
I/O: State of the art and
Future developments

Giorgio Amati

SCAI Dept.

Rome, 14/15 May 2015

Some questions

 Just to know each other:

 Why are you here?

 Which is the typical I/O size you work with?

 GB?

 TB?

 Is your code parallelized?

 How many cores are you intended to use?

 Are you working in a small group or you need to exchange
data with other researchers?

 Which language do you use?

“Golden” rules about I/O

 Reduce I/O as much as possible: only relevant data must be
stored on disks

 Save data in binary/unformatted form:

 asks for less space comparing with ASCI/formatted ones

 It is faster (less OS interaction)

 Save only what is necessary to save for restart or
checkpointing, everything else, unless for debugging reason or
quality check, should be computed on the fly.

 Dump all the quantities you need once, instead of using
multiple I/O calls: if necessary use a buffer array to store all
the quantities and the save the buffer using only a few I/O
calls.

 Why?

What is I/O?

1. DATA

2. fwritef, fscanf, fopen, fclose, WRITE, READ, OPEN, CLOSE

3. Call to an external library: MPI I/O, HDF5, NetCDF, ecc…

4. Scalar/parallel/network Filesystems

1. I/O nodes and Filesystem cache

2. I/O network (IB, SCSI, Fibre, ecc..)

3. I/O RAID controllers and Appliance (Lustre, GPFS)

4. Disk cache

5. FLASH/Disk (one or more Tier)

5. Tape

Latencies

 I/O operations involves

 OS & libraries

 IO devices (e.g. RAID controllers)

 Disks

 I/O latencies of disks are of the order of
microseconds

 RAM latencies of the order of 100-1000
nanoseconds

 FP unit latencies are of the order of 1-10

nanoseconds

 I/O very slow compared to RAM of FP unit

Architectural trends

Peak Performance Moore law

FPU Performance Dennard law

Number of FPUs Moore + Dennard

App. Parallelism Amdahl's law

Architectural trends

Number of cores 10^9

Memory x core

Memory BW/core 500GByte/sec

Memory hierachy Reg, L1, L2, L3, …

100Mbyte or less

2020 estimates

Architectural trends

Network links/node 100

Disk perf

Number of disks 100K

100Mbyte/sec

2020 estimates

Wire BW/core 1GByte/sec

What is parallel I/O?

 A more correct definition in tomorrow

 Serial I/O

 1 task writes all the data

 Parallel I/O

 All task write its own data in a different file

 All task write its own data in a single file

 MPI/IO, HDF5, NetCDF, CGNS,……

Why parallel I/O?

 New Architectures: many many core (up to 10^9)

 As the number of task/threads increases I/O overhead start to
affect performance

 I/O (serial) will be a serious bottleneck

 Parallel I/O is mandatory else no gain in using many many
core

 Other issues:

 Domain decomposition

 ASCII vs binary

 Endianess

 blocksize

 Data management

I/O: Domain Decomposition

 I want to restart a simulation using a different number of
tasks: three solutions

 pre/postprocessing (merging & new decomposition)

 Serial dump/restore

 Parallel I/O

I/O: ascii vs. binary/1

 ASCII is more demanding respect binary in term of disk
occupation

 Numbers are stored in bit (single precision floating point
number 32 bit)

 1 single precision on disk (binary) 32 bit

 1 single precision on disk (ASCII) 80 bit

 10 or more char (1.23456e78)

 Each char asks for 8 bit

 Not including spaces, signs, return, …

 Moreover there are rounding errors, …

I/O: ascii vs. binary/2

 Some figures from a real world application

 openFOAM

 Test case: 3D Lid Cavity, 200^3, 10 dump

 Formatted output (ascii)
 Total occupation: 11 GB

 Unformatted output (binary)
 Total occupation: 6.1 GB

 A factor 2 in disk occupation!!!!

I/O: endianess

 IEEE standard set rules for floating point operations

 But set no rule for data storage

 Single precision FP: 4 bytes (B0,B1,B2,B3)

 Big endian (IBM): B0 B1 B2 B3

 Little endian (INTEL): B3 B2 B1 B0

 Solutions:

 Hand made conversion

 Compiler flags (intel, pgi)

 I/O libraries (HDF5)

I/O: blocksize

 The blocksize is the basic (atomic) storage size

 One file of 100 bit will occupy 1 blocksize, that could be > 4MB
ls -lh TEST_10K/test_1

-rw-r--r-- 1 gamati01 10K 28 gen 11.22 TEST_10K/test_1

…

du -sh TEST_10K/test_1

512K TEST_10K/test_1

…

du -sh TEST_10K/

501M TEST_10K/

…

 Using tar commando to save space

ls -lh test.tar

-rw-r--r-- 1 gamati01 11M 5 mag 13.36 test.tar

I/O: managing data

 TB of different data sets

 Hundreds of different test cases

 Metadata

 Share data among different researchers

 different tools (e.g. visualization tools)

 different OS (or dialect)

 different analysis/post processing

 You need a common “language”

 Use I/O libraries

 Invent your own data format

Some figures

Simple CFD program, just to give you an idea of performance loss
due to I/O.

 2D Driven Cavity simulation

 2048*2048, Double precision (about 280 MB), 1000 timestep

 Serial I/O = 1.5’’

 1% of total serial time

 16% of total time using 32 Tasks (2 nodes) 1 dump = 160
timestep

 Parallel I/O = 0.3’’ (using MPI I/O)

 3% of total time using 32 Tasks (2 Nodes) 1 dump = 30
timestep

 An what using 256 tasks?

A Strategy for 2020

 Understand architectural trends (at all level)

 Evaluate impact on application I/O design

 Plan application refactoring, new I/O algorithms

 Field test on current available machine (anticipating

some arch trends), proof of concept.

 Bring stuff into the main trunk for production.

some strategies

I/O is the bottleneck avoid I/O when possible

I/O subsystem work with locks simplify application I/O
I/O has its own parallelism use MPI-I/O
Raw data are not portable use library

I/O is slow compress reduce output data
I/O C/Fortran APIs are synchronous use dedicated I/O

tasks

Application DATA are too large analyze it “on the fly”,

re-compute vs. write

At the end: moving data

 Now I have hundreds of TB. What I can do?

 Storage using Tier-0 Machine is limited in time (e.g. Prace
Project data can be stored for 3 Month)

 Data analysis can be time consuming (eyen years)

 I don’t want to delete data

 I have enough data storage somewhere else?

How can I move data?

moving data: some figures

 Moving outside CINECA

 scp 10 MB/s

 rsync 10 MB/s

 I must move 50TB of data:

 Using scp or rsync 60 days

 No way!!!!!

 Bandwidth depends on network you use. Could be
better, but in general is even worse!!!

moving data: some figure

 Moving outside CINECA

 gridftp 100 MB/s

 globusonline 100 MB/s

 I must move 50TB of data:

 Using gridftp/globusonline 6 days

 Could be a solution…

 We get these figures between CINECA and a remote

cluster using a 1Gb Network

moving data: some hints

 Size matters: moving many little files cost more then moving
few big files, even if the total storage is the same!

 Moving file from Fermi to a remote cluster via Globusonline

 You can loose a factor 4, now you need 25 days instead of 6 to
move 50TB!!!!!

Size Num. Of files Mb/s

10 GB 10 227

100 MB 1000 216

1 MB 100000 61

moving data: some hints

 Plan your data-production carefully

 Plan your data-production carefully (again!)

 Plan your data-production carefully (again!)

 Clean your dataset from all unnecessary stuff

 Compress all your ASCII files

 Use tar to pack as much data as possible

 Organize your directory structure carefully

 Syncronize with rsync in a systematic way

 One example:

 We had a user who wants to move 20TB distributed over more
then 2’000’000 files…

 rsync asks many hours (about 6) only to build the file list,

without any synchronization at all

