

Multiphysics Interfaces

Fraunhofer Institute for Algorithms and Scientfic Computing - SCAI

MpCCI - Multiphysics Tools by Fraunhofer SCAI

• MpCCI Cosimulation

- Tool for code coupling for static or transient simulation setups, usually with a bi-directional data exchange on diversely discretized meshes (point, line, surface, volume).
- Non-file based approach.

• MpCCI FSI Mapper

- Tool for data mapping between diversely discretized meshes usually in one direction as a singular event.
- Performs mesh alignment
- File based approach.
- Plugin for Ensight and as library for code integration available.

• MpCCI Mapper

- Tool to pass data through different simulations in a process workflow.
- Checks geometry compliance, combines and compares experimental and simulation results, performs mesh alignments and maps data on nodal-, element- or shell-layer based locations.
- File based approach.

MpCCI - Multiphysics Interfaces by Fraunhofer

MpCCI Co-Simulation Interface

MpCCI Cosimulation Interface – General Features

- Graphical user interface, runtime monitoring and visualization tool
- Coupling quantities
 - Pressure, Force, Deformation, Temperature, Heat Flux, Heat Transfer Coefficient, Film Temperature, Electrical Conductivity, Joule Heat, Global Quantities, and more...
 - Complex pressures (e.g. in turbomachinery NLH analysis to harmonic structural analysis)
 - Ramping in time, under and over relaxation with constant or variable factor
 - Handling of orphaned regions (e.g. orphan filling through extrapolation)
- Mapping Schemes
 - Shape-function based interpolation
 - Coupling of periodic models (e.g. average over rotation-axis etc.)
- Coupling for static, transient or mixed problems
- Time marching algorithms
 - Constant coupling time, master-slave mode for time control
 - Interpolation in time through MpCCI server
 - Synchronous or asynchronous data exchange
- Iterative FSI
 - In combination with ANSYS Fluent, OpenFOAM, Abaqus, MSC Nastran, more codes in preparation.

MpCCI Cosimulation Interface - Workflow Overview

MpCCI Cosimulation - Geometry Deviations

Possibility 1: Search Radius

•Increase the search radius (Multiplicity Factor) to catch geometry deviations.

Caution: For nearby parts in one coupling mesh wrong associations might be possible.

Possibility 2: Default Values

•Orphaned regions will be impressed with default values, e.g. HTCoeff = 0.0 = adiabatic. Caution: What is a good default value for temperatures?

•Possibility 3: Mean Values

•Orphaned regions will be impressed with mean values from the region.

Possibility 4: Extrapolation

•The orphaned regions are filled by extra- and interpolation from neighboring non-orphaned parts

•Caution: Large orphaned regions might be filled not as desired.

HPC Methods June 18120115 **Fluid-Structure Interaction**

Fluid-Structure Interaction / Cosimulation

- General Features
 - Coupling quantities
 - Pressure, Force
 - Temperature, Heat Flux, Heat Transfer Coefficient, Film Temperature
 - Quantity exchange
 - Ramping
 - Under and over relaxation with constant or variable factor
 - Handling of orphaned regions
 - Mapping Schemes
 - Standard nearest-neighbour or shape-function based interpolation (most CFD tools to Abaqus static or transient analysis)
 - Average over rotation-axis (e.g. Fluent 'frozen rotor' to Abaqus)
 - Complex pressures (from FINE/Turbo harmonic analysis 'NLH' to harmonic structural analysis in Abaqus)

Fluid-Structure Interaction / FSIMapper

- General Features
 - Coupling for static problems
 - Coupling transient CFD with static or dynamic Abaqus
 - Time marching algorithms
 - Constant coupling time
 - Master-slave mode for time control
 - Interpolation in time through MpCCI server
 - Synchronous or asynchronous data exchange
 - Iterative FSI
 - In combination with ANSYS Fluent or OpenFOAM
 - Iterative extension for STAR-CCM+ under development

Fluid-Structure Interaction – Hydraulic Pump

- PWK-pump with a cam-driven commutation unit
 - Problem: pump model generated noise and vibration
 - Reason: pressure peaks during opening and closing of inlet channels
 - Solution: introduction of a compensation chamber connected to all cylinders
 - FSI: using Abaqus MpCCI Fluent
 - Validation: very good compliance with experimental data significantly better than CFD stand-alone

Fluid-Structure Interaction – Spoiler Design

- Automotive Spoiler for High Speed Driving Modes
 - Problem: spoiler design needs to be adjusted to changing F1 rules
 - FSI models (static and transient)
 - FSIMapper to do first 'pressure' checks
 - using Abaqus MpCCI OpenFOAM (~100 Mio cells)
 - fully automated workflow for decomposed OF meshes
 - local mesh morphing around spoiler area
 - running on 500 Linux cores BC Menilau
 - batch support

Fluid-Structure Interaction – Turbo Machinery

Fluid-Structure Interaction – Turbo Machinery

Fluid-Structure Interaction – Turbo Machinery

Average pressure Complex pressure amplitudes O. 0, Magnutus 1, 500a 04 + 5, 500a 04 + 2, 500a 04 + 2, 200a 04 + 2, Average pressure field Amplitudes of 1. harmonic Blade vibrations due to pressure fluctuations from 1. harmonic

MpCCI FSIMapper

Vehicle Dynamics – FEA and MBS

Vehicle Dynamics – FEA and MBS

- General Features
 - Non-linear or plastic deformation in single components (Abaqus model)
 - Detailed analysis of the dynamic of the vehicle (MBS model)
 - Multiple connection points between MBS and FEA
 - Quasi-iterative coupling scheme
 - Abaqus
 - Rigid body
 - REFERENCE NODE as interface
 - MSC.Adams
 - Additional GFORCE element
 - IMARKER as interface

Vehicle Dynamics – Driving over Obstacles

- Non-Linear Tire Deformations and Suspension
- Co-Simulation is more realistic
- Reuse of existing models
- Coupling Quantities
 - Position of the wheel hub is send by MSC.Adams and received by Abaqus
 - Reaction Force on the wheel hub is send by FEA and received by MSC.Adams
- Currently evaluated by EDAG/BMW and other OEMs
 - Recent car geometries
 - Standard driving cycles

Vehicle Dynamics – CFD and MBS

- Analyzing interaction between fluid and the rigid body system
- Velocity and angular velocity from SIMPACK to STARCCM+
- Kinematic quantities are applied to the motion element in STARCCM+
- Force and torque are calculated as resultants over surfaces in STARCCM+
- Force and torque from STARCCM+ to SIMPACK

Vehicle Dynamics – CFD and MBS

- Automotive Cases
 - Deep water wading of a car
 - Side wind effects on trucks or busse

Deep Water Wading Simulation of Automotive Vehicles – JaguarLandrover & Fraunhofer SCAI Presentation NAFEMS WC 2015

ement **Full Vehicle Thermal Management**

Full Vehicle Thermal Management

- Coupling CFD code and other thermal codes e.g. for radiation
- Fast and robust mapping even for geometrical deviations (e.g. extrapolation)
- Shell parts supported
- STAR-CCM+ sending heat coefficient and film temperature, RadTherm sending wall temperature

Full Vehicle Thermal Management - Concept

Full Vehicle Thermal Management – Detailed Geometry

Full Vehicle Thermal Management – Validation Model

STAR-CCM+

approx. 45 mio cells 15 cell regions 525 boundary regions MRF for fans and wheels Porous regions for heat exchanger and cooling devices

Wall rotation for shafts and axles RadTherm approx. 1 mio cells 323 shell parts 13 fluid parts for exhaust system

Comfort Analysis in Cabin

 Couple 1D-Flow Simulation (Flowmaster) with detailed CFD (STAR-CCM+) for Environmental Control in Aircraft Cabin

Electrical Systems

- Electric arc simulations in switching devices
- Magneto-thermal design of electrical systems like engines or transformers
- Magnetic valves
- Typical exchanged quantities i.a. are Electrical Conductivity, Lorentz forces, Joule Heat, Temperature.

Electric motor (JMAG-ANSYS Fluent)

3-phase transformer (JMAG-ANSYS Fluent)

Circuit breaker (ANSYS Emag-ANSYS Fluent)

MpCCI Mapper

MpCCI Mapper - Simulation Workflows

- AS WINE AS A DALS General Features of MpCCI Mapper
 - Automatic mesh alignment
 - Fast mapping algorithms
 - Shell-to-shell
 - Shell-to-volume
 - Volume-to-shell
 - Validation of mapping quality
 - Interactive and batch-processing C Marilan

Mapper Example – Passive Safety

- Seat Systems from Massive Forming to Crash
 - Local thickness reduction, stresses, plastic strain or material properties from single manufacturing steps may have critical influence on seat behavior.
- Virtual Painting Workflows from Stamping over Painting to Crash
 - Transfer of mechanical parameters along the process chain stamping, welding and painting to analyze final product properties in crash simulation.
- Validation of Crash Models Morphing Geometries between Simulation and Experiment
 - Validation of crash models by comparison of experimental data and simulation results. A GeoMorpher module morphs non-matching geometries onto each other

Mapper Example – Composites and Plastic Components

- CFRP* workflows from Draping over Molding and Curing to Structural Analysis
 - Development of high-performance composite structures
 - KIT Karlsruhe used MpCCI Mapper for process workflow from "draping" over "molding" and "curing" to "structural analysis".
- Structural Integrity of Blow Molded Plastic
 - Transfer local material properties and orientations from blow molding simulation to structural analysis (e.g. plastic bottles or fuel tanks).

Mapper Example – Forming Tools and Material Properties

- Lighter Stamping Tools use Forming Loads in Structural Optimization
 - Pressure loads from stamping simulation mapped on structural optimization
 - Improved designs with less total mass but same stability
- Validation of Material Model Parameters compare Forming Results and Experimental Data
 - MpCCI Mapper used to compare experiment and simulation.

