
Introduction to OpenCL
with examples

Piero Lanucara, SCAI

1 July 2015



from http://www.karlrupp.net/

http://www.karlrupp.net/


from http://www.karlrupp.net/

http://www.karlrupp.net/


from http://www.karlrupp.net/

http://www.karlrupp.net/


Heterogeneous High Performance 
Programming framework
• http://www.hpcwire.com/hpcwire/2012-02-

28/opencl_gains_ground_on_cuda.html

“As the two major programming frameworks for GPU computing, OpenCL and 

CUDA have been competing for mindshare in the developer community for the 

past few years. Until recently, CUDA has attracted most of the attention from 

developers, especially in the high performance computing realm. But OpenCL

software has now matured to the point where HPC practitioners are taking a 

second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism 

as well as low-level access to hardware, but only OpenCL provides an open, 

industry-standard framework. As such, it has garnered support from nearly all 

processor manufacturers including AMD, Intel, and NVIDIA, as well as others 

that serve the mobile and embedded computing markets. As a result, 

applications developed in OpenCL are now portable across a variety of GPUs 

and CPUs.”

http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html


Heterogeneous High Performance 
Programming framework (2)

A modern computing 

platform includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15 

1.7GHz,  Mali T604 GPU

OpenCL lets Programmers write a single 
portable program that uses ALL resources in 

the heterogeneous platform



Microprocessor trends
Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:

How are we to build a software ecosystem for the
Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla® 

C2090

10 cores

16 wide SIMD

ATI™ RV770

16 cores

32 wide SIMD

Intel® Xeon Phi™ 

coprocessor



Industry Standards for Programming 

Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous 
parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving 

performance increases

GPUs
Increasingly general 
purpose data-parallel 

computing

Graphics 
APIs and 
Shading 

Languages

Multi-
processor 

programming 
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing



OpenCL Timeline

• Launched Jun’08 … 6 months from “strawman” to OpenCL 1.0

• Rapid innovation to match pace of hardware innovation

– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect software 

investments

OpenCL 1.0 
released. 

Conformance tests 
released Dec08

Dec08

Jun10

OpenCL 1.1 
Specification and 
conformance tests 

released 

Nov11

OpenCL 1.2 
Specification and 
conformance tests 

released

Within 6 

months 
(depends on 

feedback)

OpenCL 2.0 
Specification 
finalized and 

conformance tests 
released

Jul13

OpenCL 2.0 
Provisional 

Specification released 
for public review



OpenCL Working Group 

within Khronos
• Diverse industry participation

– Processor vendors, system OEMs, middleware vendors, 

application developers.

• OpenCL became an important standard upon release by virtue 

of the market coverage of the companies behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.codeplay.com/
http://www.amd.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/
http://www.gshark.com/


OpenCL Platform Model

• One Host and one or more OpenCL Devices
– Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit



OpenCL Platform Example

(One node, two CPU sockets, 

two GPUs)CPUs:

• Treated as one OpenCL 
device

– One CU per core

– 1 PE per CU, or if PEs 
mapped to SIMD lanes, n
PEs per CU, where n
matches the SIMD width

• Remember:

– the CPU will also have to 
be its own host!

GPUs:

• Each GPU is a separate 

OpenCL device

• One CU per Streaming 

Multiprocessor

• Can use CPU and all GPU 

devices concurrently through 

OpenCL

CU = Compute Unit; PE = Processing Element



The BIG idea behind 

OpenCL
• Replace loops with functions (a kernel) executing at each point in a problem 

domain

– E.g., process a 1024x1024 image with one kernel invocation per pixel or 

1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL

void 

mul(const int n,

const float *a,

const float *b,

float *c)

{

int i;

for (i = 0; i < n; i++)

c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

__global const float *b,

__global       float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel



An N-dimensional domain 

of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:

– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for 

your algorithm

1024

1
0

2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory

fences
Cannot synchronize 

between work-groups

within a kernel



OpenCL N Dimensional Range 

(NDRange)

• The problem we want to compute should have some 

dimensionality; 

– For example, compute a kernel on all points in a cube

• When we execute the kernel we specify up to 3 dimensions

• We also specify the total problem size in each dimension – this is 

called the global size

• We associate each point in the iteration space with a work-item



OpenCL N Dimensional 

Range (NDRange)

• Work-items are grouped into work-groups; work-items within a 

work-group can share local memory and can synchronize

• We can specify the number of work-items in a work-group –

this is called the local (work-group) size

• Or the OpenCL run-time can choose the work-group size for 

you (usually not optimally)



OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

work-group

• Global Memory 
/Constant Memory
– Visible to all

work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back



Context and 

Command-Queues
• Context: 

– The environment within which kernels 
execute and in which synchronization 
and memory management is defined. 

• The context includes:

– One or more devices

– Device memory 

– One or more command-queues

• All commands for a device (kernel 
execution, synchronization, and memory 
transfer operations) are submitted 
through a command-queue.  

• Each command-queue points to a single 
device within a context.

Queue

Context

Device

Device Memory



Execution model 

(kernels)
• OpenCL execution model … define a problem domain and execute an 

instance of a kernel for each point in the domain

__kernel void times_two(

__global float* input,

__global float* output)

{

int i = get_global_id(0);

output[i] = 2.0f * input[i];

}
get_global_id(0)

10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50



__kernel void 

horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst) 

{

int x = get_global_id(0);  // x-coord

int y = get_global_id(1);  // y-coord

int width = get_image_width(src);  

float4 src_val = read_imagef(src, sampler, 

(int2)(width-1-x, y));  

write_imagef(dst, (int2)(x, y), src_val);

}

Building Program 

Objects
• The program object encapsulates:

– A context

– The program kernel source or binary

– List of target devices and build options

• The C API build process to create a program 
object:

– clCreateProgramWithSource()

– clCreateProgramWithBinary()

OpenCL uses runtime 

compilation … because 

in general you don’t 

know the details of the 

target device when you 

ship the program

Compile for 

GPU

Compile for 

CPU

GPU

code

CPU

code



Example: vector addition

• The “hello world” program of data parallel programming is a program to 

add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code



Vector Addition - Kernel

__kernel void vadd(__global constfloat *a,

__global constfloat *b,

__global       float *c)

{

intgid= get_global_id(0);

c[gid]  = a[gid] + b[gid];

}



Vector Addition – Host

• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:

1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute kernels

Please, refer to he reference card.  This will help you 

get used to the reference card and how to pull 

information from the card and express it in code. 



1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId, 

&numPlatforms);

• Use the first CPU device the platform provides:

err = clGetDeviceIDs(firstPlatformId,

CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:

context = clCreateContext(firstPlatformId, 1,

&device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:

commands = clCreateCommandQueue(context, device_id,

0, &err);



Command-Queues
• Commands include:

– Kernel executions

– Memory object management

– Synchronization

• The only way to submit commands
to a device is through a command-
queue.  

• Each command-queue points to a 
single device within a context. 

• Multiple command-queues can feed 
a single device.

– Used to define independent 
streams of commands that don’t 
require synchronization

Queue Queue

Context

GPU CPU



Command-Queue 

execution details

Command queues can be configured in different ways to 

control how commands execute

• In-order queues:

– Commands are enqueued and complete in the 

order they appear in the program (program-order)

• Out-of-order queues:

– Commands are enqueued in program-order but 

can execute (and hence complete) in any order.

• Execution of commands in the command-queue are 

guaranteed to be completed at synchronization points

Queue Queue

Context

GPU CPU



2. Create and Build the 

program
• Define source code for the kernel-program as a string literal (great for toy 

programs) or read from a file (for real applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

(const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from which specific 

kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);



Error messages
• Fetch and print error messages:

if (err != CL_SUCCESS) {

size_t len;

char buffer[2048];

clGetProgramBuildInfo(program, device_id,   

CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch



3. Setup Memory 

Objects
• For vector addition we need 3 memory objects, one each for 

input vectors A and B, and one for the output vector C.

• Create input vectors and assign values on the host:

float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

h_a[i] = rand() / (float)RAND_MAX;

h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(float)*count, NULL, NULL);

Memory Objects: 

• A handle to a 
reference-counted 
region of global 
memory.



Creating and 

manipulating buffers

• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side data:

float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count bytes from “h_a” to the buffer 

and copy it into device memory:

cl_mem d_a = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

sizeof(float)*count, h_a, NULL);



Creating and manipulating 

buffers
• Other common memory flags include:

CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host memory at “h_c”:

– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,

sizeof(float)*count, h_c, 

NULL, NULL, NULL);



4. Define the kernel

• Create kernel object from the kernel function “vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to memory objects:

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), 

&count);



5. Enqueue commands

• Write Buffers from host into global memory (as non-blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

NULL, &global, &local, 0, NULL, NULL);



5. Enqueue commands

• Read back result (as a blocking operation). We have an in-order queue which 

assures the previous commands are completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

sizeof(float)*count, h_c, 0, NULL, NULL);



Vector Addition –

Host Program
// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the 

program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.



OpenCL C for 

Compute Kernels
• Derived from ISO C99

– A few restrictions: no recursion, function pointers, functions in C99 standard 

headers ...

– Preprocessing directives defined by C99 are supported (#include etc.)

• Built-in data types

– Scalar and vector data types, pointers

– Data-type conversion functions:

• convert_type<_sat><_roundingmode> 

– Image types:

• image2d_t, image3d_t and sampler_t



OpenCL C for Compute 

Kernels

• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image

– Relational, geometric functions, synchronization functions

– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called “extensions”)

– Double precision, atomics to global and local memory

– Selection of rounding mode, writes to image3d_t surface



OpenCL C Language 

Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel

• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers

– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

– get_work_dim(),  get_global_id(), get_local_id(), get_group_id()

• Synchronization functions

– Barriers - all work-items within a work-group must execute the barrier function 

before any work-item can continue

– Memory fences - provides ordering between memory operations



Host programs can 

be “ugly”
• OpenCL’s goal is extreme portability, 

so it exposes everything 

– (i.e. it is quite verbose!).

• But most of the host code is the 

same from one application to the 

next – the re-use  makes the 

verbosity a non-issue.

• You can package common API 

combinations into functions or even 

C++ or Python classes to make the 

reuse more convenient.



The C++ Interface

• Khronos has defined a common C++ header file containing a high level interface 

to OpenCL, cl.hpp

• This interface is dramatically easier to work with1

• Key features:

– Uses common defaults for the platform and command-queue, saving the 

programmer from extra coding for the most common use cases

– Simplifies the basic API by bundling key parameters with the objects rather 

than requiring verbose and repetitive argument lists

– Ability to “call” a kernel from the host, like a regular function

– Error checking can be performed with C++ exceptions

1 especially for C++ programmers…



OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

work-group

• Global/Constant 
Memory
– Visible to all

work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back



OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory

– Shared by all WI’s in a work-group

– But not shared between work-groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory

– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant 

memory

• Host memory

– On the CPU - GBytes

Memory management is explicit: 

O(1-10) Gbytes/s bandwidth to discrete GPUs for

Host <-> Global transfers



Private Memory

• Managing the memory hierarchy is one of the most important things to get 

right to achieve good performance

• Private Memory:

– A very scarce resource, only a few tens of 32-bit words per Work-Item 

at most

– If you use too much it spills to global memory or reduces the number of 

Work-Items that can be run at the same time, potentially harming 

performance*

– Think of these like registers on the CPU

* Occupancy on a GPU



Local Memory*
• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means only a 

fraction of the total Local Memory size is available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between Local and 

Global/Constant memories … there are optimized library functions to help

• Use Local Memory to hold data that can be reused by all the work-items in a 

work-group

• Access patterns to Local Memory affect performance in a similar way to 

accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU



Local Memory

• Local Memory doesn’t always help…

– CPUs don’t have special hardware for it

– This can mean excessive use of Local Memory might slow down kernels on 

CPUs

– GPUs now have effective on-chip caches which can provide much of the 

benefit of Local Memory but without programmer intervention

– So, your mileage may vary!



The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes



Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e. 

– The state of memory visible to a work-item is not guaranteed to be consistent 

across the collection of work-items at all times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private view of 

memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a barrier, but not

guaranteed across different work-groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel invocations) is 

enforced by synchronization (barriers, events, in-order queue) 



Consider N-dimensional domain 

of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:

– 128x128 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are brought to a known point in their execution.   
Most common example is a barrier … i.e. all units of execution “in scope” arrive at the barrier before any proceed. 

1024

1
0

2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory

fences
Cannot synchronize 

between work-groups

within a kernel



Work-Item 

Synchronization
• Within a work-group

void barrier()

– Takes optional flags

CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items in its work-

group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be taken by 

either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups

– No guarantees as to where and when a particular work-group will be executed 

relative to another work-group

– Cannot exchange data, or have barrier-like synchronization between two 

different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory 

operations to local memory (with 

flushes or queuing a memory 

fence)l or global



• Targets a broader range of CPU-like and GPU-like 

devices than CUDA 

– Targets devices produced by multiple vendors 

– Many features of OpenCL are optional and may not 

be supported on all devices 

• OpenCL codes must be prepared to deal with much 

greater hardware diversity 

• A single OpenCL kernel will likely not achieve peak 

performance on all device types 

Performance????



Portable performance in 

OpenCL
• Portable performance is 

always a challenge, more so 

when OpenCL devices can be 

so varied (CPUs, GPUs, …)

• But OpenCL provides a 

powerful framework for writing 

performance portable code

• The following slides are 

general advice on writing 

code that should work well on 

most OpenCL devices

• Tremendous amount of computing power available 

1170 

GFLOPs

peak

1070 

GFLOPs

peak



Optimization issues
• Efficient access to memory

– Memory coalescing

• Ideally get work-item i to access data[i] and work-item j to access data[j] at the 

same time etc.

– Memory alignment

• Padding arrays to keep everything aligned to multiples of 16, 32 or 64 bytes

• Number of work-items and work-group sizes

– Ideally want at least 4 work-items per PE in a Compute Unit on GPUs

– More is better, but diminishing returns, and there is an upper limit

• Each work item consumes PE finite resources (registers etc)

• Work-item divergence

– What happens when work-items branch?

– Actually a SIMD data parallel model

– Both paths (if-else) may need to be executed (branch divergence), avoid where possible 

(non-divergent branches are termed uniform)



Memory layout is critical to 

performance
• “Structure of Arrays vs. Array of Structures” problem:

struct { float x, y, z, a; } Point;

• Structure of Arrays (SoA) suits memory coalescence on GPUs

• Array of Structures (AoS) may suit cache hierarchies on CPUs

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items 

like to access 

adjacent memory

Individual work-

items like to 

access adjacent 

memory



Advice for performance 

portability
• Optimal Work-Group sizes will differ between devices

– E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs prefer lots of Work-

Items per Work-Group (usually a multiple of the number of PEs per Compute Unit, i.e. 

32, 64 etc.)

• From OpenCL v1.1 you can discover the preferred Work-Group size multiple for a kernel 

once it’s been built for a specific device

– Important to pad the total number of Work-Items to an exact multiple of this

– Again, will be different per device

• The OpenCL run-time will have a go at choosing good EnqueueNDRangeKernel

dimensions for you

– With very variable results

• Your mileage will vary, the best strategy is to write adaptive code that makes decisions at 

run-time



Tuning Knobs

some general issues 
• Tiling size (work-group sizes, dimensionality etc.)

– For block-based algorithms (e.g. matrix multiplication)

– Different devices might run faster on different block sizes

• Data layout

– Array of Structures or Structure of Arrays (AoS vs. SoA)

– Column or Row major

• Caching and prefetching

– Use of local memory or not

– Extra loads and stores assist hardware cache?

• Work-item / work-group data mapping

– Related to data layout

– Also how you parallelize the work

• Operation-specific tuning

– Specific hardware differences

– Built-in trig / special function hardware

– Double vs. float (vs. half)



Auto tuning

• Q: How do you know what the best parameter values for your program are?

– What is the best work-group size, for example

• A: Try them all! (Or a well chosen subset)

• This is where auto tuning comes in

– Run through different combinations of parameter values and optimize the 

runtime (or another measure) of your program.



Hydro is a simplified version of RAMSES (CEA, France astrophysics code to study large scale 

structure and galaxy formation)

Hydro main features:

 regular cartesian mesh (no AMR)

 solves compressible Euler equations of hydrodynamics

 finite volume method, second order Godunov scheme

 it uses a Riemann solver numerical flux at the interfaces 

How much fast? The 

Hydro benchmark  



Hydro is about 1K lines of code and has been ported to different programming 

environment and architectures, including accelerators. In particular:

 initial Fortran branch including OpenMP, MPI, hybrid MPI+OpenMP

 C branch for CUDA, OpenCL, OpenACC, UPC

The Hydro benchmark  



59

Device/version Elapsed time (sec.) 

without initialization

EfficiencyLoss (with 

respect to the best 

timing)

CUDA K20C 52.37 0.24

OpenCL K20C 42.09 0

MPI (1 process) 780.8 17.5

MPI+OpenMP (16 

OpenMP threads)

109.7 1.60

MPI+OpenMP MIC

(240 threads)

147.5 2.50

OpenACC (Pgi) N.A. N.A.

More than 16 

Intel Xeon

SandyBridge

cores are needed

to compare 

OpenCL 1 K20 

device

OpenAcc
run it fails
using Pgi
compiler

performances of OpenCL code are 

very good (better than CUDA!)

Hydro run

comparison

Intel MIC preliminary run
on CINECA prototype.
240 threads, vectorized
code,KMP_AFFINITY=bal
anced



60

Number of K20 devices Elapsed time (sec.) 

without initialization

Speed-Up

1 42.0 1.0

2 23.5 1.7

4 12.2 3.4

8 8.56 4.9

16 5.70 7.3

OpenCL+MPI run, 

varying the 

number of NVIDIA 

Tesla K20

device,4091x409

1 domain,100

iterations

performances are good. Scalability is

limited by domain size

Hydro OpenCL

scaling



The EuroBen Benchmark Group provides benchmarks for the evaluation of the performance for 

scientific and technical computing on single processor cores and on parallel computers systems using 

standard parallel tool (OpenMP, MPI, ….) but also emerging standard (OpenCL, Cilk, …)

 Programs are available in Fortran and C

 The benchmark codes range from measuring the performance of basic operations and 

mathematical functions to skeleton applications.

 Cineca started a new activity in the official PRACE framework to test and validate EuroBen

benchmarks on Intel MIC architecture (V. Ruggiero-C.Cavazzoni).

How much fast? The 

EuroBen Benchmark  



MOD2F benchmark
16 OpenMP

threads, size=𝟐𝟐𝟐

Host: Intel Xeon

SandyBridge cores



16 MPI process, size=𝟐𝟏𝟗

MOD2F benchmark

Host: Intel Xeon

SandyBridge cores



OpenCL, kernel only, 

size=𝟐𝟐𝟑

MOD2F benchmark

Host: Intel Xeon

SandyBridge cores



240 OpenMP threads, 

size=𝟐𝟐𝟐

MOD2F benchmark

Native: Intel MIC, up to 

240 hw threads



16 MPI process, size=𝟐𝟐𝟑

MOD2F benchmark

Native: Intel MIC, up to 

240 hw threads



OpenCL, kernel only, 

size=𝟐𝟐𝟑

MOD2F benchmark

Native: Intel MIC, up to 

240 hw threads



Porting CUDA to 

OpenCL



• If you have CUDA code, you’ve already done the hard 

work!

– I.e. working out how to split up the problem to run 

effectively on a many-core device

• Switching between CUDA and OpenCL is mainly 

changing the host code syntax

– Apart from indexing and naming conventions in the 

kernel code (simple to change!)



Allocating and copying memory

CUDA C OpenCL C

Allocate float* d_x;

cudaMalloc(&d_x, sizeof(float)*size);

cl_mem d_x =

clCreateBuffer(context,

CL_MEM_READ_WRITE,

sizeof(float)*size,

NULL, NULL);

Host to Device cudaMemcpy(d_x, h_x,

sizeof(float)*size,

cudaMemcpyHostToDevice);

clEnqueueWriteBuffer(queue, d_x,

CL_TRUE, 0, 

sizeof(float)*size,

h_x, 0, NULL, NULL);

Device to Host cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

CL_TRUE, 0, 

sizeof(float)*size,

h_x, 0, NULL, NULL);



Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;

cudaMalloc(&d_x,

sizeof(float)*size);

cl::Buffer

d_x(begin(h_x), end(h_x), true);

Host to Device cudaMemcpy(d_x, h_x,

sizeof(float)*size,

cudaMemcpyHostToDevice);

cl::copy(begin(h_x), end(h_x),

d_x);

Device to Host cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

cl::copy(d_x, 

begin(h_x), end(h_x));



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

__shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

num_threads_per_block,

shared_mem_size>>>(args);

OpenCL C++

1. Have the kernel accept a local 

array as an argument

__kernel void func(

__local int *array)   

{}

2. Define a local memory kernel 

kernel argument of the right size

cl::LocalSpaceArg localmem =

cl::Local(shared_mem_size);

3. Pass the argument to the kernel 

invocation

func(EnqueueArgs(…),localmem);



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

__shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

num_threads_per_block,

shared_mem_size>>>(args);

OpenCL C

1. Have the kernel accept a local 

array as an argument

__kernel void func(

__local int *array) {}

2. Specify the size by setting the 

kernel argument

clSetKernelArg(kernel, 0,          

sizeof(int)*num_elements,                                    

NULL);



Dividing up the work

• To enqueue the kernel

– CUDA – specify the number of thread blocks and threads 

per block

– OpenCL – specify the problem size and (optionally) 

number of work-items per work-group

Problem size

CUDA
OpenCL

Work-itemThread

Thread block Work-group



Enqueue a kernel (C)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

threads_per_block>>>();

OpenCL C

const size_t global[2] =

{300, 200};

const size_t local[2] = 

{30, 20};

clEnqueueNDRangeKernel(

queue, &kernel,

2, 0, &global, &local,

0, NULL, NULL);



Enqueue a kernel (C++)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,       

threads_per_block>>>(…);

OpenCL C++

const cl::NDRange

global(300, 200);

const cl::NDRange

local(30, 20);

kernel(

EnqueueArgs(global, local),

…);



Indexing work

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim + threadIdx

OpenCL

get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()



Differences in kernels

• Where do you find the kernel?

– OpenCL - either a string (const char *), or read from 

a file

– CUDA – a function in the host code

• Denoting a kernel

– OpenCL - __kernel

– CUDA - __global__

• When are my kernels compiled?

– OpenCL – at runtime

– CUDA – with compilation of host code



Host code

• By default, CUDA initializes the GPU automatically

– If you needed anything more complicated (multi-

device etc.) you must do so manually

• OpenCL always requires explicit device initialization

– It runs not just on NVIDIA® GPUs and so you 

must tell it which device(s) to use



Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(

CLK_GLOBAL_MEM_FENCE |

CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start 

another



Translation from CUDA to OpenCL

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange



OpenCL live@Eurora



• Eurora CINECA-Eurotech

prototype

• 1 rack

• Two Intel SandyBridge and

• two NVIDIA K20 cards per 

node or:

• Two Intel MIC card per 

node

• Hot water cooling

• Energy efficiency record 

(up to 3210 MFLOPs/w)  

• 100 TFLOPs sustained

Eurora



NVIDIA Tesla K20

• 13 Multiprocessors

• 2496 CUDA Cores

• 5 GB of global memory

• GPU clock rate 760MHz

Intel MIC Xeon Phi

• 236 compute units

• 8 GB of global memory

• CPU clock rate 1052 MHz

Running environment



Setting up OpenCL on Eurora

• Login on front-end. 

Then:

>module load profile/advanced

> module load intel_opencl/none--intel--cs-xe-2013--binary

It defines: 

INTEL_OPENCL_INCLUDE

and 

INTEL_OPENCL_LIB 

environmental variables that can be used:

>cc -I$INTEL_OPENCL_INCLUDE -L$INTEL_OPENCL_LIB -lOpenCL vadd.c -o vadd



Intel OpenCL

platform found and 

3 devices (cpu and 

Intel MIC card)

Intel MIC device was selected

Results are OK no matter

what performances

Running on Intel  
PROFILE=FULL_PROFILE

VERSION=OpenCL 1.2 LINUX

NAME=Intel(R) OpenCL

VENDOR=Intel(R) Corporation

EXTENSIONS=cl_khr_fp64 cl_khr_global_int32_base_atomics 

cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics 

cl_khr_local_int32_extended_atomics 

cl_khr_byte_addressable_store

--0--

DEVICE NAME=       Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=16

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=16685436928

--1--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

--2--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

Computed sum = 549754961920.0.

Check passed.



Exercise

• Goal: 

– To inspect and verify that you can run an OpenCL kernel on Eurora machines

• Procedure: 

– Take the provided C vadd.c and vadd.cl source programs from VADD 

directory

– Compile and link vadd.c

– Run on NVIDIA or Intel platform.

• Expected output:

– A message verifying that the vector addition completed successfully

– Some useful info about OpenCL environment (Intel and NVIDIA) 



Matrix-Matrix product: HOST

void MatrixMulOnHost (float* M, float* N, float* P, int Width) 

{

// loop on rows

for (int row = 0; row < Width; ++row) {

// loop on columns

for (int col = 0; col < Width; ++col) {

// accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k) {

float a = M[row * Width + k];

float b = N[k * Width + col];

pval += a * b;

}

// store final results

P[row * Width + col] = pval;

}

}

}

P = M * N



Matrix-Matrix product: launch grid

col = blockIdx.x * blockDim.x + threadIdx.x;

row = blockIdx.y * blockDim.y + threadIdx.y;

index = row * MatrixWidth + col;

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

col

row

gridDim.x * blockDim.x

* index

MatrixWidth



Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++)

pval += dM[row * width + k] * dN[k * width + col];

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}

}



OpenCL Memory model

• Private Memory
– Per work-item

• Local Memory
– Shared within a

work-group

• Global/Constant 
Memory
– Visible to all

work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back



OpenCL Memory model

• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory

– Shared by all WI’s in a work-group

– But not shared between work-groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory

– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant 

memory

• Host memory

– On the CPU - GBytes

Memory management is explicit: 

O(1-10) Gbytes/s bandwidth to discrete GPUs for

Host <-> Global transfers



get_

local_

size(1)

OpenCL mapping

Index Space
• In OpenCL:

get_global_size(0)

get_

global_

size(1)

Work 

Group

(0, 0)

Work 

Group

(1, 0)

Work 

Group

(2, 0)

Work 

Group

(0, 1)

Work 

Group

(1, 1)

Work 

Group

(2, 1)

get_local_size(0)

Work

Item

(0, 0)

Work Group (0,0)

Work

Item

(1, 0)

Work

Item

(2, 0)

Work

Item

(3, 0)

Work

Item

(4, 0)

Work

Item

(0, 1)

Work

Item

(1, 1)

Work

Item

(2, 1)

Work

Item

(3, 1)

Work

Item

(4, 1)

Work

Item

(0, 2)

Work

Item

(1, 2)

Work

Item

(2, 2)

Work

Item

(3, 2)

Work

Item

(4, 2)



OpenCL mapping (again)

You should use OpenCL mapping functions for element values recovery(this may be a 

common source of bugs when write a kernel) 



__kernel void mat_mul(

const int Mdim, const int Ndim, const int Pdim,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

for (i = 0; i < Ndim; i++) {

for (j = 0; j < Mdim; j++) {

for (k = 0; k < Pdim; k++) { 

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

Matrix multiplication: pseudo OpenCL

kernel 

Remove outer loops and set 

work-item co-ordinates



__kernel void mat_mul(

const int Mdim, const int Ndim, const int Pdim,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

j = get_global_id(0);

i = get_global_id(1);

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < Pdim; k++) { 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

Matrix multiplication: OpenCL kernel



Exercise 1: Matrix Multiplication

• Goal: 

– To write your first complete OpenCL kernel “from scratch”

– To multiply a pair of matrices

• Procedure: 

– Start with the previous matrix multiplication OpenCL
kernel

– Rearrange and use local scalars for intermediate C 
element values (a common optimization in matrix-
Multiplication functions)

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

– Report the runtime and the MFLOPS



Matrix multiplication: OpenCL kernel improved

Rearrange and use a local scalar for intermediate C element values 

(a common optimization in Matrix Multiplication functions) 

Matrix 

Size

Platfor

m

Kernel

time 

(sec.)

GFLOP/

s

2048 NVIDIA 

K20s

0.24 71

2048 Intel MIC 0.47 37



Matrix-Matrix product: selecting optimum thread block size

101

Which is the best thread block /work-group size to select (i.e. TILE_WIDTH)?
On Fermi architectures: each SM can handle up to 1536 total threads

TILE_WIDTH = 8

8x8 = 64 threads  >>>  1536/64 = 24 blocks needed to fully load a SM
… yet there is a limit of maximum 8 resident blocks per SM for cc 2.x
so we end up with just 64x8 = 512 threads per SM on a maximum of 
1536 (only 33% occupancy)

TILE_WIDTH = 16

16x16 = 256 threads  >>>  1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 32

32x32 = 1024 threads  >>>  1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

TILE_WIDTH = 16



Matrix-Matrix product: selecting optimum thread block size

102

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?
On Kepler architectures: each SM can handle up to 2048 total threads

TILE_WIDTH = 8

8x8 = 64 threads  >>>  2048/64 = 32 blocks needed to fully load a SM
… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 
50% occupancy)

TILE_WIDTH = 16

16x16 = 256 threads  >>>  2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 32

32x32 = 1024 threads  >>>  2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 16 or 32



Exercise 2: Matrix Multiplication

• Goal: 

– To test different  thread block size

– To multiply a pair of matrices

• Procedure: 

– Start with the previous matrix multiplication OpenCL
kernel

– Test different thread block size in C source code. 
Compare results and find the optimum value (on both 
OpenCL platforms)

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

– Report the runtime and the MFLOPS



Matrix-Matrix product: selecting optimum thread block size

104

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?
On Kepler architectures: each SM can handle up to 2048 total threads

TILE_WIDTH = 8

8x8 = 64 threads  >>>  2048/64 = 32 blocks needed to fully load a SM
… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 
50% occupancy)

TILE_WIDTH = 16

16x16 = 256 threads  >>>  2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 32

32x32 = 1024 threads  >>>  2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH Kernel time (sec.) GFLOP/s (NVIDIA 

K20)

8 0.33 52

16 0.20 82

32 0.16 104



Exercise 3: Matrix Multiplication

• Goal: 

– To check inside matrix borders

– To multiply a pair of matrices

• Procedure: 

– Start with the previous matrix multiplication OpenCL
kernel

– Test the check inside matrix borders kernel and the 
original one. Compare results and performances  (on both 
OpenCL platforms)

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

– Report the runtime and the MFLOPS



Matrix-Matrix product: check inside matrix

borders

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of 

threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

...

...

}

kernel chek (Yes/No) Matrices Size Kernel Error GFLOP/s (Intel MIC)

Yes 2047 / 20

Yes 2048 / 35

No 2047 Failed (different results from 

reference)

21

No 2048 / 37



Optimizing matrix multiplication

• There may be significant overhead to manage work-items 

and work-groups.

• So let’s have each work-item compute a full row of C

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of 

C



Exercise 1-1: Matrix Multiplication

• Goal: 

– Let each work-item to compute a full row of C

– To multiply a pair of matrices

• Procedure: 

– Start with the previous matrix multiplication OpenCL
kernel

– Modify in order to have each work-item computing a full 
row of C

– Test the new kernel.Compare results and performances  
(on both OpenCL platforms)

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

– Report the runtime and the MFLOPS



Optimizing matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of 

C
Matrix Size Platform Kernel time 

(sec.)

GFLOP/s

2048 NVIDIA 

K20s

1.17 15

2048 Intel MIC 0.88 20

This change doesn’t really help.



Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same 

column of B.

• Let’s copy that column of B into private memory of the work-

item that’s (exclusively) using it to avoid the overhead of 

loading it from global memory for each C(i,j) computation.

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each 

work-item



Private Memory

• Managing the memory hierarchy is one of the
most important things to get right to achieve good 
performance

• Private Memory:

– A very scarce resource, only a few tens of 32-bit 
words per Work-Item at most

– If you use too much it spills to global memory or 
reduces the number of Work-Items that can be run at 
the same time, potentially harming performance*

– Think of these like registers on the CPU

* Occupancy on a GPU



Exercise 1-2: using private memory

• Goal: 

– Use private memory to minimize memory movement costs 
and optimize performance of your matrix multiplication 
program

• Procedure: 

– Start with previous matrix multiplication kernel

– Modify the kernel so that each work-item copies its own 
column of B into private memory

– Test the new kernel.Compare results and performances  
(on both OpenCL platforms)

• Expected output:

– A message to standard output verifying that the matrix 
multiplication program is generating the correct results

– Report the runtime and the MFLOPS



Optimizing matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each 

work-item
Matrix Size Platform Kernel time 

(sec.)

GFLOP/s

2048 NVIDIA 

K20s

1.17 15

2048 Intel MIC 0.21 80

This has started to help.



Local Memory*

• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means only a 

fraction of the total Local Memory size is available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between Local and 

Global/Constant memories … there are optimized library functions to help

• Use Local Memory to hold data that can be reused by all the work-items in a 

work-group

• Access patterns to Local Memory affect performance in a similar way to 

accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU



Local Memory

• Local Memory doesn’t always help…

– CPUs, MICs don’t have special hardware for it

– This can mean excessive use of Local Memory might slow down kernels on 

CPUs

– GPUs now have effective on-chip caches which can provide much of the 

benefit of Local Memory but without programmer intervention

– So, your mileage may vary!



Using Local/Shared Memory for Thread 

Cooperation

Threads belonging to the same block can cooperate togheter 
using the shared memory to share data

if a thread needs some data which 
has been already retrived by 
another thread in the same 
block, this data can be shared 
using the shared memory

Typical Shared Memory usage:
1. declare a buffer residing on shared 

memory (this buffer is per block)
2. load data into shared memory buffer
3. synchronize threads so to make sure all 

needed data is present in the buffer
4. performe operation on data
5. synchronize threads so all operations 

have been performed 
6. write back results to global memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Threads

Registers

Block (1, 0)

Shared Memory

Threads

Registers



Matrix-matrix using Shared Memory

it = threadIdx.y

jt = threadIdx.x

ib = blockIdx.y

jb = blockIdx.x

Cij=0.

Cycle on block

kb=0, N/NB

As(it,jt) = A(ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jb*NB + jt)

Thread Synchronization

Cij=Cij+As(it,k)·Bs(k,jt)

Thread Synchronization

Cycle on block k=1,NB

C(i,j)=Cij A

B

N

N

NB

NB

C



Matrix-matrix using Shared Memory: CUDA Kernel

118

// Matrix multiplication kernel called by MatMul_gpu() 

__global__ void MatMul_kernel (float *A, float *B, float *C, int N)

{

// Shared memory used to store Asub and Bsub respectively

__shared__  float Asub[NB][NB];

__shared__  float Bsub[NB][NB];

// Block row and column 

int ib = blockIdx.y;

int jb = blockIdx.x;

// Thread row and column within Csub 

int it = threadIdx.y;

int jt = threadIdx.x;

int a_offset , b_offset, c_offset;

// Each thread computes one element of Csub 

// by accumulating results into Cvalue 

float Cvalue = 0;

// Loop over all the sub-matrices of A and B that are 

// required to compute Csub 

// Multiply each pair of sub-matrices together 

// and accumulate the results 

for (int kb = 0; kb < (A.width / NB); ++kb) {

// Get the starting address of Asub and Bsub

a_offset = get_offset (ib, kb, N);

b_offset = get_offset (kb, jb, N);

// Load Asub and Bsub from device memory to shared memory 

// Each thread loads one element of each sub-matrix 

Asub[it][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

// Synchronize to make sure the sub-matrices are loaded 

// before starting the computation 

__syncthreads();

// Multiply Asub and Bsub together 

for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[k][jt];

}

// Synchronize to make sure that the preceding 

// computation is done 

__syncthreads();

}

// Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);  

// Each thread block computes one sub-matrix Csub of C 

C[c_offset + it*N + jt] = Cvalue;

}



Exercise 4: Matrix Multiplication

• Goal: 

– To use shared/memory local

– To multiply a pair of matrices

• Procedure: 

– Start with the previous matrix multiplication CUDA kernel

– Modify source in order to generate an OpenCL kernel

– Compare results and performances  (on both OpenCL

platforms)

• Expected output:

– A message to standard output verifying that the chain of 

vector additions produced the correct result

– Report the runtime and the MFLOPS



Matrix-matrix using Shared Memory: OpenCL

Kernel:results

121

Matrix Size Platform Kernel time (sec.) GFLOP/s

2048 NVIDIA K20s 0.10 166

2048 Intel MIC 0.15 115



OpenCL on Intel MIC

• Intel MIC combines many core onto a single chip. Each core runs exactly 4 

hardware threads. In particular:

1. All cores/threads are a single OpenCL device

2. Separate hardware threads are OpenCL CU.

• In the end, you’ll have parallelism at the work-group level (vectorization) and 

parallelism between work-groups (threading).



OpenCL on Intel MIC

• To reach performances, the number of work-groups should be not less than 

CL_DEVICE_MAX_COMPUTE_UNITS parameter (more is better)

• Again, automatic vectorization module should be fully utilized. This module:

 packs adiacent work-items (from dimension 0 of NDRange)

 executes them with SIMD instructions

• Use the recommended work-group size as multiple of 16 (SIMD width for float, 

int, …data type).



Matrix-matrix on Intel MIC (skeleton)

for i from 0 to NUM_OF_TILES_M-1 

for j from 0 to NUM_OF_TILES_N-1 

C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N) 

for k from 0 to size-1 

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1

C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + A(k, i*TILE_SIZE_M + ib)*B(j*TILE_SIZE_N + jb, k) 

end for jb

end for ib

end for k

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1 

C(j*TILE_SIZE_M + jb, i*TILE_SIZE_N + ib) = C_BLOCK(jb, ib) 

end for jb

end for ib

end for j

end for i

TILE_SIZE_K = size

of block for 

internal

computation of 

C_BLOCK

TILE_GROUP_M x TILE_GROUP_N = 

number of WI within each WG

TILE_SIZE_M x TILE_SIZE_N = 

number of elements of C computed

by one WI



Matrix-matrix on Intel MIC (results)

for i from 0 to NUM_OF_TILES_M-1 

for j from 0 to NUM_OF_TILES_N-1 

C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N) 

for k from 0 to size-1 

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1

C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + A(k, i*TILE_SIZE_M + ib)*B(j*TILE_SIZE_N + jb, k) 

end for jb

end for ib

end for k

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1 

C(j*TILE_SIZE_M + jb, i*TILE_SIZE_N + ib) = C_BLOCK(jb, ib) 

end for jb

end for ib

end for j

end for i

Matrices Size Kernel time (sec.) GFLOP/s (Intel

MIC)

3968 0.3 415



The future of Accelerator 
Programming

Most of the latest 

supercomputers are based on 

accelerators platform. This 

huge adoption is the result of:

• High (peak) performances

• Good energy efficiency

• Low price

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

There are two main difficulties 
with accelerators:

• They can only execute 
certain type of programs 
efficiently (high parallelism, 
data reuse, regular control 
flow and data access)

• Architectural disparity with 
respect to CPU 
(cumbersome 
programming, portability is 
an issue)

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

GPUs are now more general-
purpose computing devices 
thanks to CUDA adoption. On the 
other hand, the fact that CUDA is 
a proprietary tool and its 
complexity triggered the creation 
of other programming 
approaches: 

• OpenCL

• OpenAcc

• …

• …

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

• OpenCL is the non-proprietary 
counterpart of CUDA (also supports 
AMD GPUs, CPUs, MIC, 
FPGAs….really portable!) but just 
like CUDA , is very low level and 
require a lot of programming skills 
to be used.

• OpenACC is a very high-level 
approach. Similar to OpenMP (they 
should be merged in a near(?) future) 
but still at its infancy and currently 
supported by a few compilers

• Other approaches like C++AMP only 
tied to exhotic HPC environment 
(Windows) and impractical for 
standard HPC applications 

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

• So, how to (efficiently) program actual and 
future devices? 

• A possible answer could be surprisingly 
simple and similar to how today’s multicore 
(CPUs) are used (including SIMD 
extensions, accelerators,…)

• Basically, there are three levels:

- libraries

- automated tools

- do-it-yourself

• Programmers will employ library approach 
whenever possible. In absence of efficient 
libraries, tools could be used.

• For the remaining cases, the do-it-yourself 
approach will have to be used (OpenCL or 
a derivative of it should be preferred to 
proprietary CUDA) 

Accelerators will be used everywhere and all the 
time. So, start to use them! 

Conclusions



Credits

Among the others:

• Simon McIntosh Smith for OpenCL

• CUDA Team in CINECA (Luca Ferraro, Sergio 

Orlandini, Stefano Tagliaventi)

• MontBlanc project (EU) Team


