
Parallel IO: basics and MPI2-IO

SuperComputing Applications and Innovation Department

Courses Edition 2015

1

Introduction

• IO is a crucial issue in the modern high performance codes:

– deal with very large datasets while running massively parallel

applications on supercomputers

– amount of data saved is increased

– latency to access to disks is not trascurable

– data portability (e.g. endianism)

• Solution to avoid that IO became a bottleneck:

– HW: parallel file-system available on all the HPC platform

– SW: high level libraries able to manage parallel accesses to the file in

efficient way (e.g. MPI2-IO, HDF5, NetCDF, …)

2

Parallel IO

Goals:

• Improve the performance

• Ensure data consistency

• Avoid communication

• Usability

Possible solutions:

1. Master-Slave

2. Distributed

3. Coordinated

4. MPI-IO or high level libraries
(e.g. HDF5, NetCDF use MPI-IO as the backbone)

8

Solution 1: Master-Slave

Only 1 processor performs IO

Pe1

Pe2

Pe3

Pe0 Data File

Goals:

Improve the performance: NO

Ensure data consistency: YES

Avoid communication: NO

Usability: YES

note: no parallel FS needed

Parallel IO

9

Solution 2: Distributed IO

All the processors read/writes their own files

Pe1

Pe2

Pe3

Data File 0

Goals:

Improve the performance: YES

(but be careful)

Ensure data consistency: YES

Avoid communication: YES

Usability: NO (need extra work later)

Pe0

Data File 3

Data File 2

Data File 1

Warning: avoid to parametrize with

processors!!!

Parallel IO

10

Solution 3: Distributed IO on single file

All the processors read/writes on a single ACCESS = DIRECT file

Pe1

Pe2

Pe3

Goals:

Improve the performance: YES for read,

NO for write

Ensure data consistency: NO

Avoid communication: YES

Usability: YES (portable !!!)
Pe0

Data File

Parallel IO

11

Solution 4: MPI2 IO

MPI functions performs the IO. Asynchronous IO is supported.

Pe1

Pe2

Pe3

Goals:

Improve the performance: YES

(strongly!!!)

Ensure data consistency: NO

Avoid communication: YES

Usability: YES
Pe0

Data File

MPI2

Parallel IO

12

I/O Patterns in Parallel applications:

• Different from those in sequential programs, which usually

access data in contiguous chunks

• In many parallel programs, each program may need to access

several non-contiguous pieces of data from a file

• In addition, groups of processes may need to access the file

simulataneously, and the accesses of different processes

may be interleaved in the file

Pe1

Pe2

Parallel IO

13

Most parallel file-system have UNIX like API

• open, open a file -> may be expensive

• lseek, move the pointer to a particular offset of the file ->

performance depend on the implementation

• read/write, read/write n bytes starting from the current

position of the pointer

• perform well if I/O size is large 1Mb or more, very poorly if

size is small < 8Kb

• close, close the file -> not expensive as open, but not so

cheap

Pe1

Pe2

Unix APIs for I/O 1/3

14

Other I/O functions:

• readv, writev

• read into/write from multiple buffers in memory

• in the file, however, data is assumed to be contiguously

located

• of limited use because the users need to specify

noncontiguity in the file more often than in memory

• aio_read,aio_write, POSIX, asynchronous, performance is not

good enough, usually

• list I/O in POSIX: users can specify a list of operations at a

time

• it doesn't treat the list as a single element

• no notion of collective I/O

• each operation is internally performed as a separate

aio_read, aio_write

Unix APIs for I/O 2/3

15

Problems with UNIX API for parallel I/O

• Non contiguous access cannot be expressed as a single call:

each contiguous piece must be accessed separately resulting

in too many system calls and poor performance

• No notion of collective I/O

MPI-IO can be considered as UNIX-IO plus a lot of stuff more

Unix APIs for I/O 3/3

16

MPI2-IO

MPI-2.x features for Parallel IO

• MPI-IO: introduced in MPI-2.x standard(1997)

– Non contiguous access in both memory and file

– reading/writing a file is like send/receive a message from a MPI buffer

– optimized access to non-contiguous data

– collective / non-collective access operations with communicators

– blocking / non-blocking calls

– data portability (implementation/system independent)

– good performance in many implementations

• Why do we start to use it???

– syntax and semantic are very simple to use

– performance : 32 MPI processes (4x8) with local grid 100002 (dp)

• MPI-IO: 48sec vs Traditional-IO: 3570sec

• dimension of written file is 24Gb

18

Starting with MPI-IO

• MPI-IO provides basic IO operations:

– open, seek, read, write, close (ecc.)

• open/close are collective operations on the same file

– many modalities to access the file (composable: |,+)

• read/write are similar to send/recv of data to/from a buffer

– Each MPI process has own local pointer to the file
(individual file pointer) by seek,read,write operations

– offset variable is a particular kind of variable and it is given in

elementary unit (etype) of access to file (default in byte)

• error: declare offset as an integer

– it is possible to know the exit status of each subroutine/function

19

Open/close a file 1/3

 Collective operation across processes within a communicator.

 Filename must reference the same file on all processes.

 Process-local files can be opened with MPI_COMM_SELF.

 Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation. The file view can be changed via the
MPI_FILE_SET_VIEW routine.

 Additional information can be passed to MPI environment via the MPI_Info handle.
The info argument is used to provide extra information on the file access patterns.
The constant MPI_INFO_NULL can be specified as a value for this argument.

MPI_FILE_OPEN(comm, filename, amode, info, fh)
IN comm: communicator (handle)

IN filename: name of file to open (string)

IN amode: file access mode (integer)

IN info: info object (handle)

OUT fh: new file handle (handle)

20

Open/close a file 2/3

Each process within the communicator must specify the same filename and

access mode (amode):

MPI_MODE_RDONLY read only

MPI_MODE_RDWR reading and writing

MPI_MODE_WRONLY write only

MPI_MODE_CREATE create the file if it does not exist

MPI_MODE_EXCL error if creating file that already exists

MPI_MODE_DELETE_ON_CLOSE delete file on close

MPI_MODE_UNIQUE_OPEN file will not be concurrently opened elsewhere

MPI_MODE_SEQUENTIAL file will only be accessed sequentially

MPI_MODE_APPEND set initial position of all file pointers to end of file

21

Open/close a file 3/3

MPI_FILE_CLOSE(fh)

INOUT fh: file handle (handle)

 Collective operation

 Call this function when the file access is finished to free the file handle.

22

Passing Info to MPI-IO

• Several parallel file system can benefit from “hints” given to MPI-IO

– optimization may be possible with performance benefits

• Info to MPI are opaque objects (MPI_Info in C or integer in FORTRAN)

• hints can be provided as (key, value) pairs with MPI_Info_set function

23

MPI_Info info;

MPI_Info_create(&info);

// set number of I/O devices across which the file should be striped

MPI_Info_set(info, “striping_factor”, “4”);

// set the striping unit in bytes

MPI_Info_set(info, “striping_unit”, “65536”);

// buffer size of collective I/O

MPI_Info_set(info, “cb_buffer_size”, “8388608”);

// number of processes that should perform disk accesses during collective I/O

MPI_Info_set(info, “cb_nodes”, “4”);

Getting Info from MPI-IO

• Info can also be retrived from the implementation

– which hints where used for a file?

– which default are actually in use?

24

char key[MPI_MAX_INFO_KEY], value[MPI_MAX_INFO_VAL];

MPI_Info info_used;

MPI_File_get_info(fh, &info_used);

int nkeys;

MPI_Info_get_nkeys(info_used, &nkeys);

for (int i=0; i<nkeys; i++) {

MPI_Info_get_nthkey(info_used, i, key);

int flag; // return true if key was set

MPI_Info_get(info_used, key, MPI_MAX_INFO_VAL, value, &flag);

printf(“key = %s, value = %s\n”, key, value);

}

• MPI-2 provides a large number of routines to read and write data from a

file. There are three properties which differentiate data access routines.

• Positioning: Users can either specify the offset in the file at which the
data access takes place or they can use MPI file pointers:

– Individual file pointers: each process has its own file pointer that is

only altered on accesses of that specific process

– Shared file pointer: pointer is shared among all processes in the

communicator used to open the file

• It is modified by any shared file pointer access of any process

• Shared file pointers can only be used if file type gives each process

access to the whole file!

– Explicit offset: no file pointer is used or modified

• An explicit offset is given to determine access position

• This can not be used with MPI MODE SEQUENTIAL!

25

Data Access 1/3

Data Access 2/3

Synchronisation:

MPI-2 supports both blocking and non-blocking IO routines:

– A blocking IO call will not return until the IO request is completed.

– A nonblocking IO call initiates an IO operation, but not wait for its

completition. It also provides 'split collective routines' which are a

restricted form of non-blocking routines for collective data access.

Coordination:

Data access can either take place from individual processes or

collectively across a group of processes:

– collective: MPI coordinates the reads and writes of processes

– independent: no coordination by MPI

26

Data Access 3/3

27

MPI_FILE_WRITE (fh, buf, count, datatype, status)

INOUT fh: file handle (handle)

IN buf: initial address of buffer (choice)

IN count: number of elements in buffer (integer)

IN datatype: datatype of each buffer elemnt (handle)

OUT status: status object (status)

– Write count elements of datatype from memory starting at buf to the file

– Starts writing at the current position of the file pointer

– status will indicate how many bytes have been written

– Updates position of file pointer after writing

– Blocking, independent.

– Individual file pointers are used:

Each processor has its own pointer to the file

Pointer on a processor is not influenced by any other processor

Individual file pointers - Write

28

Individual file pointers - Read

MPI_FILE_READ (fh, buf, count, datatype, status)

INOUT fh: file handle (handle)

OUT buf: initial address of buffer (choice)

IN count: number of elements in buffer (integer)

IN datatype: datatype of each buffer element (handle)

OUT status: status object (status)

– Read count elements of datatype from the file to memory starting at buf

– Starts reading at the current position of the file pointer

– status will indicate how many bytes have been read

– Updates position of file pointer after writing

– Blocking, independent.

– Individual file pointers are used:

Each processor has its own pointer to the file

Pointer on a processor is not influenced by any other processor

29

Seeking to a file position

MPI_FILE_SEEK (fh, offset, whence)

INOUT fh: file handle (handle)

IN offset: file offset in byte (integer)

IN whence: update mode (state)

– Updates the individual file pointer according to whence, which can have the
following values:

– MPI_SEEK_SET: the pointer is set to offset

– MPI_SEEK_CUR: the pointer is set to the current pointer position plus
offset

– MPI_SEEK_END: the pointer is set to the end of the file plus offset

– offset can be negative, which allows seeking backwards

– It is erroneous to seek to a negative position in the view

30

Querying the position

MPI_FILE_GET_POSITION (fh, offset)

IN fh: file handle (handle)

OUT offset: offset of the individual file pointer (integer)

– Returns the current position of the individual file pointer in offset

– The value can be used to return to this position or calculate a displacement

– Do not forget to convert from offset to byte displacement if needed

31

#include “mpi.h”

#define FILESIZE(1024*1024)

int main(int argc, char **argv){

int *buf, rank, nprocs, nints, bufsize;

MPI_File fh; MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints =bufsize/sizeof(int);

buf = (int*) malloc(nints);

MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”, MPI_MODE_RDONLY,

MPI_INFO_NULL,&fh);

MPI_File_seek(fh, rank*bufsize,MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

free(buf);

MPI_Finalize();

return 0;

}

Using individual file pointers

File offset

determined by

MPI_File_seek

32

PROGRAM Output

USE MPI

IMPLICIT NONE

INTEGER :: err, i, myid, file, intsize

INTEGER :: status(MPI_STATUS_SIZE)

INTEGER, PARAMETER :: count=100

INTEGER DIMENSION(count) :: buf

INTEGER, INTEGER(KIND=MPI_OFFSET_KIND) :: disp

CALL MPI_INIT(err)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid,err)

DO i = 1, count

buf(i) = myid * count + i

END DO

CALL MPI_FILE_OPEN(MPI_COMM_WORLD, 'test', MPI MODE WRONLY + &

MPI_MODE_CREATE, MPI_INFO_NULL, file, err)

CALL MPI_TYPE_SIZE(MPI_INTEGER, intsize,err)

disp = myid * count * intsize

CALL MPI_FILE_SEEK(file, disp, MPI_SEEK_SET, err)

CALL MPI_FILE_WRITE(file, buf, count, MPI_INTEGER, status, err)

CALL MPI_FILE_CLOSE(file, err)

CALL MPI_FINALIZE(err)

END PROGRAM Output

Using individual file pointers

File offset

determined by

MPI_File_seek

33

MPI_FILE_WRITE_AT (fh, offset, buf, count, datatype, status)

IN fh: file handle (handle)

IN offset: file offset in byte (integer)

IN buf: source buffer

IN count: number of written elements
IN datatype: MPI type of each element

OUT status: MPI status

Explicit offset – Write

– An explicit offset is given to determine access position

– The file pointer is neither used or incremented or modified

– Blocking, independent.

– Writes COUNT elements of DATATYPE from memory BUF to the file

– Starts writing at OFFSET units of etype from begin of view

– The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must

match contiguous copies of the etype of the current view

34

MPI_FILE_READ_AT (fh, offset, buf, count, datatype, status)

IN fh: file handle (handle)

IN offset: file offset in byte (integer)

IN buf: destination buffer

IN count: number of read elements
IN datatype: MPI type of each element

OUT status: MPI status

Explicit offset – Read

– An explicit offset is given to determine access position

– The file pointer is neither used or incremented or modified

– Blocking, independent.

– reads COUNT elements of DATATYPE from FH to memory BUF

– Starts reading at OFFSET units of etype from begin of view

– The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must

match contiguous copies of the etype of the current view

35

PROGRAM main

include 'mpif.h'

parameter (FILESIZE=1048576, MAX_BUFSIZE=1048576, INTSIZE=4)

integer buf(MAX_BUFSIZE), rank, ierr, fh, nprocs, nints

integer status(MPI_STATUS_SIZE), count

integer (kind=MPI_OFFSET_KIND) offset

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', MPI_MODE_RDONLY,

MPI_INFO_NULL, &

fh, ierr)

nints = FILESIZE/(nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)

call MPI_FINALIZE(ierr)

END PROGRAM main

Using explicit offsets

38

MPI_FILE_WRITE_SHARED (fh, buf, count, datatype, status)

MPI_FILE_READ_SHARED (fh, buf, count, datatype, status)

– Blocking, independent write/read using the shared file pointer

– Only the shared file pointer will be advanced accordingly

– DATATYPE is used as the access pattern to BUF

– Middleware will serialize accesses to the shared file pointer to ensure collision-free

file access

Shared file pointer – Write, Read

39

MPI_FILE_SEEK_SHARED(fh, offset, whence)

Seeking and quering the

shared file pointer position

– Updates the individual file pointer according to WHENCE (MPI_SEEK_SET, MPI_SEEK_CUR,

MPI_SEEK_END)

– OFFSET can be negative, which allows seeking backwards

– It is erroneous to seek to a negative position in the view

– The call is collective : all processes with the file handle have to participate

41

MPI_FILE_GET_POSITION_SHARED(fh, offset)

– Returns the current position of the individual file pointer in OFFSET

– The value can be used to return to this position or calculate a displacement

– Do not forget to convert from offset to byte displacement if needed

– Call is not collective

Advanced features of MPI-IO

• Basic MPI-IO features are not useful when

– Data distibution is non contiguous in memory and/or in the file

• e.g., ghost cells

• e.g., block/cyclic array distributions

– Multiple read/write operations for segmented data generate poor
performances

• MPI-IO allow to access to data in different way:

– non contiguous access on file: providing the access pattern to file
(fileview)

– non contiguous access in memory: setting new datatype

– collective access: grouping multiple near accesses in one or more
single accesses (decreasing the latency time)

43

File view

• A file view defines which portion of a file is “visible” to a process

• File view defines also the type of the data in the file (byte, integer, float,

…)

• By default, file is treated as consisting of bytes, and process can access
(read or write) any byte in the file

• A default view for each participating process is defined implicitly while

opening the file

– No displacement

– The file has no specific structure (The elementary type is MPI_BYTE)

– All processes have access to the complete file (The file type is MPI

BYTE)

44

File View

A file view consists of three components

– displacement : number of bytes to skip from the beginning of file

– etype : type of data accessed, defines unit for offsets

– filetype : base portion of file visible to process same as etype or MPI

derived type consisting of etype

The pattern described by a filetype is repeated, beginning at the
displacement, to define the view, as it happens when creating

MPI_CONTIGUOUS or when sending more than one MPI datatype element:

HOLES are important!

etype
filetype

displacement filetype filetype
and so on...

FILE
head of file

45

holes

File View Example

• Define a file-view in order to have

– fundamental access unit (etype) is MPI_INT

– access pattern (fileytpe) is given by:

• first 2 fundamental units

• skips the next 4 fundamental units

– skips the first part (5 integers) of the file (displacement)

etype = MPI_INT

filetype = two MPI_INTs followed by

a gap of four MPI_INTs

displacement filetype filetype and so on...

FILEhead of file

46

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh: file handle (handle)

IN disp: displacement from the start of the file, in bytes (integer)

IN etype: elementary datatype. It can be either a pre-defined or a derived
datatype but it must have the same value on each process.(handle)

IN filetype: datatype describing each processes view of the file. (handle)

IN datarep: data representation (string)

IN info: info object (handle)

• It is used by each process to describe the layout of the data in the file

• All processes in the group must pass identical values for datarep and
provide an etype with an identical extent

• The values for disp, filetype, and info may vary

File View

47

• Data representation: define the layout and data access modes (byte

order, type sizes, ecc)

– native: (default) use the memory layout with no conversion

– no precision loss or conversion effort

• not portable

– internal: layout implementation-dependent

• portable for the same MPI implementation

– external32: standard defined by MPI (32-bit big-endian IEEE)

• portable (architecture and MPI implementation)

• some conversion overhead and precision loss

• not always implemented (e.g. Blue Gene/Q)

• Using or internal and external32, the portability is guaranteed only if

usiing the correct MPI datatypes (not using MPI_BYTE)

• Note: to be portable the best and widespread choice is to use high-
level libraries, e.g. HDF5 or NetCDF

Data Representation in File View

48

Passing hints to Filesystem

• MPI allows the user to provide information on the features of the File

System employed

– optionals

– may improve performances

– depend on the MPI implementation

– default: use MPI_INFO_NULL if you are not very expert

• Infos are objects created by MPI_Info_create

– elements key-value

– use MPI_Info_set to add elements

• ... refer to standard for more information and to manuals

– e.g., consider ROMIO implemenation of MPICH

– specific infos for different file-systems (PFS, PVFS, GPFS, Lustre, ...)

49

Devising the I/O strategy

• Three main tasks:

– let each process write to a different area without overlapping

– repeat (indefinitely?) a certain basic pattern

– write after an initial displacement

• Consider the following I/O pattern

to be replicated a certain amount of (unknown?) times

displacement base pattern base pattern and so on...

FILEhead of file

process 0 process 1 process 2

50

• If the whole amount of basic patterns is known (e.g. 10)

– define MPI vector with count=10, stride=6 and blocklength

depending on the process:

• P0 has 2 elements, P1 has 3 elements, and P2 has 1 element

– define the file view using different displacements in addition to

the base displacement dis: dis+0, dis+2 and dis+5

I strategy: data-type replication

filetype 10 replicationsdis

FILEhead of file

process 0 process 1 process 2

51

Use data-type replication

int count_proc[]={2,3,1};

int count_disp[]={0,2,5};

MPI_Datatype vect_t;

MPI_Type_vector(DIM_BUF, count_proc[myrank],6,MPI_INT, &vect_t);

MPI_Type_commit(&vect_t);

int size_int;

MPI_Type_size(MPI_INT,&size_int);

offset = (MPI_Offset)count_disp[myrank]*size_int;

MPI_File_set_view(fh,offset,MPI_INT,vect_t, "native",MPI_INFO_NULL);

MPI_File_write(fh, buf, my_dim_buf, MPI_INT, &mystatus);

52

displacement filetype and so on...

• If the whole amount of basic patterns is unknown, it is possible to

exploit the replication mechanism of the MPI file view

– define MPI contiguous with lengths 2, 3 and 1, respectively

– resize the types adding holes (on the left and on the right)

– set the file view with displacements to balance the left holes

• When writing more than a filetype, a replication occurs; as it happens

when sending more than one data, setting the holes is crucial!

II strategy: file view replication

displacement filetype filetype and so on...

FILE
head of file

process 0 process 1 process 2

53

Use file view replication

MPI_Datatype cont_t;

MPI_Type_contiguous(count_proc[myrank], MPI_INT, &cont_t);

MPI_Type_commit(&cont_t);

MPI_Aint lb_int, extent_int;

MPI_Type_get_extent(MPI_INT,&lb_int,&extent_int);

MPI_Aint lb_proc[]={0,-2*extent_int,-5*extent_int};

MPI_Datatype filetype;

MPI_Type_create_resized(cont_t, lb_proc[myrank], (MPI_Aint)

6*extent_int, &filetype);

MPI_Type_commit(&filetype);

offset = -lb_proc[myrank];

MPI_File_set_view(fh, offset, MPI_INT, filetype, "native",

MPI_INFO_NULL);

MPI_File_write(fh, buf, my_dim_buf, MPI_INT, &mystatus);

54

displacement filetype filetype and so on...

How to replicate patterns?

• Which is the best replication strategy?

– If possible, data-type replication is probably better (just one

operation)

– Surely, easier to be implemented

– But exploiting file view replication is mandatory when then

number of read/writes is not known a priori

55

displacement and so on...

Non-contiguous access:

with known replication pattern

• Each process has to access small pieces of data scattered throughout a file

• Very expensive if implemented with separate reads/writes

• Use file type to implement the non-contiguous access

• Again, employ data-type replication mechanism

File written per row

2D-array distributed

column-wise

58

Non-contiguous access:

with known replication pattern

...

INTEGER :: count = 4

INTEGER, DIMENSION(count) :: buf

...

CALL MPI_TYPE_VECTOR(4, 1, 4, MPI_INTEGER, filetype, err)

CALL MPI_TYPE_COMMIT(&filetype, err)

disp = myid * intsize

CALL MPI_FILE_SET_VIEW(file, disp, MPI_INTEGER, filetype,

“native”, MPI_INFO_NULL, err)

CALL MPI_FILE_WRITE(file, buf, count,MPI_INTEGER, status, err)

File written per row

2D-array distributed column-wise

59

• Write a MPI code where each process stores the following memory layout

• Write a code that writes and reads a binary file in parallel according to

the following three steps

Hands-on 1: MPI-I/O basics

60

I) First process writes integers 0-9 from the beginning of the file, the

second process writes integer 10-19 from the position 10 in the file and

so on. Use the individual file pointers.

II) Re-open the file. Each process reads the data just written by using an

explicit offset. Check that the reading has been performed correctly.

III) Each process writes the data just read, according to the following

pattern (assuming that there are 4 processors):

• Check the result using the shell command:

od –i output.dat

Hands-on 1: MPI-I/O basics

61

Non-contiguous access:

distributed matrix

• When distributing multi-dimensional arrays among processes, we

want to write files which are independent of the decomposition

– written according to a usual serial order

in row major order (C) or column major order (Fortran)

• The datatype SUBARRAY may easily handle this situation

• 2D array, size (m,n) distributed

among six processes

• cartesian layout 2x3

n columns

m

rows

P0

(0,0)

P1

(0,1)

P2

(0,2)

P3

(1,0)

P4

(1,1)

P5

(1,2)

62

gsizes[0] = m; /* no. of rows in global array */

gsizes[1] = n; /* no. of columns in global array*/

psizes[0] = 2; /* no. of procs. in vertical dimension */

psizes[1] = 3; /* no. of procs. in horizontal dimension */

lsizes[0] = m/psizes[0]; /* no. of rows in local array */

lsizes[1] = n/psizes[1]; /* no. of columns in local array */

dims[0] = 2; dims[1] = 3;

periods[0] = periods[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);

MPI_Comm_rank(comm, &rank);

MPI_Cart_coords(comm, rank, 2, coords);

/* global indices of first element of local array */

start_indices[0] = coords[0] * lsizes[0];

start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

63

Non-contiguous access:

distributed matrix

Ghost cells, typical case

• Local data may be considered as a subarray

• Using MPI_Type_create_subarray we can filter the local data creating a

subarray

• This type will be used as access basic type to communicate or to perform I/O

(0,0)

(107,0) (107,107)

(0,107)

(103,4)

(4,103)(4,4)

(103,103)

local data

• local array with sizes (100,100)

allocated with sizes (108,108) to store

• ghost areas along edges

• ghost area are filled with neighbouring

processes data

• local data are stored from position (4,4)

• non-contiguous memory access is

needed

64

Ghost cells, typical case

/* create a derived datatype describing the layout of local array in memory buffer that

includes ghosts .This is just another sub-array datatype! */

memsizes[0] = lsizes[0] + 8; /* rows in allocated array */

memsizes[1] = lsizes[1] + 8; /* columns in allocated array */

/* indices of first local elements in the allocated array */

start_indices[0] = start_indices[1] = 4;

MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &memtype);

MPI_Type_commit(&memtype);

/* create filetype and set fileview as in subarray example */

...

/* write local data as one big new datatype */

MPI_File_write_all(fh, local_array, 1, memtype, &status);

65

Collective, blocking IO

IO can be performed collectively by all processes in a communicator

Same parameters as in independent IO functions (MPI_File_read etc)

– MPI_File_read_all

– MPI_File_write_all

– MPI_File_read_at_all

– MPI_File_write_at_all

– MPI_File_read_oredered

– MPI_File_write_ordered

All processes in communicator that opened file must call function

Performance potentially better than for individual functions

– Even if each processor reads a non-contiguous segment, in total the read is
contiguous

67

Collective, blocking IO

int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

int MPI_File_read_all(MPI_File mpi_fh, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• With collective IO ALL the processors defined in a communicator

execute the IO operation

• This allows to optimize the read/write procedure

• It is particularly effective for non atomic operations

68

Independent, nonblocking IO

This is just like non blocking communication.

Same parameters as in blocking IO functions (MPI_File_read etc)

– MPI_File_iread

– MPI_File_iwrite

– MPI_File_iread_at

– MPI_File_iwrite_at

– MPI_File_iread_shared

– MPI_File_iwrite_shared

MPI_Wait must be used for synchronization.

Can be used to overlap IO with computation

71

Collective, nonblocking IO

For collective IO only a restricted form of nonblocking IO is supported, called Split

Collective.

MPI_File_read_all_begin(MPI_File mpi_fh, void *buf, int count, MPI_Datatype

datatype)

…computation…

MPI_File_read_all_end(MPI_File mpi_fh, void *buf, MPI_Status *status);

– Collective operations may be split into two parts

– Only one active (pending) split or regular collective operation per file handle at any

time

– Split collective operations do not match the corresponding regular collective

operation

– Same BUF argument in _begin and _end calls

72

Consistency

• No concistency problems rise when there are no overlapping regions

(bytes) accessed by any two processes

• MPI does not guarantee that data will automatically read correclty, when

accesses of any two processes overlap in the file

• The user must take care of consistency. There are three choices:

– using atomic accesses

– close and reopen the file

– ensure that no “write sequence” on any process is concurrent

with “any sequence (read/write)” on another process

73

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh1)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, ...)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, ...)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh2)

MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, ...)

MPI_File_read_at (fh2, 0, buf, 100, MPI_BYTE, ...)

Using Atomicity for Consistency

• Change file-access mode to atomic before the write on each process

• MPI guarantees that written data can be read immediatly by another

process

• note: the barrier after the writes to ensure each process has completed

its write before the read is issued from the other process

74

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh1)

MPI_File_set_atomicity(fh1, 1)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, ...)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, ...)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh2)

MPI_File_set_atomicity(fh2, 1)

MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, ...)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_read_at (fh2, 0, buf, 100, MPI_BYTE, ...)

Close/Open file for Consistency

• Close the file and reopen just after write operations if other processes

need data just written by other processes

• note: each file open operation will create a different MPI context

context will be cleared after each close operation

75

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh1)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, ...)

MPI_File_close(&fh1)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh1)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, ...)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh2)

MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, ...)

MPI_File_close(&fh2)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh2)

MPI_File_read_at (fh2, 0, buf, 100, MPI_BYTE, ...)

Understanding IO Sequences

• An IO sequence is defined as a set of file operations bracketed by any pair

of the functions MPI_File_open, MPI_File_close, MPI_File_sync

• A sequence is a “write sequence” if contains write operations

• MPI guarantees that the data written by a process can be read by another
process if the “write sequence” is not concurrent (in time) with any

sequence on any other process

76

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh1)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, ...)

MPI_File_sync(&fh1)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(&fh1)

MPI_File_sync(&fh1)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(&fh1)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, ...)

MPI_File_close(&fh1)

MPI_File_open(MPI_COMM_WORLD, “file”,, &fh2)

MPI_File_sync(&fh2)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(&fh21)

MPI_File_write_at(fh12, 0, buf, 100, MPI_BYTE, ...)

MPI_File_sync(&fh2)

MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(&fh2)

MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, ...)

MPI_File_close(&fh2)

Use cases

1. Each process has to read in the complete file

 Solution: MPI_FILE_READ_ALL

 Collective with individual file pointers, same view

(displacement, etype, filetype) on all processes

 Internally: read in once from disk by several processes

(striped), then distributed broadcast

2. The file contains a list of tasks, each task requires a different amount

of computing time

 Solution: MPI_FILE_READ_SHARED

• Non-collective with a shared file pointer

• Same view on all processes (mandatory)

77

Use cases

3. The file contains a list of tasks, each task requires the same amount of

computing time

Solution A : MPI_FILE_READ_ORDERED

• Collective with a shared file pointer

• Same view on all processes (mandatory)

Solution B : MPI_FILE_READ_ALL

• Collective with individual file pointers

• Different views: filetype with

MPI_TYPE_CREATE_SUBARRAY

Internally: both may be implemented in the same way.

78

Use cases

4. The file contains a matrix, distributed block partitioning, each process
reads a block

Solution: generate different filetypes with MPI_TYPE_CREATE_DARRAY
• The view of each process represents the block that is to be

read by this process

• MPI_FILE_READ_AT_ALL with OFFSET=0
• Collective with explicit offset
• Reads the whole matrix collectively
• Internally: contiguous blocks read in by several processes

(striped), then distributed with all-to-all.

5. Each process has to read the complete file
Solution: MPI_FILE_READ_ALL_BEGIN/END

• Collective with individual file pointers
• Same view (displacement, etype, filetype) on all processes
• Internally: asynchronous read by several processes

(striped) started, data distributed with bcast when striped
reading has finished

79

• When designing your code, think I/O carefully!

– maximize the parallelism

– if possible, use a single file as restart file and simulation output

– minimize the usage of formatted output (do you actually need it?)

• Minimize the latency of file-system access

– maximize the sizes of written chunks

– use collective functions when possible

– use derived datatypes for non-contiguous access

• If you are patient, read MPI standards, MPI-2.x or MPI-3.x

• Employ powerful and well-tested libraries based on MPI-I/O:

– HDF5 or NetCDF

Best Practices

80

• MPI – The Complete Reference vol.2, The MPI Extensions

(W.Gropp, E.Lusk et al. - 1998 MIT Press)

• Using MPI-2: Advanced Features of the Message-Passing Interface

(W.Gropp, E.Lusk, R.Thakur - 1999 MIT Press)

• Standard MPI-2.x (or the last MPI-3.x)

(http://www.mpi-forum.org/docs)

• Users Guide for ROMIO (Thakur, Ross, Lusk, Gropp, Latham)

• ... a bit of advertising:
corsi@cineca.it (http://www.hpc.cineca.it)

• ...practice practice practice

Useful links

81

QUESTIONS ???

• Write a program which decomposes an integer matrix (m x n) using a 2D

MPI Cartesian grid

– Handle the remainders for non multiple sizes

– Fill the matrix with the row-linearized indexes

Aij = m · i + j

– Reconstruct the absolute indexes from the local ones

– Remember that in C the indexes of arrays start from 0

• Writes to file the matrix using MPI-I/O collective write and using MPI data-

types

– Which data-type do you have to use?

Hands-on 2: MPI-I/O & subarrays

83

11 12 13

14 15 16

17 18 19

20 21 22

• Check the results using:

– Shell Command

od -i output.dat

– Parallel MPI-I/O read functions (similar to write structure)

– Serial standard C and Fortran check

• only rank=0 performs check

• read row-by-row in C and column-by-column in Fortran and check

each element of the row/columns

• use binary files and fread in C

• use unformatted and access='stream' in Fortran

• Which one is the most scrupoulous check?

– is the Parallel MPI-I/O check sufficient?

Hands-on 2: MPI-I/O & subarrays

84

Rights & Credits

These slides are copyrighted CINECA 2014 and are released under the

Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written permission

from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

• Luca Ferraro

• Francesco Salvadore

85

