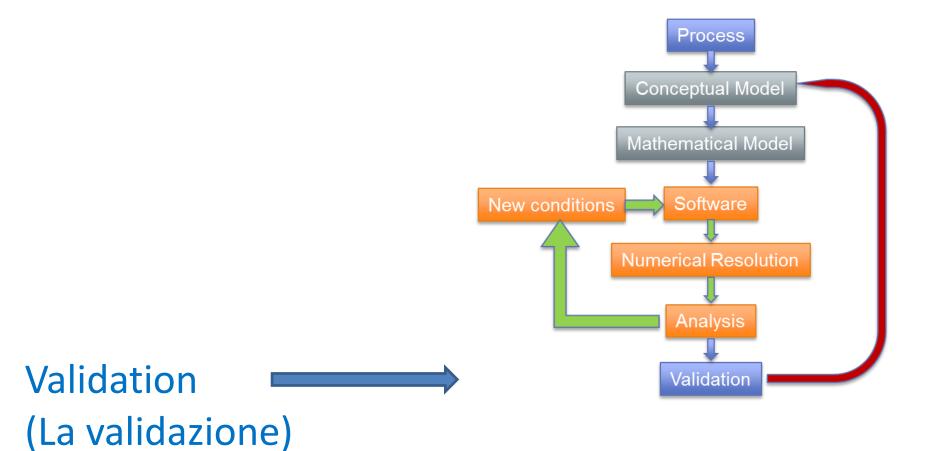
Home	Account Defi	nitions - Experime	nts Jobs monitor			Username: for4040	🕞 Logout
	Experiments / J	lobs monitor					
	Active e	xperiment	S			C Refresh	
	Job id	Job Name	Tasks number	State	Submission_time Start time		
	1002049	run.sh	1,2	pending	2014-09-16T10:37:0	×	
	1002051	run.sh	1-4:1	pending	2014-09-16T10:38:0	×	
	1002053	run.sh	1-3:1	pending	2014-09-16T10:38:2	×	
					Cancel a parametric jo not the whole simulation		

GUI: Remote visualization (I)


🖸 🖪 😻		Mon Nov 3, 3:26 PM
	Salome-Meca 2014.1 - [Study1]	_ = ×
File Edit View Tools Sources Filters	<u>M</u> acros <u>W</u> indow Prism <u>H</u> elp	Salome 7
🗋 🎽 🛃 🗶 🕼 🎼 🖊 ParaViS	o 🥗 😆 🔉 🛐 🚏 🤮 🔫 🗞 🛤 🛤	
6 6 8 8 6 6 1	🕐 🚱 🗛 👯 💐 🐘 🗚 載 🖂 📣 📣 🕨 🕪 🖓 🖏 Time: 1	
2 24 ##	» Surface 💿 🔀 😳 🗳 🗱 🗱 🗱 😫 😹 🔎 🎯 🚱 🕃	
1000990E2	D te modes	_
Pipeline Browser 🛛 🕅	ParaView scene:1 - viewer:1	(8)
builtin:	Layout #1 🛞 +	
a firesu.rmed	J (3) (8)	(Ø)
Properties Display Information Properties 3 8		
E ^R Apply @ Beset. X Delete		
□ w2_5 ▲ ▲ □ w2_6		
□ w2_6 □ w2_7		
🗆 w2_8		
Fields		
🖂 Variables		
resu_FORC_NODA resu_REAC_NODA		
resu_REAC_NODA		
Generate Vectors		

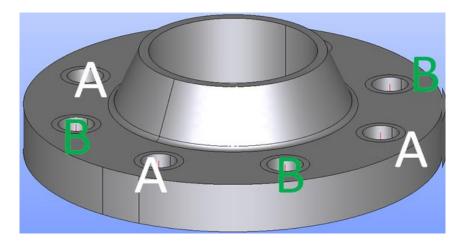
VNC client through a browser

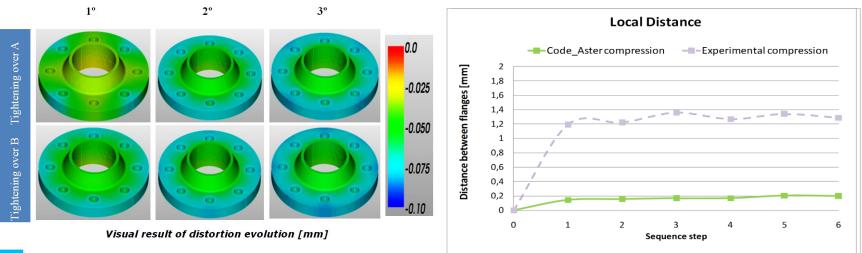
GUI: Remote visualization (II) the texascontrols industry people



TurboVNC (high-performance version of VNC)

Copyright 2014 Members of the Fortissimo Consortium





Case validation: Sensorized Flange the TexasControls (people)

	1º	2º	3º
Group A	67850N	50880N	50880N
Group B	50880N	50880N	50880N

Copyright 2014 Members of the Fortissimo Consortium

Conclusions

- Configuring the best simulation's could be a hard work for a no-expert in FEM.
- HPC resources are not only needed for simulations which need a high number of cores each one. Several multicore's (~16) simulations are needed for running parametric jobs (up to 16).
- Troubles appears very often and they are due to different issues: mesh, contacts definition, algorithms involved, software issues or MPI libraries.
- SMEs need validate their models against real cases.
- End-user prefers a GUI application and it must be flexible to incorporate new functionalities.
- Remote visualization is desirable. Best tool to visualize data depends on the output size.
- □ Value-added services are really needed as FORTISSIMO proposes.

"Una manera de hacer Europa

