

Management of large scientific data

Giovanni Morelli, Giuseppe Fiameni {g.morelli, g.fiameni}@cineca.it

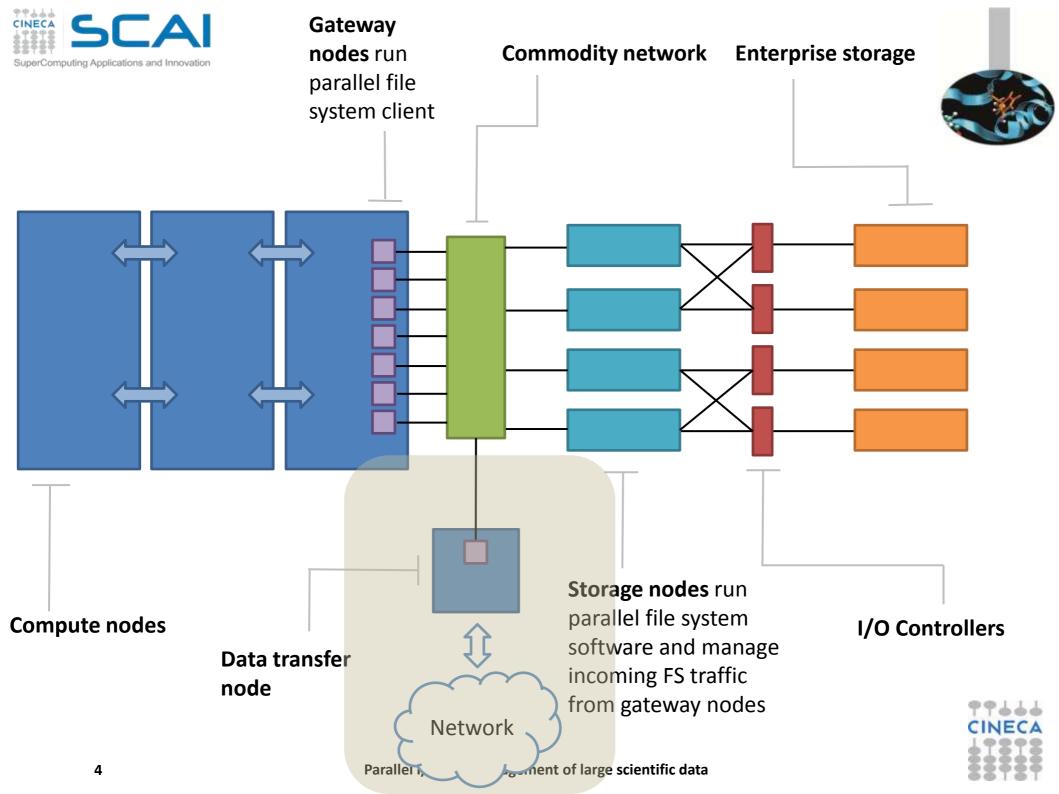
SuperComputing Applications and Innovation Department

Agenda

Bulk data transfer

- Tools and techniques
- BigData techniques
 - Hadoop/MapReduce
- Data post-processing
 - Remote visualization

Bulk data transfer is a software application feature that uses data compression, data blocking and buffering to optimize transfer rates when moving large data files


Agenda

• Bulk data transfer

- Tools and techniques
- BigData techniques
 - Hadoop/MapReduce
- Data post-processing
 - Remote visualization

Bulk data movement

Parallel I/O and management of large scientific data

- The problem
- Involved components
 - Network architecture
 - Dedicated hosts
 - Software tools

Bulk Data Movement

- Common task at all data scales
- Driven by collaboration, distributed resources
 - Computing centers
 - Facilities
 - Major instruments (e.g. LHC)
- Fundamental to the conduct of science (scientific productivity follows data locality)
- Data sets of 200GB to 5TB are now common
- Often a difficult task for various reasons
- Storage capacity grows faster with respect to Public Network bandwidth

Time to copy 1TB

- **10 Mb/s network:** 300 hrs (12.5 days)
- **100 Mb/s network:** 30 hrs
- 1 **Gb/s network:** 3 hrs (are your disks fast enough?)
- 10 Gb/s network: 20 minutes (need really fast disks and file system)
- Compare these speeds to:
 - USB 2.0 portable disk
 - 60 MB/sec (480 Mbps) peak
 - 20 MB/sec (160 Mbps) reported on line
 - 15-40 hours to load 1 Terabyte

Bandwidth Requrements to move Y Bytes of data in Time X

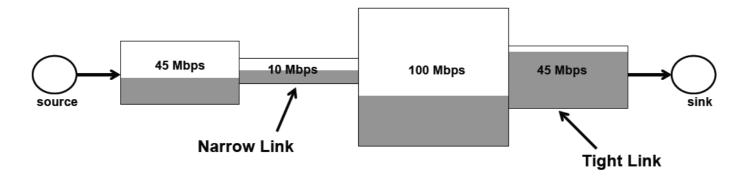
Bits per Second Requirements

	1H	8H	24H	7Days	30Days
100MB	233.0 Kbps	29.1 Kbps	9.7 Kbps	1.4 Kbps	0.3 Kbps
1GB	2.4 Mbps	298.3 Kbps	99.4 Kbps	14.2 Kbps	3.3 Kbps
10GB	23.9 Mbps	3.0 Mbps	994.2 Kbps	142.0 Kbps	33.1 Kbps
100GB	238.6 Mbps	29.8 Mbps	9.9 Mbps	1.4 Mbps	331.4 Kbps
1TB	2.4 Gbps	305.4 Mbps	101.8 Mbps	14.5 Mbps	3.4 Mbps
10TB	24.4 Gbps	3.1 Gbps	1.0 Gbps	145.4 Mbps	33.9 Mbps
100TB	244.3 Gbps	30.5 Gbps	10.2 Gbps	1.5 Gbps	339.4 Mbps
1PB	2,502.0 Gbps	312.7 Gbps	104.2 Gbps	14.9 Gbps	3.5 Gbps
10PB	25,020.0 Gbps	3,127.5 Gbps	1,042.5 Gbps	148.9 Gbps	34.7 Gbps

This table available at http://fasterdata.es.net

Bulk data movement

- The problem
- Involved components
 - Network architecture
 - Dedicated hosts
 - Software tools



Terminology

The term "Network Throughput" is vague and should be avoided

- Capacity: link speed
 - Narrow Link: link with the lowest capacity along a path
 - Capacity of the end-to-end path = capacity of the narrow link
- Utilized bandwidth: current traffic load
- **Available bandwidth**: capacity utilized bandwidth
 - **Tight Link**: link with the least available bandwidth in a path
- Achievable bandwidth: includes protocol and host issues

Network architecture

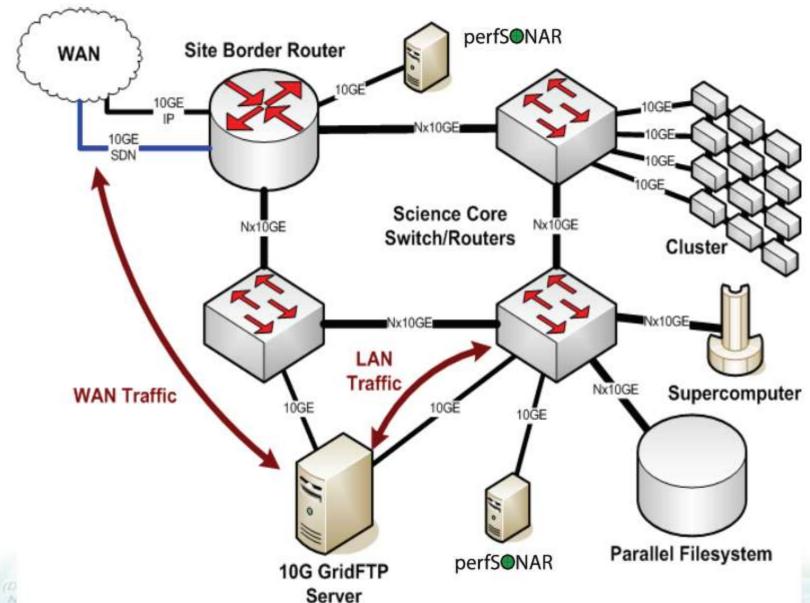
- Most LANs are not purpose-built for science traffic they carry many types of traffic
 - Desktop machines, laptops, wireless
 - VOIP
 - HVAC control systems
 - Financial systems, HR
 - Some science data coming from someplace
- Bulk data transfer traffic is typically very different than enterprise traffic

Bulk data movement

- The problem
- Involved components
 - Network architecture
 - Dedicated hosts
 - Software tools

Data transfer nodes

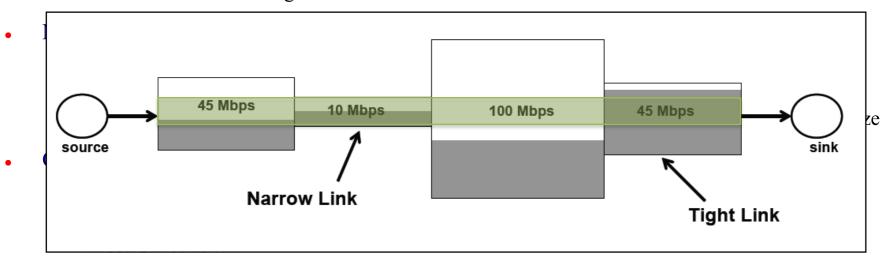
Reasons for dedicated hosts


- One thing to test and tune
- One place for large WAN flows to go (it's easier to give one host a special configuration than to do this for all workstations)
- One set of firewall exceptions

Internal/external traffic

Host tuning - TCP

- TCP tuning commonly refers to the proper configuration of buffers that correspond to TCP windowing
- Historically TCP tuning parameters were host-global, with exceptions configured per-socket by applications
 - Applications had to understand the network in detail, and know how far away clients were
 - Some applications did this most did not
- Solution: auto-tune TCP connections within preconfigured limits



Buffer autotuning

- To solve the buffer tuning problem, Linux OS added TCP Buffer autotuning
 - Sender-side TCP buffer autotuning introduced in Linux 2.4
 - Receiver-side autotuning added in Linux 2.6

- Windows 7: 16M
- Mac OSX 10.5: 8M
- Some defaults are still wrong!

Autotuning settings (Max 16MB)

Linux 2.6

```
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
# autotuning min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
```

FreeBSD 7.0

```
net.inet.tcp.sendbuf_auto=1
net.inet.tcp.recvbuf_auto=1
net.inet.tcp.sendbuf_max=16777216
net.inet.tcp.recvbuf_max=16777216
```

• OSX 10.5 ("Self-Tuning TCP")

kern.ipc.maxsockbuf=16777216

- TCP senses network congestion by detecting packet loss
- Historically (TCP Reno) TCP used AIMD (Additive Increase, Mutiplicative Decrease) for window sizing in response to loss
- After loss, window opens back up very slowly
 - causes very poor performance
- Newer algorithms, available in Linux, offer higher performance than Reno
 - Cubic (now the default in several Linux distributions)
 - HTCP (Hamilton)

Bulk data movement

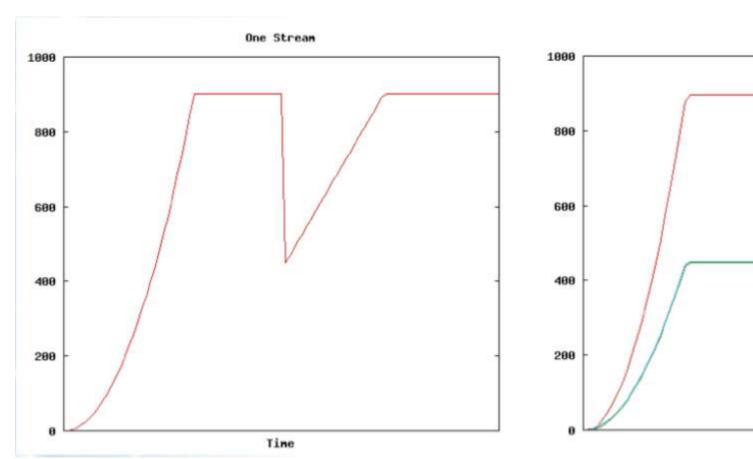
- The problem
- Involved components
 - Network architecture
 - Dedicated hosts
 - Software tools

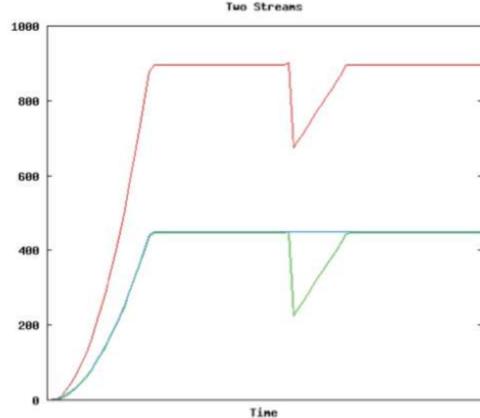
Data transfer tools

Parallelism is key

- It is much easier to achieve a given performance level with four parallel connections than one connection
- Several tools offer parallel transfers

Latency interaction is critical


- Wide area data transfers have much higher latency than LAN transfers
- Many tools and protocols assume a LAN
- Examples: SCP/SFTP, HPSS mover protocol



Parallel Streams Help With TCP Congestion Control Recovery Time

Sample data transfer rate

Using the right tool is very important

- SCP/SFTP: 10 Mb/s
 - standard Unix file copy tools
 - fixed 1 MB TCP window in OpenSSH
 - only 64 KB in OpenSSH versions < 4.7
- FTP: 400-500 Mb/s
 - assumes TCP buffer autotuning
 - Parallel stream FTP: 800-900 Mbps

Why Not Use SCP or SFTP?

• Pros:

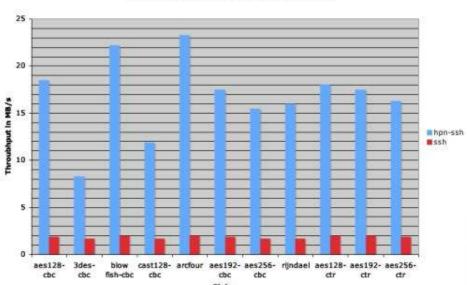
- Most scientific systems are accessed via OpenSSH
- SCP/SFTP are therefore installed by default
- Modern CPUs encrypt and decrypt well enough for small to medium scale transfers
- Credentials for system access and credentials for data transfer are the same

Cons:

- The protocol used by SCP/SFTP has a fundamental flaw that limits WAN performance
- CPU speed doesn't matter latency matters
- Fixed-size buffers reduce performance as latency increases
- It doesn't matter how easy it is to use SCP and SFTP they simply do not perform

• Verdict: Do Not Use Without Performance Patches





BDP versus SSH Receive Window for a 100Mbps Path

- PSC has a patch set that fixes problems with SSH
 - http://www.psc.edu/networking/projects/h
 pnssh/
- Significant performance Increase
- Advantage this helps rsync too

Throughput Speeds of HPN-SSH Versus SSH

What's about SFTP?

- Uses same code as SCP, so don't use SFTP for WAN transfers unless you have installed the HPN patch from PSC
- But even with the patch, SFTP has yet another flow control mechanism
 - By default, SFTP limits the total number of outstanding messages to 16 (32KB) messages
 - Since each datagram is a distinct message you end up with a 512KB outstanding data limit
 - You can increase both the number of outstanding messages ('-R') and the size of the message ('-B') from the command line though
- Sample command:
 - sftp -R 512 -B 262144 user@host:/path/to/file outfile

GridFTP

- GridFTP from ANL has everything needed to fill the network pipe
 - Buffer Tuning
 - Parallel Streams
- Supports multiple authentication options
 - Anonymous
 - X.509 (Personal certificates)
- Ability to define a range of data ports
 - helpful to get through firewalls
- Sample Use:
 - globus-url-copy -p 4 sshftp://data.lbl.gov/home/mydata/myfile <u>file://home/mydir/myfile</u>!
- Available from: http://www.globus.org/toolkit/downloads/

GridFTP new features

- ssh authentication option
 - Not all users need or want to deal with X.509 certificates
 - Solution: Use SSH for Control Channel
 - Data channel remains as is, so performance is the same
- Optimizations for small files
 - Concurrency option (-cc)
 - establishes multiple control channel connections and transfer multiple files simultaneously
 - Pipelining option:
 - Client sends next request before the current completes
 - Cached Data channel connections
 - Reuse established data channels (Mode E)
 - No additional TCP or GSI connect overhead
- Support for UDT protocol

GridFTP bottleneck detector

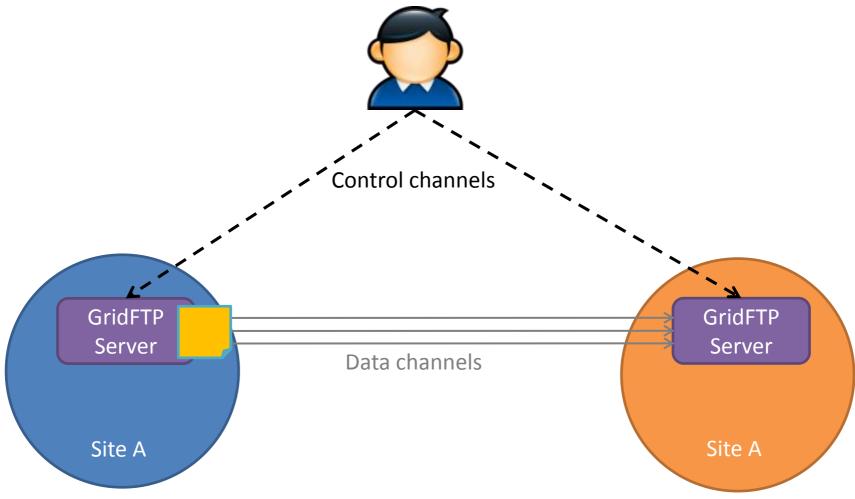
- new command line option for globus-url-copy, "-nlb"
 - nlb = NetLogger bottleneck
 - Uses NetLogger libraries for analysis of network and disk I/O
 - http://acs.lbl.gov/NetLogger
- Possible "Bottleneck:" results are:
 - network: somewhere in the network
 - disk read: sender's disk
 - disk write: receiver's disk
 - unknown: disk/network are about the same and/or highly variable

GridFTP bottleneck detector (cont.)

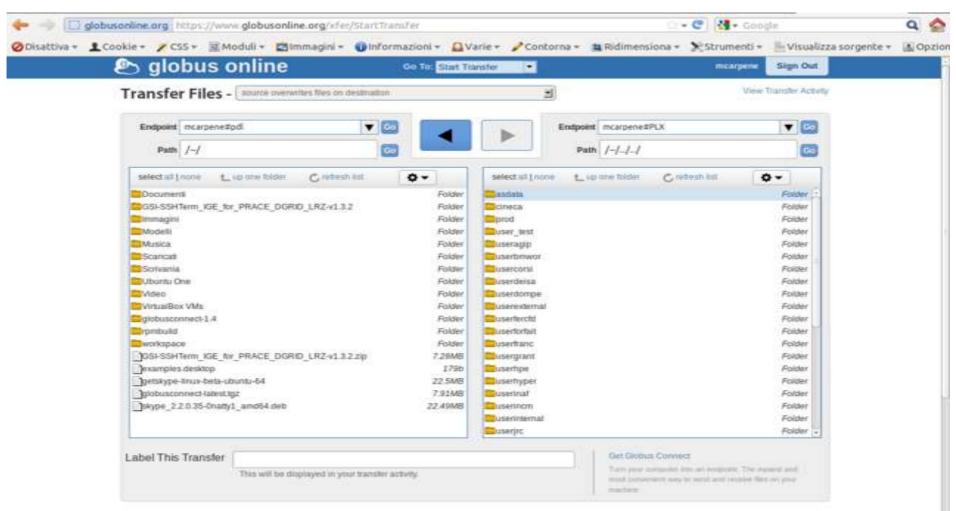
• Sample Output:

- Total instantaneous throughput:
 - disk read = 1235.7 Mbits/s
 - disk write = 2773.0 Mbits/s
 - net read = 836.3 Mbits/s
 - net write = 1011.7 Mbits/s
- Bottleneck: network
- Ignore the "net write" value (strongly influenced by system and TCP buffer artifacts)
- instantaneous throughput is the average # of bytes divided by the time spent blocking on the system call
- instantaneous throughputs are higher than the overall throughput of the transfer:
 - does not include the time waiting for data to be available
 - primarily useful for comparison and not as absolute numbers

Sample Data Transfer Results


- Using the right tool is very important
- Sample Results:
 - RTT = 53 ms, network capacity = 10Gb/s.
- Tool Throughput
 - **scp:** 140 Mb/s
 - **HPN patched scp:** 1.2 Gb/s
 - **FTP:** 1.4 Gb/s
 - **GridFTP**, 4 streams 5.4 Gb/s
 - **GridFTP**, 8 streams 6.6 Gb/s

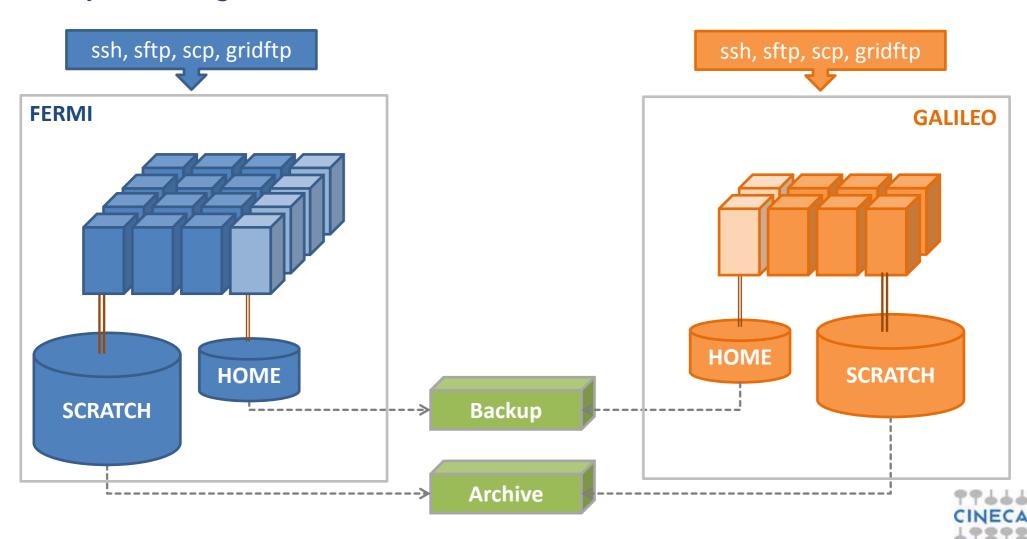
GridFTP: third Party Transfer



http://www.globusonline.org

Other tools

- **bbcp**: <u>http://www.slac.stanford.edu/~abh/bbcp/</u>
 - supports parallel transfers and socket tuning
 - bbcp -P 4 -v -w 2M myfile remotehost:filename
- **lftp**: <u>http://lftp.yar.ru/</u>
 - parallel file transfer, socket tuning, HTTP transfers, and more.
 - lftp -e 'set net:socket-buffer 4000000; pget -n 4
 [http|ftp]://site/path/file; quit'
- **axel**: http://axel.alioth.debian.org/
 - simple parallel accelerator for HTTP and FTP.
 - axel -n 4 [http|ftp]://site/file
- rsync: http://rsync.samba.org/
 - rsync --timeout=600 -avHS -r --numeric-ids -bwlimit=80000 --block-size=1048576 --progress
 \$CINECA_SCRATCH/path/file \$CINECA_DATA/path/



CINECA data resources

All CINECA machines (GALILEO and FERMI) have similar file system organization

Network resources

- The clusters are reachable from the public network through GARR (Italian NREN) facility (1Gb/s)
- The PRACE infrastructure has a dedicated private network which provides 10Gb/s guaranteed bandwidth (available on FERMI)

Already available at CINECA

- A public installation for GALILEO (without -stripe option) is available for CINECA users. It is reachable at:
 - gsiftp://gftp.galileo.cineca.it:2811
- A public installation for FERMI (with -stripe option) is available for CINECA users. It is reachable at:
 - gsiftp://gftp-fermi.cineca.it:2811 (public network)
 - gsiftp://gftp-prace.cineca.it:2811 (PRACE network)

CINECA "cindata" command

What's about storage's status?

-bash-3.2\$ cindata Dash-3.2\$ cindata											
	AREADESCR										
 prlis019	/cineca/	-15hou	1K		%	78G	800G	9.8%			
prlis019 prlis019	/shared/data/ /gpfs/scratch/	-113min -15hou	32K 256K	100G	0.0% %	139T 286T	189T 349T	73.8% 82.1%			
prlis019	- S. ♥ I - S	-15hou	305M	2G	14.9%	895G	13T	6.4%			

Tools: comparative table

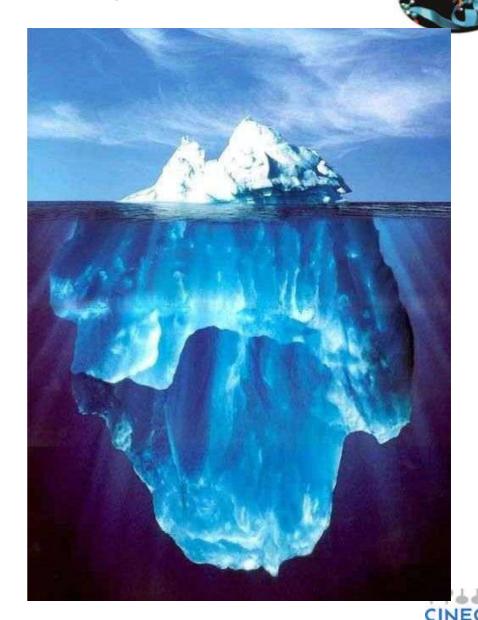
cp/mv		
scp/sftp		
rsync		
GridFTP		
LTFS		

Extreme solution...

PHOTO: DAVIES & STARR

Bulk Data Transfer Summary

- TCP tuning is critical, but is now easy
 - Four lines in /etc/sysctl.conf to give autotuning
 - Make sure you're not stuck with TCP Reno
- Build one host for WAN data transfers, make sure it's right
 - Make sure TCP parameters are configured
- Plug your hosts into the right place in the network
- Use the right tools
 - Parallelism is a key
 - GridFTP, BBCP, HPN-SSH

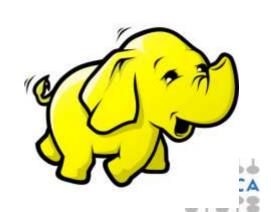

- Bulk data transfer
 - Tools and techniques
- BigData techniques
 - Hadoop/MapReduce
- Data post-processing
 - Remote visualization

Pyramid or Iceberg

- PRACE addresses the top of the pyramid
- What happens with other communities having modest HPC requirements?
- New technologies might facilitate big data analysis
- New scientists deal with other programming languages (Python, Java, etc.)
- New opportunities ahead us
- How to make the submerged part ramp up?

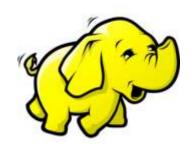
Big Data

- Extremely large datasets that are hard to deal with using Relational Databases (structured data)
 - Storage/Cost
 - Search/Performance
 - Analytics and Visualization
- Need for parallel processing on
 - hundreds of machines



Hadoop design principles

- System shall manage and heal itself
 - Automatically and transparently recover from failures
 - Speculatively execute redundant tasks if certain nodes are detected to be slow
- Performance shall scale linearly
 - Proportional change in capacity with resource change
- Compute should move to data
 - Lower latency, lower bandwidth
- Simple core, modular and extensible



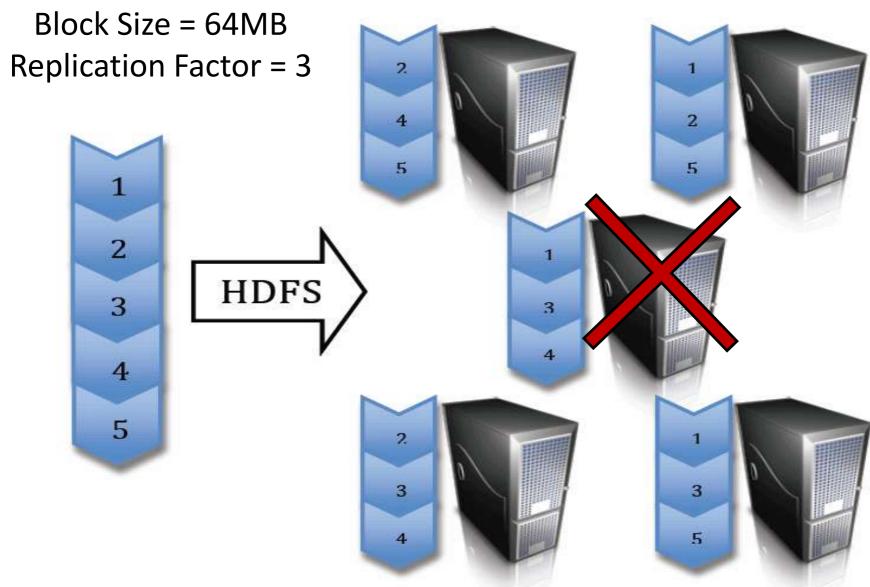
What is Hadoop

- A scalable fault-tolerant system for data storage and processing
 - Commodity hardware
 - HDFS: Fault-tolerant high-bandwidth clustered storage
 - MapReduce: Distributed data processing
 - Works with structured and unstructured data
 - Open source, Apache license
 - Master (named-node) Slave architecture

Hadoop Projects

ZooKeeper (Coordination)

ETL Tools BI Reporting Pig (Data Flow) Hive (SQL) MapReduce (Job Scheduling/Execution System) (Streaming/Pipes APIs) HBase (key-value store) **HDFS** (Hadoop Distributed File System)


Chukwa (Monitoring)

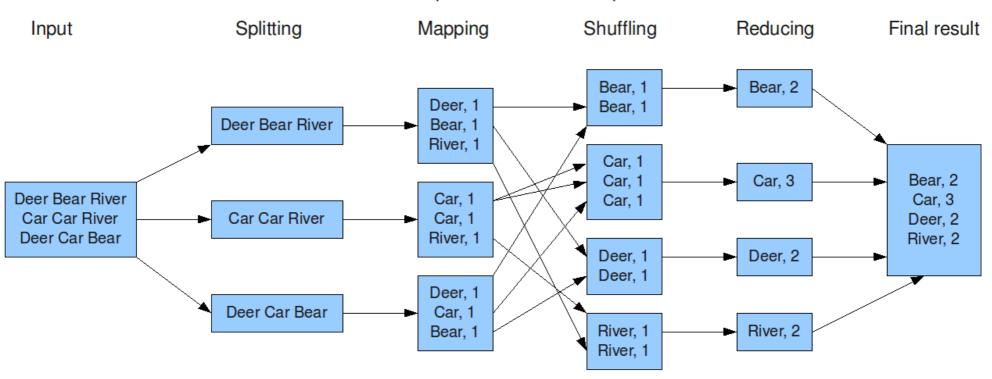
HDFS: Hadoop Distributed FS

MapReduce

- Patented Google framework
- Distributed processing of large datasets

```
map (in_key, in_value) ->
  list(out_key, intermediate_value)

reduce (out_key,
  list(intermediate_value)) ->
  list(out_value)
```



MapReduce

The overall MapReduce word count process

Where and When using Hadoop

Where

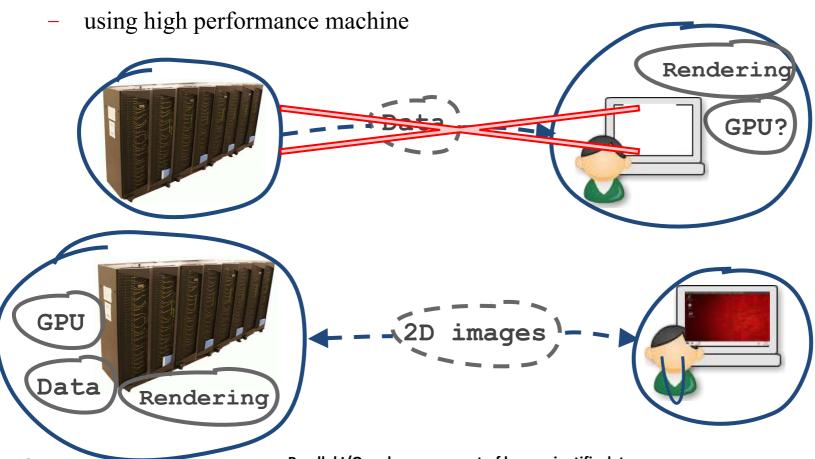
- Batch data processing, not realtime / user facing
- Highly parallel data intensive distributed applications
- Very large production deployments (GRID)

When

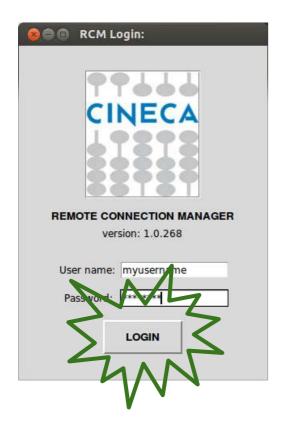
- Process lots of unstructured data
- When your processing can easily be made parallel
- Running batch jobs is acceptable
- When you have access to lots of cheap hardware

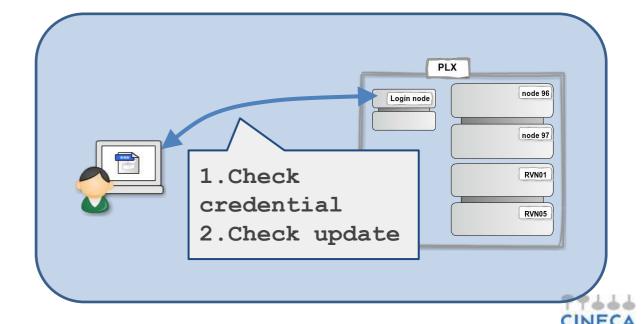
Agenda

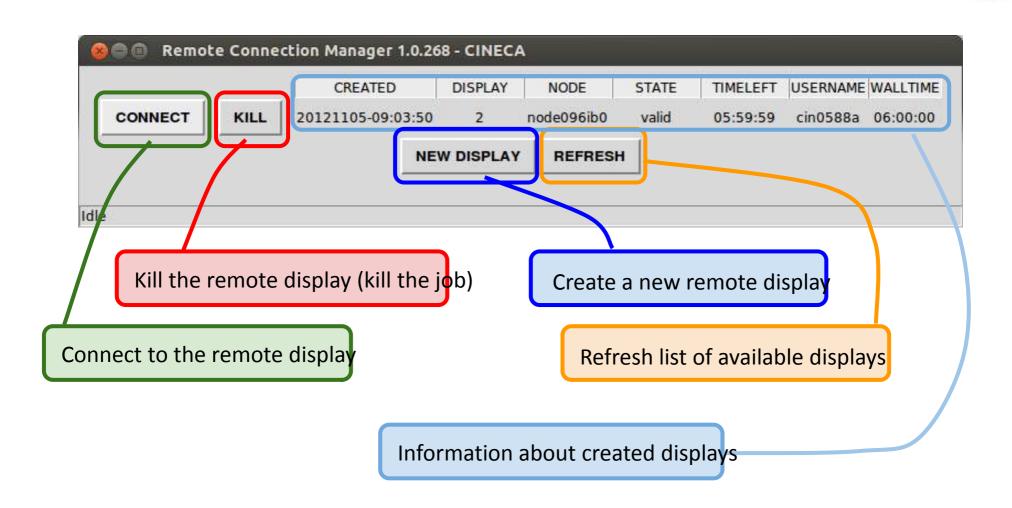
- Bulk data transfer
 - Tools and techniques
- BigData techniques
 - Hadoop/MapReduce
- Data post-processing
 - Remote visualization



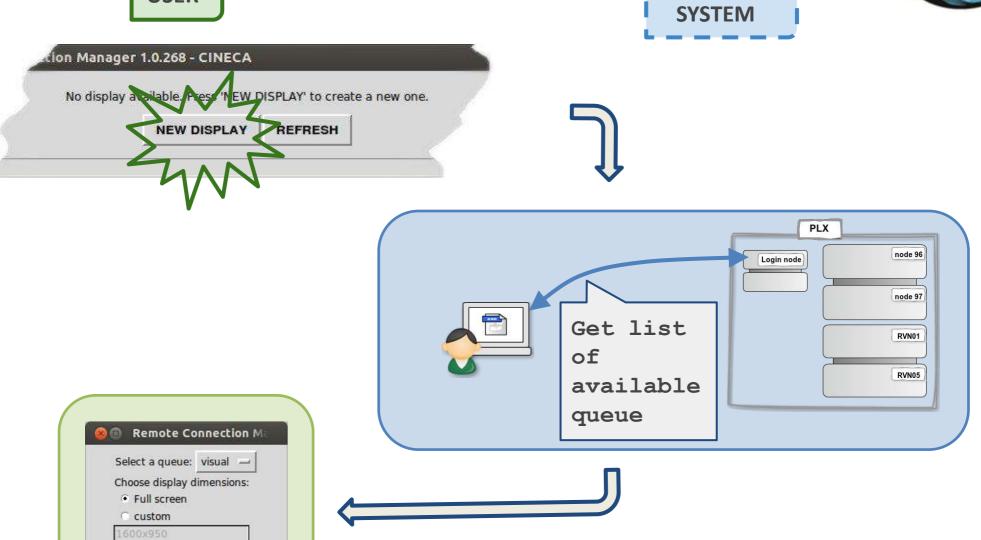
Remote Visualization


- Perform scientific visualization on large amounts of data produced on HPC systems
 - without moving data



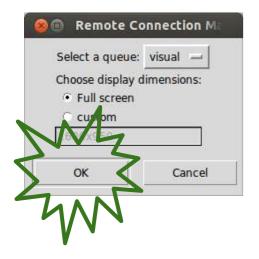


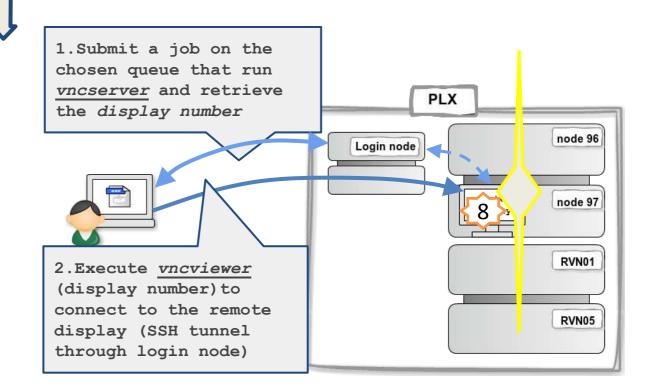
RCM - Display info


RCM - New display (1)

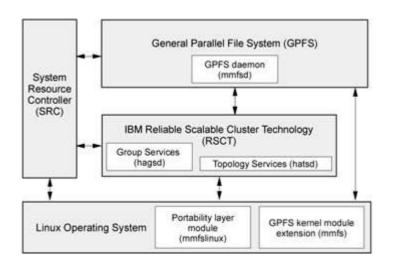
OK

Cancel



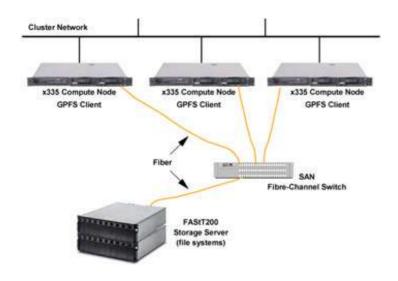

RCM - New display (2)

References


- CINECA services and documentation
 - http://www.hpc.cineca.it/services
- Get in touch
 - hpc-service-int@cineca.it

GPFS

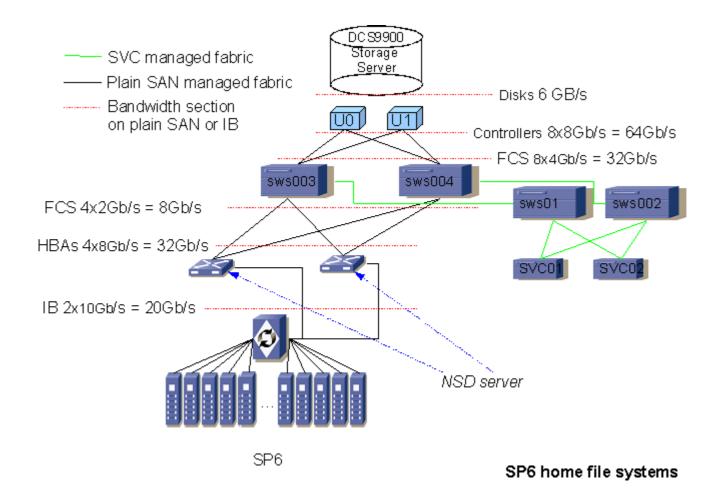
GPFS is based on the following components:


- A kernel extension
- GPFS daemon
- RSCT daemons
- Portability layer module

GPFS

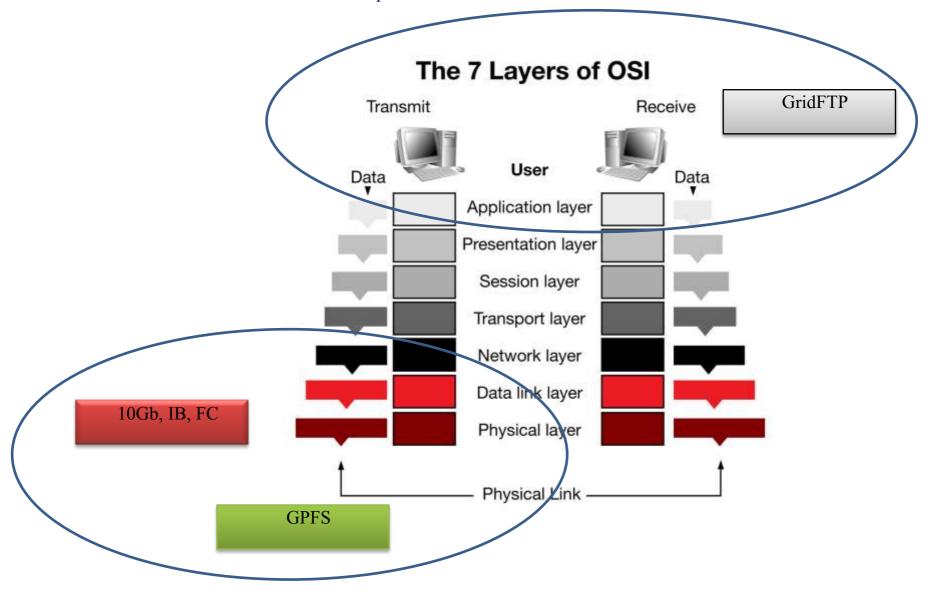
Direct attached disks

Primary and secondary servers



GPFS

...an hold example



Bulk data movement

Different optimization at different scale

Credits

- NICS Scientific Computing Group
 - http://www.nics.tennessee.edu/
- Energy Sciences Network
 - http://fasterdata.es.net
- Lawrence Berkeley National Laboratory
 - http://www.lbl.gov/
- Argonne National Laboratory
 - www.anl.gov

