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oo F%FAIGPU vs CPU: different phllosophleie

CPU GPU

EEEEEEEE

Design of GPUs optimized for the execution

Design of CPUs optimized for of large number of threads dedicated to
sequential code performance: floating-points calculations:

multi-core ¥ many-cores (several hundreds)
sophisticated control logic unit || T mMinimized the control logic in order to

manage leightweight threads and
maximize execution throughput

taking advantage of large number ofe¢ 444
threads to overcome long-latency E’[NFE—}“
memory accesses

large cache memories to
reduce access latencies
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CINECA E C AI
SuparComputing Apphcations and Innowvation

Fermi architecture

512 cores

(16 SM (Streaming
Multiprocessor x 32 SP
(Streaming processor))

first GPU architecture to support
a true cache hierarchy:

L1 cache per SM
unified L2 caches (768 KB)

Memory Bandwidth (GDDR5)
148 GB/s (ECC off)

6 GB of global memory

48KB of shared memory
Concurrent Kernels execution
support C++

DRAM VF

HOST VF
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CINECA 5 CAI

SuparComputing Apphcations and Innowvation

CUDA core architecture

New IEEE 754-2008 Kepler SMX
floating point

Fermi SM

PolyMorph Engine 2.0
Tessellator

Astribute Setup. ] [ Warp Scheduler Warp Scheduler
Dispatch Unit Dispatch Unit
S t a n ar Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler B8 3
O] DR SR DR R DS (DR (DR Register File (32,768 x 32-bit)
Register File (65,536 x 32-bit) = = = 5 " .
+ + & 3 3 + 3 3 LD/ST
Core Core Core Core Core Core Core ' Core Core LDIST
Core Core Core Core Core Core Core LDIST
» Core Core Core
Fused multiply-add —_
-
LD/ST
Core Core Core Core Core Core Corm
. . LD/ST
FMA) instruction for
Core Core Core Core Core Core LDIST

both single and Sl == =
double precision - -
Newly designed # ¢ - T

Result Gueus et

Integer ALU e
optimized for 64-bit *

and extended _
precision operations CINECA
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SCAI There cannot be a GPU

without a CPU 0

GPUs are designed as numeric
computing engines, therefore they
will not perform well on other tasks.

Applications should use both CPUs and
GPUs, where the latter is exploited
as a coprocessor in order to speed
up numerically intensive sections of
the code by a massive fine grained
parallelism.

Memary
for GPU

Execute parallel
in egch core

GPU ]
(GeFarce 2800) | p==

CUDA programming model introduced |
by NVIDIA in 2007, is designed to Processing flow
support joint CPU/GPU execution of on CUDA
an application.
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" SCAIl  CUDA programming model

Compute Unified Device Architecture:
extends ANSI C language with minimal extensions

provides application programming interface (API) to
manage host and device components

CUDA program:
Serial sections of the code are performed by CPU ( )

The parallel ones (that exhibit rich amount of data
parallelism) are performed by GPU ( ) In the SIMD
mode as CUDA kernels.

host and device have separate memory spaces:
programmers need to transfer data between CPU and GPU.

CINECA



CUDA threads organization

A kernel is executed as a grid of many parallel threads.
They are organized into a two-level hierarchy:
a grid is organized as up to 3-dim array of thread blocks
each block is organized into up to 3-dim array of threads

Grid

all blocks have the same number of threads

organized in the same manner.

Block of threads:
set of concurrently executing
threads that can cooperate
among themselves through
barrier synchronization, by
using the function
shared memory.

Thread Id #:
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5CAI CUDA threads organization

Because all threads in a grid execute the same code, they rely on unique

coordinates assigned to them by the CUDA runtime system as built-in
preinitialized variables

Block ID up to 3 dimensions:

( , , )
Thread ID within the block up to 3 dimensions:
( , , )

The exact organization of a grid is determined by the execution
configuration provided at kernel launch.

Two additional variables of type dim3 (C struct with 3 unsigned integer
fields) are declared:

—» dimensions of the grid in terms of number of blocks
— » dimensions of the block in terms of number of threads

CINECA



The built-in variables are
used to compute the global ID
of the thread, In order to
determine the area of data that Float x = tnput{thresam);
It IS designed to work on.

threadID 2134

TR

ootpunt [threadID] = y;

N0

1D:
Int Id = blockDim.x * blockldx.x + threadldx.x;

2D:
Int Iy = blockDim.y * blockldx.y + threadldx.y;
Int ix = blockDim.x * blockldx.x + threadldx.x; CINECA
Int id =1y * dimx + Ix;



" SCAl Threads execution model

»Software "Hardware
: CUDA's hierarchy of threads/memories
22222 22222 22222 maps to the hierarchy of processors on
; the GPU:
Grid
« a GPU executes one or more kernel
grids;
e a streaming multiprocessor (SM)
22222 executes one or more thread blocks;
« a streaming processor (SP) in the SM
Block o
Thread Streaming executes threads.
Multiprocessor
[]
CUDA
Thread core

A maximum number of blocks can be assigned to each SM (8 for Fermi, 16 for Kepler) ¢ \yeca

The runtime system maintains a list of blocks that need to execute and assigns new
blocks to SMs as they complete the execution of blocks previously assigned to them.



" SCAIl  Transparent scalability

SuparComputing Apphcations and In

By not allowing threads in different blocks to synchronize with eacr’
other, CUDA runtime system can execute blocks in any order
relative to each other.

This flexibility enables to execute the same application code on
hardware with different numbers of SM (transparent scalability).

=M1 =M2 / == \ SM1 SM2 SM3 SM4
Block0  Block 1 Block 4 Block s
Block s Block 7 Eesoffees ffees e
- - time
Block4 Block5 Block6 Block 7.
Block4  Block5.
mE I




o SCA .
Launching a kernel

A kernel must be called from the host with the following syntax:

__global  void KernelFunc(..);
dim3 gridDim (100, 50); // 5000 thread blocks
dim3 blockDim(8, 8, 4); // 256 threads per block

//call the kernel
KernelFunc<<< gridDim, blockDim >>>(<arguments>) ;

Codice (CPU) ;
Grid 0

Typical CUDA grids contain

thousands to millions of Kernel Parallelo (GPU)
thl‘eadS KernelA<<< nBa, nTa >>>(args);

Codice (CPU) {
Grid 1

All kernel calls are
asynchronous! Kernel Parallelo (GPU)

KernelB<<< nBb, nTh >>>(args);

| CINECA




T SCAl Kernel example

CPU code:

void increment cpu(float* a, float b, int n) {
for (idx=0; idx<n; ++idx)
a[idx]+=b;

}

int main(void) {
/..
increment cpu(h a,h b,16);

}

GPU code:
__global  increment gpu(float* a, float b, int n){
int idx = threadIdx.x + blockIdx.x*blockDim.x;
if (idx < n)
al[idx]+=b;
}
int main(void) {
//..
increment gpu<<<blocks, threads>>>(d a,d b,16);

}

CINECA



CEEA CUDA Functi difi 3
UNCtion mModalriers

CUDA extends C function declarations with three qualifier keywords.

Function Executed Only callable
declaration on the from the
__device _ device device

(device functions)

__global device host
(kernel function)

__host host host
(host functions)

CINECA



CINECA C
5 AI CUDA variable qualifiers

Variable declaration memory lifetime scope
Automatic scalar variables register kernel thread
__shared shared kernel block
__device global application grid
__constant constant application grid

Local memory is used in case of register spilling (--pxtras-options=-v flag)
Global variables are often used to pass information from one kernel to another.

Constant variables are often used for providing input values to kernel functions.

CINECA



oAl Hierarchy of device memories

CUDA'’s hierarchy of threads maps to a Thread
hierarchy of memories on the GPU.: i [per-Thread Privats
Each thread has some registers, % Local Memory

used to hold automatic scalar
variables declared in kernel and

_ _ Thread Block
device functions, and a per-thread |
private memory space used for perBlock
: : : *| Shared Memory
register spills, function calls, and C [—
automatic array variables
Each thread block has a per-block Grid 0
shared memory space used for aa||s :
. L e || e e | [
inter-thread communication, data i || i |+ v | per-
sharing, and result sharing in parallel e B
. Grid 1
algorithms = Global
i || i e AL
Grids of thread blocks share results e | [P
In global memory space i




SCAI 'CUDA device memory model

SuperCompatin

on-chip memories:
registers (~8KB) — SP
shared memory (~16KB) — SM

they can be accessed at very high Block (0, 0) Block (1, 0)
speed in a highly parallel manner.

per-grid memories:
7 global memory (~4GB) ’ F

(Device) Grid

long access latencies (hundreds of e 0, 01| | Tresaa 1, ) ’ ’M
clock cycles)
T finite access bandwith i i i i
constant memory (~64KB)
read only ot '

short-latency (cached) and high
bandwith when all threads
simultaneously access the same

location “
texture memory (read only) Local memory is implemented as part OfCIN'E.rI.‘A
CPU can transfer data to/from all the global memory, therefore has a long J &=«

per-grid memories. access latencies too. 333 - :



5CAI Shared memory allocation

Static modality
Inside the kernel:
__shared _ float f[100];

Dynamic modality

INn the execution configuration of the kernel,
define the number of bytes to be allocated per
block in the shared memory :

kernel<<<DimGrid, DimBlock, >>>(...);

while inside the kernel:
extern __shared__ float f[ ]; CINECA



5CAI Global memory allocation

CUDA API functions to manage data allocation
on the device global memory:

(void** bufferPtr, size t n)
It allocates a buffer into the device global memory

The first parameter Is the address of a generic
pointer variable that must point to the allocated
buffer

It should be cast to (void**)!

The second parameter is the size of the buffer to
be allocated, in terms of bytes

(void* bufferPtr)
It frees the storage space of the object

CINECA



5CAI Global memory inizialization

cudaMemset (void* devPtr, int value, size t count)

Fills the first count bytes of the memory area pointed
to by devPtr with the constant byte of the int value
converted to unsigned char.

CUDA version of the C memset() function.
devPtr - Pointer to device memory

value - Value to set for each byte of specified memory
count - Size in bytes to set

CINECA



i SEA Data transfer CPU-GPU

EEE-B

Host . ] B
Memory Bridge oCle Device Memory
—
cudaMemcpy ()
API functions for data transfer between memories:

cudaMemcpy(dM, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, dM, size, cudaMemcpyDeviceToHost);

P N N

Destination source numberof  symbolic constant
data bytes Indicating the direction

CINECA



CINECA 5 CAI

Data transfer to constant memory

(const char * symbol,

const void * src,

Size t count,

size t offset,

enum cudaMemcpyKind kind)

symbol - symbol destination on device, it can either be a
variable that resides in global or constant memory
space, or it can be a character string, naming a variable
that resides in global or constant memory space.

Src - source memory address
count - size in bytes to copy
offset - offset from start of symbol in bytes

Kind - type of transfer, it can be either
cudaMemcpyHostToDevice or CINECA
cudaMemcpyDeviceToDevice



http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html

CINECA E l AI
SuparComputing Apphcations and Innowvation

Device management

Application can query and select GPUs
(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop,
Int device)

Multiple threads can share a device

A single thread can manage multiple devices
(1) to select current device
(...) for peer-to-peer copies

CINECA



Device management (sample code)

int cudadevice;
struct cudaDeviceProp prop;
( &cudadevice );

(&prop, cudadevice);
mpc=prop.multiProcessorCount;
mtpb=prop.maxThreadsPerBlock;
shmsize=prop.sharedMemPerBlock;

printf("Device %d: number of multiprocessors %d\n , max number of threads per

block %d\n, shared memory per block %d\n", cudadevice, mpc, mtpb, shmsize);

CINECA



T SCAl Error checking

All runtime functions return an error code of type:
cudaError t.

No error IS indicated as cudaSuccess.

char* cudaGetErrorString(cudaError t code)
returns a string describing the error:

For asynchronous functions (i.e. kernels, asynchronous
copies) the only way to check for errors just after the call is
to synchronize: cudaDeviceSynchronize ()

Then the following function returns the code of the last error:

cudaError t cudaGetLastError ()
printf ("$s\n", cudaGetErrorString(cudaGetLastError())); CINECA



CINECA C
S 254 NVIDIA ¢ compiler

front-end for compilation:

separates GPU code from
CPU code

CPU code -> C/C++ compiler
(Microsoft Visual C/C++,
GCC, ecc.)

GPU code is converted in an
Intermediate assembly
language: PTX, then in binary
form (the cubin object)

link all executables cubin binary object

Physical

just-in-time
compilation

B

CINECA



CUDA Driver Vs Runtime API

CUDA is composed of two APIs:
the CUDA runtime API
the CUDA driver API

They are mutually exclusive

Runtime API:
easier to program

it eases device code
management: it's where the C-for-
CUDA language lives

Driver API:

requires more code: no syntax
sugar for the kernel launch, for
example

finer control over the device
expecially in multithreaded
application

doesn’t need nvcc to compile the
host code.

S

CPU
Application
+
CUDA Libraries
+ 4
CUDA Runtime
4 +
CUDA Driver
GPU

CINECA
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SuparComputing Apphcations and Innowvation

CUDA Driver API

The driver API is implemented in the nvcuda dynamic library. All
Its entry points are prefixed with cu.

The driver APl must be initialized with cuInit () before any
function from the driver APl is called. A CUDA context must

then be created that is attached to a specific device and made
current to the calling host thread.

Kernels are launched using API entry points.

CINECA



CINECA

Vector add: driver Vs runtime API

/l driver API

Il initialize CUDA

err = culnit(0);

err = cuDeviceGet(&device, 0);

err = cuCtxCreate(&context, 0, device);

SuparC

Il setup device memory /I runtime API

err = cuMemAlloc(&d_a, sizeof(int) * N); Il setup device memory

err = cuMemAlloc(&d_b, sizeof(int) * N); err = cudaMalloc((void**)&d_a, sizeof(int) * N);
err = cuMemAlloc(&d_c, sizeof(int) * N); err = cudaMalloc((void**)&d_Db, sizeof(int) * N);

err = cudaMalloc((void**)&d_c, sizeof(int) * N);

/[ copy arrays to device

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N); Il copy arrays to device

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N); err=cudaMemcpy(d_a, a, sizeof(int) * N, cudaMemcpyHostToDevice);
err=cudaMemcpy(d_b, b, sizeof(int) * N, cudaMemcpyHostToDevice);

I/l prepare kernel launch

kernelArgs[0] = &d_a; /l launch kernel over the <N, 1> grid

kernelArgs[1] = &d_b; matSum<<<N,1>>>(d_a, d_b, d_c); // yum, syntax sugar!

kernelArgs[2] = &d_c;

/l'load device code

err = cuModuleLoad(&module, module_file);

err = cuModuleGetFunction(&function, module,kernel_name);

/I execute the kernel over the <N,1> grid

err = cuLaunchKernel(function, N, 1, 1, // Nx1x1 blocks

1,1, 1, // 1x1x1 threads

0, 0, kernelArgs, 0); CINECA



e SC Al Matrix-Matrix multiplication
oot Aot eations and Innoaton EEXfinnF)ka

void MatrixMulOnHost (float* M, float* N, float* P,
int Width) {

for (int 1 = 0; i < Width; ++i) {

for (int j = 0; j < Width; ++j) { s
float pvalue = 0; N Kk
for (int k = 0; k < Width; ++k) { :

float a = M[i * Width + k]; ] 4 i,
float b = N[k * Width + j]; a
pvalue += a * b; g
}
P[i * Width + j] = pvalue; |
} :L
} M P
} i
P = M*N ‘.
2
k
A WIDTH | WIDTH d
L | + CINECA

CUDA parallelization: each thread computes an element of P




e SC Al Matrix-Matrix multiplication

__global  void MNKernel (float* Md, float *Nd, float *Pd, int
width)
{
// 2D thread ID
int col = threadIdx.x;
int row = threadIdx.y;

// Pvalue stores the Pd element that is computed by the
// thread
float Pvalue = 0;
for (int k=0; k < width; k++)
Pvalue += Md[row * width + k] * Nd[k * width + col];

// write the matrix to device memory
// (each thread writes one element)
Pd[row * width + col] = Pvalue;

CINECA



5|:A| Matrix-Matrix multiplication
oo se host code

void MatrixMultiplication(float* M, float *N, float *P, int width)'
{
size t size = width*width*sizeof (float)
float* Md, Nd, Pd;
// allocate M, N and P on the device
cudaMalloc ( (void**) gMd, size) ;
cudaMalloc ((void**) §Nd, size) ;
cudaMalloc ( (void**) &Pd, size) ;
// transfer M and N to the device memory
cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (Nd, N, size, cudaMemcpyHostToDevice) ;
// kernel invocation
dim3 gridDim(1,1);
dim3 blockDim(width,width) ;
MNKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, width);
// transfer P from the device to the host
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost) ;
// free device matrices
cudaFree (Md) ; cudaFree (Nd) ; cudaFree (Pd) ;

CINECA



e SC Al Matrix-Matrix multiplication

Limitation: a block can have up to 1024 threads (for Fermi
and Kepler). Therefore the previous implementation can
compute square matrices of order less or equal to 32.

Improvement:
use more blocks by breaking matrix Pd into square tiles
all elements of a tile are computed by a block of threads

each thread still calculates one Pd element but it uses its
blockldx values to identify the tile that contains its
element.

CINECA



= SC Al Matrix-Matrix multiplication
SuperComputing Applications and Innovation eX a m p I e

gridDim.x * blockDim.x

(2,0)

: (2.1)
Matrix
IN X IN

(2,2)

(2,3)

i = blockIdx.x * blockDim.x + threadIdx.x;
7 = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i; i’i“%i



o SC Al Matrix-Matrix multiplication

{

example

global  void MNKernel (float* Md, float *Nd, float *Pd, int
width)

// 2D thread ID
int col = threadIdx.x;

int row = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread
float Pvalue = 0O;
for (int k=0; k < width; k++)

Pvalue += Md[row * width + k] * Nd[k * width + col];

Pd[row * width + col] = Pvalue;

Kernel invocation:

dim3 gridDim(width ,width ) ;
dim3 blockDim ( ) ; fece
MNKernel<<<dimGrid, dimBlock>>>(Md,Nd, Pd,width) ;



e SC Al Matrix-Matrix multiplication

-

Which is the optimal dimension of the block (i.e. TILE_ WIDTH)?

Knowing that each SM of a Fermi can have up to 1536 threads,
we have

= 64 threads —) 1536/64 = 24 blocks to fully occupy an
SM: but we are limited to 8 blocks in each SM therefore we
will end up with only 64x8 = 512 threads in each SM.

= 256 threads — 1536/256 = 6 blocks
we will have full thread capacity in each SM.
= 1024 threads —>1536/1024 = 1.5 —> 1 block.

CINECA



e SC Al Matrix-Matrix multiplication

-

Which is the optimal dimension of the block (i.e. TILE_ WIDTH)?

Knowing that each SM of a Kepler can have up to 2048 threads,
we have

= 64 threads —) 2048/64 = 32 blocks to fully occupy an
SM; but we are limited to 16 blocks in each SM therefore we
will end up with only 64x16 = 1024 threads in each SM.

= 256 threads —> 2048/256 = 8 blocks
we will have full thread capacity in each SM.
= 1024 threads —>2048/1024 = 2 blocks.

CINECA



©" SLAI Global memory access efficiency

SuparCompauting Applic

Although having many threads available for execution
can theoretically tolerate long memory access latency,
one can easily run into a situation where traffic
congestion prevents all but few threads from making
progress, thus making some SM idle!

A common
(i.e. increasing the number of floating-point operations
performed for each access to the global memory) is to
partition the data into subsets called tiles such that
each tile fits into the shared memory and the kernel
computations on these tiles can be done
Independently of each other.

In the simplest form, the tile dimensions equal those of
the block.

CINECA



= SC Al Matrix-Matrix multiplication

example o
In the previous kernel:

thread(x,y) of block(0,0) access the elements of Md
row X and Nd column y from the global memory.

thread(0,0) and thread(0,1) access the
same Md row O

Pdo.c Pd, 0 Pdc', Pd‘.1
Thread(0,0) | Thread(1,0) | Thread(0,1) | Thread(1,1)

Mdg* Ndg o [Mdg.o '@G)o Mdy 1 * Ndp o | Mdy 4 '@n
| g

@O'Ndc, ®D'Nd,_, Md ; * Ndg ¢ | Md, * Nd, 4

Md;,0 * Ndg 2 |Mdjo* Nd; 5| Mdy s * Ndg 5 | Md,, 3 * Nd, 5
\
Mdy o * Ndpa | Mdgg* Nd; 3/ Md; s * Ndg 5 | Md; * Nd, 5

Access order

Mdy gMd JMd; Md;

Pd, APd ,Pd, 7{F’d3j

] ‘
LSE;FC’&{

[ ]
7]
E

CINECA



CINECA E l AI
SuparComputing Apphcations and Innowvation

What If these threads collaborate so that the elements
of this row are only loaded from the global memory
once? We can reduce the total number of accesses
to the global memory by N, using NxN blocks!

Basic idea:

to have the threads within a block collaboratively load
Md and Nd elements into the shared memory before
they individually use these elements in their dot
product calculation.

CINECA



CINECA
Supe K

SCA

romputing Apphcations &

| Jl_ B Phase 1 [ Phase 2 [

Too [Mdgg [Ndgg | PValuggq = "M—dw_ [Ndoz |PValuegos= |
IL [ lMds(w'Ndsgwﬂ [} L Mdsg o*Ndspg+ |
Mdsgo | Ndsg | MdS:g"NdSq,s [Mdsgg |Ndsyq | Mdsy o"Ndsp !

———— ee——————————— et ettt e et

[T.o | Mdyo [Ndyo |PValue, g 4= [Mdyo |Ndy, |Palueso+= |
[ J Mdsg o' Nds; o +| L i) Mdsg o'Nds, o +
[ Mds, o | Nds; o ‘Mdsi.o'Ndsw.liMds,.o Nds; o | Mds;o"Nds ‘

s it
Tos |Mdgy |Ndoy |PdValuey,+= |Md,,s ’Nd” PdValueg ; +=

l dl MdschdSo,c*’i 4 [ Mds; *Ndsg g+ |

Mdsg 4 [ Ndsg 4 "Mdsn'NdSE M.dso.‘_'idsi‘ i_Mds' 1"Ndsg 4 |
T,.|Md,, [Ndy, [PdValue,,+= |Mdy, |Ndys |PdValue, =

‘1 l Mdsol"Nds,.o‘»’l i Mdsg 4 *Nds, g +

| Mds, , |Nds, , |Mdsy\"Nds,+ |mds,, |Nds,, |Mdsy,"Ndsy, |

time

*The dot product performed by each thread is now divided
Into phases: in each phase all threads in a block collaborate
to load a tile of Md and a tile of Nd into the shared memory
and use these values to compute a partial product. The dot
product would be performed in width/TILE WIDTH

phases.

»the reduction of the accesses to the global memory is by a

factor of TILE_WIDTH.
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SuperComputing Applications and Innevation

0
v i
2
by 1 b
TILE_ WIDTH-1
-
2

TPéed
CINECA
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o SC Al Matrix-Matrix multiplication

__global  void MNKernel (float* Md, float *Nd, float *Pd, int width)
{

// 2D thread ID

int tx = threadlIdx.x; int ty = threadIdx.y;

int col = blockIdx.x*BlockDim.x + tx;

int row = blockIdx.y*BlockDim.y + ty;

float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element
// m is the number of phases

for (int m=0; m < width ; m++)

{//collaborative loading of Md and Nd tiles into shared memory

for (int k=0; k < ; k++)
Pvalue +=

} CINECA
Pd[row * width + col] = Pvalue;



» SCAIl Memory as a limiting factor to
parallelism

The limited amount of CUDA memory limits the number of
threads that can simultaneously reside in the SM!

For the matrix multiplication example, shared memory can
become a limiting factor:

TILE_WIDTH = 16 — each block requires 16x16x4 = 1KB of storage for Mds
+ 1KB for Nds
— 2KB of shared memory per block

The 48KB shared memory allows 24 blocks to simultaneously reside
in an SM. OK!
But the maximum number of threads per SM is 1536 (for Fermi)
only 1536/256 = 8 blocks are allowed in each SM
‘ only 8 x 2KB = 16KB of the shared memory will be used. CINECA



T SCAl Thread scheduling

Once a block is assigned to a SM,

it is further partitioned into 32-thread 32 Threads
units called : eeeee = | 32 Threads
Warps are the scheduling units in SM: 32 Threads
all threads in a same warp execute Block of threads  warps | hibrocessor

the same instruction when the warp
IS selected for execution (Single-Instruction, Multiple-Thread)

Threads often execute long-latency operations:
= global memory access

= pipelined floating point arithmetics

* pranch instructions

It is convenient to assign a large number of warps to each SM, because
the long waiting time of some warp instructions is hidden by executing

Instructions from other warps. Therefore the selection of ready warps for
execution does not introduce any idle time into the execution timeline

( ).
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i SCAl Control flow

The hardware executes an instruction for all threads in the
same warp before moving to the next instruction (SIMT).

It works well when all threads within a warp follow the same
control flow path when working their data.

When threads in the same warp follow different paths of
control flow, we say that these threads diverge in their
execution.

For an if-then-else construct the execution of the warp will
require multiple passes through the divergent paths.

Try to avoid warp divergence
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T SCAl Multi-GPUs: P2P

cudaDeviceCanAccessPeer (&can_access peer 0 1, gpuid 0, gpuid 1);
cudaDeviceCanAccessPeer (&can_access peer 1 0, gpuid 1, gpuid 0);

cudaSetDevice (gpuid 0);
cudaDeviceEnablePeerAccess (gpuid 1, 0);
cudaSetDevice (gpuid 1);
cudaDeviceEnablePeerAccess (gpuid 0, 0);

cudaMemcpy (gpu0_buf, gpul buf, buf size, cudaMemcpyDefault);

=cudaMemcpy () knows that our buffers are on different devices (UVA),
will do a P2P copy now

=Note that this will transparently fall back to a normal copy through the
host if P2P is not available
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il = 5CAI Multi-GPUs: direct access

__global  void SimpleKernel (float *src, float *dst)

const int idx = blockIdx.x * blockDim.x + threadIdx.x;
dst[idx] = src[idx];

cudaDeviceCanAccessPeer (&can access peer 0 1, gpuid 0, gpuid 1);
cudaDeviceCanAccessPeer (&can access peer 1 0, gpuid 1, gpuid 0);

cudaSetDevice (gpuid 0);
cudaDeviceEnablePeerAccess (gpuid 1, 0);
cudaSetDevice (gpuid 1);
cudaDeviceEnablePeerAccess (gpuid 0, 0);

cudaSetDevice (gpuid 0);

SimpleKernel<<<blocks, threads>>> (gpul0 buf, gpul buf);
SimpleKernel<<<blocks, threads>>> (gpul buf, gpulO buf);
cudaSetDevice (gpuid 1)
SimpleKernel<<<blocks, threads>>> (gpu0 buf, gpul buf);
SimpleKernel<<<blocks, threads>>> (gpul buf, gpu0O buf);

~e

=After P2P initialization, this kernel can now read and write data in the
memory of multiple GPUs (just deferencing pointers!)

CINECA



Asynchronous operations

= Kernel calls are asynchronous by default

= Memory transfers and copybacks are blocking

* The cudaMemcpy has an asynchronous version (cudaMemcpyasync)

= Boards <= 1.3 can overlap copy-copy (opposite directions) and copy-
kernel

= Boards >= 2.0 (Fermi and Kepler) can overlap kernel-kernel execution.

// First transfer Copy data _
cudaMemcpyAsync (inputDevPtr, hostPtr, size, cudaMemcpyHostToDevice, O0);

// First invocation Execute _
MyKernel<<<100, 512, 0, 0>>> (outputDevPtr, inputDevPtr, size);

// Second transfer

cudaMemcpyAsync (inputDevPtr2, hostPtr2, size, cudaMemcpyHostToDevice, 0);

// Second invocation

MyKernel2<<<100, 512, 0, 0>>> (outputDevPtr2, inputDevPtr2, size);

// Wrapup

cudaMemcpyAsync (hostPtr, outputDevPtr, size, cudaMemcpyDeviceToHost, O0);

cudaMemcpyAsync (hostPtr2, outputDevPtr2, size, cudaMemcpyDeviceToHost, 0); Copy data T W B B |

cudaThreadSyncronize () ;
Execute I I .
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Streams

A stream is a FIFO command queue;
a stream Is independent to every other active stream;

CUDA streams are the main way to exploit concurrent
execution and I/O operations.

CINECA
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CUDA Streams

for (int 1=0; 1<3; ++1) cudaStreamCreate (&stream[i]) ;

float* hostPtr;
cudaMallocHost ( (void**) &hostPtr, 3 * size);

for (int i=0; i<3; ++i) cudaMemcpyAsync (inputDevPtr+i*size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i])
for (int i=0; i<3; ++i) myComputeKernel<<<100, 512, 0, stream[i]>>>(outputDevPtr + i * size, inputDevPtr + i * size, size);
for (int i=0; i<3; ++i) cudaMemcpyAsync (hostPtr + i * size, outputDevPtr+i*size, size, cudaMemcpyDeviceToHost, stream[i])
cudaThreadSynchronize () ;

for (int i=0; i<3; ++i) cudaStreamDestroy (&stream[i]);

Copyback Kernel Transfer Stream #1
Copyback Kernel Transfer Stream #2
Copyback Kernel Transfer Stream #3

time

CINECA
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Streams: how to overlap kernelﬁ

Starting from capability 2.0 the board has the ability to overlap
computations from multiple kernels where:

no synchronization happens between command stages;

no operations occur on the default stream;
the active streams are less than 16;

CINECA
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Timing

» |t's allowed to use std timing facilities (host side).
= Beware of asynchronous calls! star=cioco

my_kernel<<< g, b, s >>>();
cudaThreadSynchronize();
end = clock();

= CUDA provides the Events facility.

= Needed to time single streams without loosing
Concurrency- cudaEventRecord (start, 0);
for (int i = 0; 1 < 2; ++i) {
[ ] Needed to Create eve ntS cudaMemcpyAsync (inputDev + i * size, inputHost + i * size,

size, cudaMemcpyHostToDevice, stream([i]):
. MyKernel<<<100, 512, 0, stream[i]>>>
by USIng CUdaEventcreate (outputDev + i * size, inputDev + i * size, size);
cudaMemcpyAsync (outputHost + i * size, outputDev + 1 * size,

size, cudaMemcpyDeviceToHost, stream[i]):

}

cudaEventRecord (stop, 0);

cudaEventSynchronize (stop) ; .

float elapsedTime; A

cudaEventElapsedTime (&elapsedTime, start, stop):



Page-locked memory

Pinned (or page-locked memory) is a main memory area that is not
pageable by the operating system,;

ensures faster transfers (the DMA engine can work without raising
Interrupts);

the only way to get closer to PCI peak bandwidth;

allows CUDA asynchronous operations to work correctly.

// allocate page-locked memory // allocate regular memory

cudaMallocHost (&area, sizeof (double) * N); area = (double*) malloc( sizeof (double) * N );

// free page-locked memory // lock area pages (CUDA >= 4.0)

cudaFreeHost (area) ; cudaHostRegister ( area, sizeof (double) * N, cudaHostRegisterPortable );

// unlock area pages (CUDA >= 4.0)
cudaHostUnregister (area) ;

// free regular memory
cudaFreeHost (area) ;
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~ Kepler: dynamic parallelism

One of the biggest CUDA limitations is the need to fit a single grid
configuration for the whole kernel.

If you need to reshape the grid, you have to resync back to host and split your code.

Kepler (in addition to CUDA 5.x) introduced Dynamic Parallelism
It enables a global kernel to be called from within another kernel
The child grid can be dynamically sized and optionally synchronized

Parent-Child Launch Nesting
Time ——»

. . CPU Thread >
__global  ChildKernel (void* data) {
//Operate on data GridAqunch Grid A Complete
) R R CEEPEPPEPR '
Grid A Threads ———e E
__global  ParentKernel (void *data) { Grid A - Parent " reacs . ;
ChildKernel<<<le6, 1>>>(data); '
} \ f :
\ . ......................... L)
// TIn Host Code: Grid B Launch Grid B Complete
ParentKernel<<<256, 64>>(data); X
Grid B - Child Grid B Threads
.. ...............




Exploiting Multi-GPUs with OpenMP %
CUDA >= 4.0 introduced the N-to-N bound feature:

1. Every thread can be bound to any board

2. Every board can be bound to an arbitrary number of
threads

|
-,

#pragma omp parallel
#pragma omp sections
{

#pragma omp section

{

Multi-GPU can be exploited cudaSetDevice (0) ;
; i cudaMemcpy (device data 1, host data 1, size, cudaMemcpyHostToDevice);
through your fav_ourlte mUItI my kernel<<< grid, block >>>(device data 1);
threading paradigm /1
(OpenMP, pthreads, etc...) )

#pragma omp section
{
cudaSetDevice (1) ;
cudaMemcpy (device data 2, host data 2, size, cudaMemcpyHostToDevice);
my kernel<<< grid, block >>>(device data 2);
70 ooc
}
}

CINECA
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Reference

http://developer.nvidia.com/cuda

CUDA Programming Guide
CUDA Zone - tools, training, webinars and more

NVIDIA Books:

“Programming Massively Parallel Processors”,
D.Kirk - W.W. Hwu

“CUDA by example”, J.Sanders - E. Kandrot
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