
Introduction to modern Fortran

Massimiliano Guarrasi Nicola Spallanzani
CINECA Bologna - SCAI Department

Bologna, 06-09 October 2015

Part I

A Fortran Survey 1

Program main unit, source formats, comments, declarations
and instructions. Fundamental operators, expressions,
conditional constructs, loops, functions: arguments passing,
intent, interface, intrinsic and external functions. Modules:
contains and use. Intrinsic types: integer, real, complex, logical,
and parameter. I/O base.

Outline

Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Formula Translator History
I Developed in the 50s among the earliest high level languages

(HLL)
I Widely and rapidly adopted in the area of numerical, scientific,

engineering and technical applications
I First standard in 1966: Fortran 66

I The first of all programming language standards
I Second standard in 1978: Fortran 77
I Third standard in 1991: Fortran 90

I Adds new, modern features such as structured constructs, array
syntax and ADT

I Extended and revised in 1997: Fortran 95
I Further extended with published Technical Reports

I Fourth standard in 2004: Fortran 2003
I Major revision, incorporates TRs, adds many new features

(OO!), still not fully supported
I Fifth standard in 2010: Fortran 2008

Fortran General Philosophy

I Strongly oriented to number crunching
I Efficient language, highly optimized code

I Basic data types and operators mapping "naturally" to CPUs
I Translated by a compiler to machine language
I Language rules allow for aggressive, automatic optimization
I Facilities to build new data types from the basic ones
I Flexible flow control structures mapping the most common

numerical computing use cases
I Scientific computing specialized syntax

I A wealth of math data types and functions available as intrinsics
of the language

I Compact, readable array syntax to operate on many values as a
whole

Technical and Scientific Computing

I Why Fortran is bad
I Current standard embodies four different language versions,...
I ... all of them still alive in legacy codes
I Non-numeric computing in Fortran is a real pain
I There are more C than Fortran programmers
I GUI and DB accesses are best programmed in C
I C99 partly addressed numerical computing needs

I Why Fortran is good
I Fortran is highly tuned for numerical computation
I Fortran is older and more “rigid” than C, compilers optimize

better
I Much better than C at managing user defined data types
I Object-oriented features are now part of the language
I Provides facilities for interoperability with C and other languages

Technical and Scientific Computing

I Why Fortran is bad
I Current standard embodies four different language versions,...
I ... all of them still alive in legacy codes
I Non-numeric computing in Fortran is a real pain
I There are more C than Fortran programmers
I GUI and DB accesses are best programmed in C
I C99 partly addressed numerical computing needs

I Why Fortran is good
I Fortran is highly tuned for numerical computation
I Fortran is older and more “rigid” than C, compilers optimize

better
I Much better than C at managing user defined data types
I Object-oriented features are now part of the language
I Provides facilities for interoperability with C and other languages

Our Aims

I Teach you the fundamentals of modern Fortran
I For both reading (old and new) and writing (new) programs
I Showing common idioms
I Illustrating and demonstrating many of the extensions

introduced in the more recent standards
I Illustrating best practices
I Blaming bad ones
I Making you aware of the typical traps

I You’ll happen to encounter things we didn’t cover, but it will be
easy for you to learn more... or to attend a more advanced
course!

I A course is not a substitute for a reference manual or a good
book!

I Neither a substitute for personal practice

Our Aims

I Teach you the fundamentals of modern Fortran
I For both reading (old and new) and writing (new) programs
I Showing common idioms
I Illustrating and demonstrating many of the extensions

introduced in the more recent standards
I Illustrating best practices
I Blaming bad ones
I Making you aware of the typical traps
I You’ll happen to encounter things we didn’t cover, but it will be

easy for you to learn more... or to attend a more advanced
course!

I A course is not a substitute for a reference manual or a good
book!

I Neither a substitute for personal practice

Our Aims

I Teach you the fundamentals of modern Fortran
I For both reading (old and new) and writing (new) programs
I Showing common idioms
I Illustrating and demonstrating many of the extensions

introduced in the more recent standards
I Illustrating best practices
I Blaming bad ones
I Making you aware of the typical traps
I You’ll happen to encounter things we didn’t cover, but it will be

easy for you to learn more... or to attend a more advanced
course!

I A course is not a substitute for a reference manual or a good
book!

I Neither a substitute for personal practice

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c) ! square root of discriminant
x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c) ! square root of discriminant
x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

Comments

I Text following ! is ignored up to the end of current line

I Best practice: do comment your code!

I Variable contents
I Algorithms
I Assumptions
I Tricks

I Best practice: do not over-comment your code!

I Obvious comments obfuscate code and annoy readers
I ! square root of discriminant is a bad example

Comments

I Text following ! is ignored up to the end of current line

I Best practice: do comment your code!
I Variable contents
I Algorithms
I Assumptions
I Tricks

I Best practice: do not over-comment your code!

I Obvious comments obfuscate code and annoy readers
I ! square root of discriminant is a bad example

Comments

I Text following ! is ignored up to the end of current line

I Best practice: do comment your code!
I Variable contents
I Algorithms
I Assumptions
I Tricks

I Best practice: do not over-comment your code!
I Obvious comments obfuscate code and annoy readers
I ! square root of discriminant is a bad example

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c)

! square root of discriminant

x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

Program Units: Main Program

I Fortran code is organized in program units
I Main program
I Procedures (subroutines and functions)
I Modules
I More on this later...

I The main program (one, and only one!) can’t be dispensed
with

I It’s called automatically to execute the program
I An optional program program-name can appear at the

beginning
I An end statement must terminate it, optionally followed by
program or program program-name

I Best practice: always mark unit beginning and ending with its
type and name

I Makes your readers (including you) happier

Program Units: Main Program

I Fortran code is organized in program units
I Main program
I Procedures (subroutines and functions)
I Modules
I More on this later...

I The main program (one, and only one!) can’t be dispensed
with

I It’s called automatically to execute the program
I An optional program program-name can appear at the

beginning
I An end statement must terminate it, optionally followed by
program or program program-name

I Best practice: always mark unit beginning and ending with its
type and name

I Makes your readers (including you) happier

Program Units: Main Program

I Fortran code is organized in program units
I Main program
I Procedures (subroutines and functions)
I Modules
I More on this later...

I The main program (one, and only one!) can’t be dispensed
with

I It’s called automatically to execute the program
I An optional program program-name can appear at the

beginning
I An end statement must terminate it, optionally followed by
program or program program-name

I Best practice: always mark unit beginning and ending with its
type and name

I Makes your readers (including you) happier

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c)

! square root of discriminant

x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

Variables

I real :: x1, x2 declares two variables
I Named memory locations where values can be stored
I Declared by specifying a data type, an optional attribute list, and

a comma-separated list of names
I On most CPUs (notably x86), real means that x1 and x2 host

IEEE single precision (i.e. 32 bits) floating point values

I A legal name must be used for a variable:

I Permitted characters: a-z, A-Z, 0-9, _
I The first one cannot be a digit

(e.g. x1 is a valid name, 1x is not)
I At most 31 characters are permitted (63 in Fortran 2003)
I A good advice: do not exceed 31 characters in a name

I Beware: Fortran is CaSe insenSITIVE!

Variables

I real :: x1, x2 declares two variables
I Named memory locations where values can be stored
I Declared by specifying a data type, an optional attribute list, and

a comma-separated list of names
I On most CPUs (notably x86), real means that x1 and x2 host

IEEE single precision (i.e. 32 bits) floating point values
I A legal name must be used for a variable:

I Permitted characters: a-z, A-Z, 0-9, _
I The first one cannot be a digit

(e.g. x1 is a valid name, 1x is not)
I At most 31 characters are permitted (63 in Fortran 2003)
I A good advice: do not exceed 31 characters in a name

I Beware: Fortran is CaSe insenSITIVE!

Variables

I real :: x1, x2 declares two variables
I Named memory locations where values can be stored
I Declared by specifying a data type, an optional attribute list, and

a comma-separated list of names
I On most CPUs (notably x86), real means that x1 and x2 host

IEEE single precision (i.e. 32 bits) floating point values
I A legal name must be used for a variable:

I Permitted characters: a-z, A-Z, 0-9, _
I The first one cannot be a digit

(e.g. x1 is a valid name, 1x is not)
I At most 31 characters are permitted (63 in Fortran 2003)
I A good advice: do not exceed 31 characters in a name

I Beware: Fortran is CaSe insenSITIVE!

Implicit Declarations

I By default, Fortran assumes that variables not appearing in
any declaration statement are implicitly declared as follows:

I Variables whose name starts with A - H and O - Z are reals
I Variables whose name starts with I, J, K, L, M, N are integers

I Best practice: it is strongly recommended to turn off implicit
declarations with implicit none, at the beginning of each
program unit

I Improves readability and clarity: each variable has its type
declared

I Mistyped names can be caught by the compiler as undeclared
variables

Implicit Declarations

I By default, Fortran assumes that variables not appearing in
any declaration statement are implicitly declared as follows:

I Variables whose name starts with A - H and O - Z are reals

I Variables whose name starts with I, J, K, L, M, N are integers

I Best practice: it is strongly recommended to turn off implicit
declarations with implicit none, at the beginning of each
program unit

I Improves readability and clarity: each variable has its type
declared

I Mistyped names can be caught by the compiler as undeclared
variables

Implicit Declarations

I By default, Fortran assumes that variables not appearing in
any declaration statement are implicitly declared as follows:

I Variables whose name starts with A - H and O - Z are reals
I Variables whose name starts with I, J, K, L, M, N are integers

I Best practice: it is strongly recommended to turn off implicit
declarations with implicit none, at the beginning of each
program unit

I Improves readability and clarity: each variable has its type
declared

I Mistyped names can be caught by the compiler as undeclared
variables

Implicit Declarations

I By default, Fortran assumes that variables not appearing in
any declaration statement are implicitly declared as follows:

I Variables whose name starts with A - H and O - Z are reals
I Variables whose name starts with I, J, K, L, M, N are integers

I Best practice: it is strongly recommended to turn off implicit
declarations with implicit none, at the beginning of each
program unit

I Improves readability and clarity: each variable has its type
declared

I Mistyped names can be caught by the compiler as undeclared
variables

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c)

! square root of discriminant

x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

A Few First Words on I/O

I The bare minimum: textual input output from/to the user
terminal

I read(*,*) and read *, read
I write(*,*) and print *, write

I These very common idioms perform formatted, list directed I/O

I Formatted means that translation from/to user readable text
to/from internal binary formats is performed

I List directed means that external and internal formats are
chosen according to the type of each variable or value on the list

I read(*,*) and read *, are equivalent
I write(*,*) and print *, are equivalent
I Enough for now, disregard details

A Few First Words on I/O

I The bare minimum: textual input output from/to the user
terminal

I read(*,*) and read *, read
I write(*,*) and print *, write

I These very common idioms perform formatted, list directed I/O
I Formatted means that translation from/to user readable text

to/from internal binary formats is performed
I List directed means that external and internal formats are

chosen according to the type of each variable or value on the list

I read(*,*) and read *, are equivalent
I write(*,*) and print *, are equivalent
I Enough for now, disregard details

A Few First Words on I/O

I The bare minimum: textual input output from/to the user
terminal

I read(*,*) and read *, read
I write(*,*) and print *, write

I These very common idioms perform formatted, list directed I/O
I Formatted means that translation from/to user readable text

to/from internal binary formats is performed
I List directed means that external and internal formats are

chosen according to the type of each variable or value on the list
I read(*,*) and read *, are equivalent

I write(*,*) and print *, are equivalent
I Enough for now, disregard details

A Few First Words on I/O

I The bare minimum: textual input output from/to the user
terminal

I read(*,*) and read *, read
I write(*,*) and print *, write

I These very common idioms perform formatted, list directed I/O
I Formatted means that translation from/to user readable text

to/from internal binary formats is performed
I List directed means that external and internal formats are

chosen according to the type of each variable or value on the list
I read(*,*) and read *, are equivalent
I write(*,*) and print *, are equivalent

I Enough for now, disregard details

A Few First Words on I/O

I The bare minimum: textual input output from/to the user
terminal

I read(*,*) and read *, read
I write(*,*) and print *, write

I These very common idioms perform formatted, list directed I/O
I Formatted means that translation from/to user readable text

to/from internal binary formats is performed
I List directed means that external and internal formats are

chosen according to the type of each variable or value on the list
I read(*,*) and read *, are equivalent
I write(*,*) and print *, are equivalent
I Enough for now, disregard details

My First Scientific Program in Fortran

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c)

! square root of discriminant

x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

Statements, Expressions and Operators

I Most of program work takes place in statements and
expressions

I Operators compute values from terms

I +, -, * (multiplication), and / behave like in “human” arithmetic
I So do unary -, (, and)
I ** is the exponentiation operator

I sqrt() is an intrinsic function returning the square root of its
argument

I x1 = x1 + delta is a statement assigning the value of
expression x1 + delta to variable x1

I By the way, expressions can be passed as argument to
functions, as to sqrt(): their value will be computed and
passed to the function

Statements, Expressions and Operators

I Most of program work takes place in statements and
expressions

I Operators compute values from terms
I +, -, * (multiplication), and / behave like in “human” arithmetic
I So do unary -, (, and)
I ** is the exponentiation operator

I sqrt() is an intrinsic function returning the square root of its
argument

I x1 = x1 + delta is a statement assigning the value of
expression x1 + delta to variable x1

I By the way, expressions can be passed as argument to
functions, as to sqrt(): their value will be computed and
passed to the function

Statements, Expressions and Operators

I Most of program work takes place in statements and
expressions

I Operators compute values from terms
I +, -, * (multiplication), and / behave like in “human” arithmetic
I So do unary -, (, and)
I ** is the exponentiation operator

I sqrt() is an intrinsic function returning the square root of its
argument

I x1 = x1 + delta is a statement assigning the value of
expression x1 + delta to variable x1

I By the way, expressions can be passed as argument to
functions, as to sqrt(): their value will be computed and
passed to the function

Statements, Expressions and Operators

I Most of program work takes place in statements and
expressions

I Operators compute values from terms
I +, -, * (multiplication), and / behave like in “human” arithmetic
I So do unary -, (, and)
I ** is the exponentiation operator

I sqrt() is an intrinsic function returning the square root of its
argument

I x1 = x1 + delta is a statement assigning the value of
expression x1 + delta to variable x1

I By the way, expressions can be passed as argument to
functions, as to sqrt(): their value will be computed and
passed to the function

Statements, Expressions and Operators

I Most of program work takes place in statements and
expressions

I Operators compute values from terms
I +, -, * (multiplication), and / behave like in “human” arithmetic
I So do unary -, (, and)
I ** is the exponentiation operator

I sqrt() is an intrinsic function returning the square root of its
argument

I x1 = x1 + delta is a statement assigning the value of
expression x1 + delta to variable x1

I By the way, expressions can be passed as argument to
functions, as to sqrt(): their value will be computed and
passed to the function

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

What a Compiler Is

I Fortran lets you write programs in a high-level,
human-readable language

I Computer CPUs do not directly understand this language
I You need to translate your code into machine-level instructions

for your CPU architecture
I Compilers take care of that translation and generate machine

code that can be actually executed by a CPU

What a Compiler Does

I Compilers are sophisticated tools, made up of many
components

I When compiler is invoked to generate executable code, three
main steps are performed:

1. parsing of source files, various kinds of analysis and
transformations, optimization and assembly files creation

2. machine-code generation and object file creation
I an object file is an organized collection of all symbols (variables,

functions...) used or referenced in the code

3. linking and executable creation
I Options are provided to execute each step separately, take a

look at the manual of your favourite compiler, there’s a lot to
learn!

Compile your first Fortran program !

I GNU compiler collection includes gfortran compiler,
supporting Fortran 95 and several features of the 2003
standard (GNU 4.8)

I Many more available on the market (Intel, PGI, Pathscale, IBM
XL Fortran, Sun Studio Fortran, Lahey, NAG, etc)

I Let’s use gfortran to compile and run our examples and
exercises

I Compile with:
user@cineca$> gfortran second_degree_eq.f90

An executable file named a.out (a.exe under Windows) will
be generated

I Run the program under GNU/Linux with:
user@cineca$> ./a.out

or under Windows with:
C:\Documents and Settings\user> a.exe

Compile your first Fortran program !

I GNU compiler collection includes gfortran compiler,
supporting Fortran 95 and several features of the 2003
standard (GNU 4.8)

I Many more available on the market (Intel, PGI, Pathscale, IBM
XL Fortran, Sun Studio Fortran, Lahey, NAG, etc)

I Let’s use gfortran to compile and run our examples and
exercises

I Compile with:
user@cineca$> gfortran second_degree_eq.f90

An executable file named a.out (a.exe under Windows) will
be generated

I Run the program under GNU/Linux with:
user@cineca$> ./a.out

or under Windows with:
C:\Documents and Settings\user> a.exe

Compile your first Fortran program !

I GNU compiler collection includes gfortran compiler,
supporting Fortran 95 and several features of the 2003
standard (GNU 4.8)

I Many more available on the market (Intel, PGI, Pathscale, IBM
XL Fortran, Sun Studio Fortran, Lahey, NAG, etc)

I Let’s use gfortran to compile and run our examples and
exercises

I Compile with:
user@cineca$> gfortran second_degree_eq.f90

An executable file named a.out (a.exe under Windows) will
be generated

I Run the program under GNU/Linux with:
user@cineca$> ./a.out

or under Windows with:
C:\Documents and Settings\user> a.exe

Compile your first Fortran program !

I GNU compiler collection includes gfortran compiler,
supporting Fortran 95 and several features of the 2003
standard (GNU 4.8)

I Many more available on the market (Intel, PGI, Pathscale, IBM
XL Fortran, Sun Studio Fortran, Lahey, NAG, etc)

I Let’s use gfortran to compile and run our examples and
exercises

I Compile with:
user@cineca$> gfortran second_degree_eq.f90

An executable file named a.out (a.exe under Windows) will
be generated

I Run the program under GNU/Linux with:
user@cineca$> ./a.out

or under Windows with:
C:\Documents and Settings\user> a.exe

Compile your first Fortran program !

I GNU compiler collection includes gfortran compiler,
supporting Fortran 95 and several features of the 2003
standard (GNU 4.8)

I Many more available on the market (Intel, PGI, Pathscale, IBM
XL Fortran, Sun Studio Fortran, Lahey, NAG, etc)

I Let’s use gfortran to compile and run our examples and
exercises

I Compile with:
user@cineca$> gfortran second_degree_eq.f90

An executable file named a.out (a.exe under Windows) will
be generated

I Run the program under GNU/Linux with:
user@cineca$> ./a.out

or under Windows with:
C:\Documents and Settings\user> a.exe

Do You Like IDEs? Geany

Hands-on Session #1

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: x1, x2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c:’
read (*,*) a, b, c

delta = sqrt(b**2 - 4.0*a*c)

! square root of discriminant

x1 = -b + delta
x2 = -b - delta
x1 = x1/(2.0*a)
x2 = x2/(2.0*a)

write(*,*) ’Real roots:’, x1, x2

end program second_degree_eq

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Fixing a Defect

I User wants to solve x2 + 1 = 0

I Enters: 1, 0, 1
I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!
I Did you check that normal cases still work? Good.

Fixing a Defect

I User wants to solve x2 + 1 = 0
I Enters: 1, 0, 1

I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!
I Did you check that normal cases still work? Good.

Fixing a Defect

I User wants to solve x2 + 1 = 0
I Enters: 1, 0, 1
I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!
I Did you check that normal cases still work? Good.

Fixing a Defect

I User wants to solve x2 + 1 = 0
I Enters: 1, 0, 1
I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!
I Did you check that normal cases still work? Good.

Fixing a Defect

I User wants to solve x2 + 1 = 0
I Enters: 1, 0, 1
I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!

I Did you check that normal cases still work? Good.

Fixing a Defect

I User wants to solve x2 + 1 = 0
I Enters: 1, 0, 1
I Gets: Real roots: NaN, NaN

I Discriminant is negative, its square root is
Not A Number, NaN

I Let’s avoid this, by changing from:
delta = sqrt(b**2 - 4.0*a*c)

to:
delta = b**2 - 4.0*a*c
if (delta < 0.0) then

stop
end if
delta = sqrt(delta)

I Try it now!
I Did you check that normal cases still work? Good.

Conditional Statement
I if (logical-condition) then

block of statements
end if

I Executes block of statements only if logical-condition is true
I Comparison operators: == (equal), /= (not equal), >, <, >=, <=
I When block is made up by a single statement, you can use

one-liner if (logical-condition) statement instead

I But let’s be more polite by changing from:
if (delta < 0.0) then
stop

endif

to:
if (delta < 0.0) stop ’No real roots!’

I Try it now!
I Did you check that normal cases still work? Good.

Conditional Statement
I if (logical-condition) then

block of statements
end if

I Executes block of statements only if logical-condition is true
I Comparison operators: == (equal), /= (not equal), >, <, >=, <=
I When block is made up by a single statement, you can use

one-liner if (logical-condition) statement instead

I But let’s be more polite by changing from:
if (delta < 0.0) then
stop

endif

to:
if (delta < 0.0) stop ’No real roots!’

I Try it now!

I Did you check that normal cases still work? Good.

Conditional Statement
I if (logical-condition) then

block of statements
end if

I Executes block of statements only if logical-condition is true
I Comparison operators: == (equal), /= (not equal), >, <, >=, <=
I When block is made up by a single statement, you can use

one-liner if (logical-condition) statement instead

I But let’s be more polite by changing from:
if (delta < 0.0) then
stop

endif

to:
if (delta < 0.0) stop ’No real roots!’

I Try it now!
I Did you check that normal cases still work? Good.

Good Style

I Some folks prefer this:
if (delta < 0.0) stop ’No real roots!’

and it’s OK

I Other folks prefer this:
if (delta < 0.0) then
stop ’No real roots!’

end if

and it’s OK
I Sloppy guys write:

if (delta < 0.0) then
stop ’No real roots!’
end if

but this is not that good...

I In general, Fortran disregards white space, but proper
indentation visualizes program control flow

Good Style

I Some folks prefer this:
if (delta < 0.0) stop ’No real roots!’

and it’s OK
I Other folks prefer this:

if (delta < 0.0) then
stop ’No real roots!’

end if

and it’s OK

I Sloppy guys write:
if (delta < 0.0) then
stop ’No real roots!’
end if

but this is not that good...

I In general, Fortran disregards white space, but proper
indentation visualizes program control flow

Good Style

I Some folks prefer this:
if (delta < 0.0) stop ’No real roots!’

and it’s OK
I Other folks prefer this:

if (delta < 0.0) then
stop ’No real roots!’

end if

and it’s OK
I Sloppy guys write:

if (delta < 0.0) then
stop ’No real roots!’
end if

but this is not that good...

I In general, Fortran disregards white space, but proper
indentation visualizes program control flow

Good Style

I Some folks prefer this:
if (delta < 0.0) stop ’No real roots!’

and it’s OK
I Other folks prefer this:

if (delta < 0.0) then
stop ’No real roots!’

end if

and it’s OK
I Sloppy guys write:

if (delta < 0.0) then
stop ’No real roots!’
end if

but this is not that good...

I In general, Fortran disregards white space, but proper
indentation visualizes program control flow

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Let’s Refactor Our Program (and Test it!)

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta
real :: rp
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c

delta = b*b - 4.0*a*c
if (delta < 0.0) stop ’No real roots!’
delta = sqrt(delta)/(2.0*a)

rp = -b/(2.0*a)

print *,’Real roots: ’, rp+delta, rp-delta

end program second_degree_eq

And Now Make it More Complex!
! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta, rp, a, b, c
logical :: rroots

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c
delta = b*b - 4.0*a*c
rroots = .true.
if (delta < 0.0) then
delta = -delta
rroots = .false.

end if
delta = sqrt(delta)/(2.0*a)
rp = -b/(2.0*a)
if (rroots) then
print *, ’Real roots: ’, rp+delta, rp-delta

else
print *,’Complex roots: ’, rp, ’+’, delta, ’i ’, &

rp, ’-’, delta, ’i’
end if

end program second_degree_eq

More Types and Choices

I logical type represents logical values
I Can be .true. or .false.

I else has to appear inside an if () then/end if pair, and
the following statements up to end if are executed when the
logical condition is false

I Allows for choosing between alternative paths
I Again, use proper indentation

I And Fortran statements cannot exceed one line, unless it ends
with an &

More Types and Choices

I logical type represents logical values
I Can be .true. or .false.

I else has to appear inside an if () then/end if pair, and
the following statements up to end if are executed when the
logical condition is false

I Allows for choosing between alternative paths

I Again, use proper indentation

I And Fortran statements cannot exceed one line, unless it ends
with an &

More Types and Choices

I logical type represents logical values
I Can be .true. or .false.

I else has to appear inside an if () then/end if pair, and
the following statements up to end if are executed when the
logical condition is false

I Allows for choosing between alternative paths
I Again, use proper indentation

I And Fortran statements cannot exceed one line, unless it ends
with an &

And Now Make it More Complex!
! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta, rp, a, b, c
logical :: rroots

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c
delta = b*b - 4.0*a*c
rroots = .true.
if (delta < 0.0) then
delta = -delta
rroots = .false.

end if
delta = sqrt(delta)/(2.0*a)
rp = -b/(2.0*a)
if (rroots) then
print *, ’Real roots: ’, rp+delta, rp-delta

else
print *,’Complex roots: ’, rp, ’+’, delta, ’i ’, &

rp, ’-’, delta, ’i’
end if

end program second_degree_eq

More Types and Choices

I logical type represents logical values
I Can be .true. or .false.

I else has to appear inside an if () then/end if pair, and
the following statements up to end if are executed when the
logical condition is false

I Allows for choosing between alternative paths
I Again, use proper indentation

I And Fortran statements cannot exceed one line, unless it ends
with an &

Try it Now!
! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
real :: delta, rp, a, b, c
logical :: rroots

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c
delta = b*b - 4.0*a*c
rroots = .true.
if (delta < 0.0) then
delta = -delta
rroots = .false.

end if
delta = sqrt(delta)/(2.0*a)
rp = -b/(2.0*a)
if (rroots) then
print *, ’Real roots: ’, rp+delta, rp-delta

else
print *,’Complex roots: ’, rp, ’+’, delta, ’i ’, &

rp, ’-’, delta, ’i’
end if

end program second_degree_eq

Let’s Make it as Complex as Possible!

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
complex :: delta
complex :: z1, z2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c

delta = b*b - 4.0*a*c
delta = sqrt(delta)

z1 = (-b+delta)/(2.0*a)
z2 = (-b-delta)/(2.0*a)

print *,’Roots: ’, z1, z2

end program second_degree_eq

Complex Numbers

I Fortran has complex type:
I hosting two real values, real and imaginary parts

I Most math functions like sqrt() work for complex type too!

I Returning correct results, instead of NaNs

I And so do read, write, and print

I (1.5, 2.3) is Fortranese for 1.5 + 2.3ı

Complex Numbers

I Fortran has complex type:
I hosting two real values, real and imaginary parts

I Most math functions like sqrt() work for complex type too!
I Returning correct results, instead of NaNs

I And so do read, write, and print

I (1.5, 2.3) is Fortranese for 1.5 + 2.3ı

Complex Numbers

I Fortran has complex type:
I hosting two real values, real and imaginary parts

I Most math functions like sqrt() work for complex type too!
I Returning correct results, instead of NaNs

I And so do read, write, and print

I (1.5, 2.3) is Fortranese for 1.5 + 2.3ı

Complex Numbers

I Fortran has complex type:
I hosting two real values, real and imaginary parts

I Most math functions like sqrt() work for complex type too!
I Returning correct results, instead of NaNs

I And so do read, write, and print

I (1.5, 2.3) is Fortranese for 1.5 + 2.3ı

Try it Now!

! roots of a 2nd degree equation with real coefficients

program second_degree_eq
implicit none
complex :: delta
complex :: z1, z2
real :: a, b, c

print *,’Solving ax^2+bx+c=0, enter a, b, c: ’
read(*,*) a, b, c

delta = b*b - 4.0*a*c
delta = sqrt(delta)

z1 = (-b+delta)/(2.0*a)
z2 = (-b-delta)/(2.0*a)

print *,’Roots: ’, z1, z2

end program second_degree_eq

Making it More Robust

I What if user inputs zeroes for a or a and b?

I Let’s prevent these cases, inserting right after input:
if (a == 0.0) then
if (b == 0.0) then
if (c == 0.0) then
write(0,*) ’A trivial identity!’

else
write(0,*) ’Plainly absurd!’

end if
else
write(0,*) ’Too simple problem!’

end if
stop

end if

I Can you see the program logic?

I Try it now!
I Did you check that normal cases still work? Good.

Making it More Robust

I What if user inputs zeroes for a or a and b?
I Let’s prevent these cases, inserting right after input:

if (a == 0.0) then
if (b == 0.0) then
if (c == 0.0) then
write(0,*) ’A trivial identity!’

else
write(0,*) ’Plainly absurd!’

end if
else
write(0,*) ’Too simple problem!’

end if
stop

end if

I Can you see the program logic?

I Try it now!
I Did you check that normal cases still work? Good.

Making it More Robust

I What if user inputs zeroes for a or a and b?
I Let’s prevent these cases, inserting right after input:

if (a == 0.0) then
if (b == 0.0) then
if (c == 0.0) then
write(0,*) ’A trivial identity!’

else
write(0,*) ’Plainly absurd!’

end if
else
write(0,*) ’Too simple problem!’

end if
stop

end if

I Can you see the program logic?

I Try it now!
I Did you check that normal cases still work? Good.

Making it More Robust

I What if user inputs zeroes for a or a and b?
I Let’s prevent these cases, inserting right after input:

if (a == 0.0) then
if (b == 0.0) then
if (c == 0.0) then
write(0,*) ’A trivial identity!’

else
write(0,*) ’Plainly absurd!’

end if
else
write(0,*) ’Too simple problem!’

end if
stop

end if

I Can you see the program logic?

I Try it now!

I Did you check that normal cases still work? Good.

Making it More Robust

I What if user inputs zeroes for a or a and b?
I Let’s prevent these cases, inserting right after input:

if (a == 0.0) then
if (b == 0.0) then
if (c == 0.0) then
write(0,*) ’A trivial identity!’

else
write(0,*) ’Plainly absurd!’

end if
else
write(0,*) ’Too simple problem!’

end if
stop

end if

I Can you see the program logic?

I Try it now!
I Did you check that normal cases still work? Good.

Miscellaneous remarks
I Nested ifs can be a problem

I else marries innermost if () then/end if pair
I Proper indentation is almost mandatory to sort it out

I What’s this write(0,*) stuff?

I write() and read() let you specify an output (input) file
‘handle’ called a unit

I Unit 0 is usually connected to a special file, mandatory for error
messages to the terminal (e.g. UNIX standard error)

I By the way, write(*,*) is a system independent idiom for
what you’ll often find written as write(6,*)

I And read(*,*) is a system independent idiom for what you’ll
often find written as read(5,*)

I And stop error-message is equivalent to: write(0,*)
error-message
stop

I Best practice: if your program has to fail, always have it fail in a
controlled way

Miscellaneous remarks
I Nested ifs can be a problem

I else marries innermost if () then/end if pair
I Proper indentation is almost mandatory to sort it out

I What’s this write(0,*) stuff?
I write() and read() let you specify an output (input) file

‘handle’ called a unit
I Unit 0 is usually connected to a special file, mandatory for error

messages to the terminal (e.g. UNIX standard error)
I By the way, write(*,*) is a system independent idiom for

what you’ll often find written as write(6,*)
I And read(*,*) is a system independent idiom for what you’ll

often find written as read(5,*)
I And stop error-message is equivalent to: write(0,*)
error-message
stop

I Best practice: if your program has to fail, always have it fail in a
controlled way

Miscellaneous remarks
I Nested ifs can be a problem

I else marries innermost if () then/end if pair
I Proper indentation is almost mandatory to sort it out

I What’s this write(0,*) stuff?
I write() and read() let you specify an output (input) file

‘handle’ called a unit
I Unit 0 is usually connected to a special file, mandatory for error

messages to the terminal (e.g. UNIX standard error)
I By the way, write(*,*) is a system independent idiom for

what you’ll often find written as write(6,*)
I And read(*,*) is a system independent idiom for what you’ll

often find written as read(5,*)
I And stop error-message is equivalent to: write(0,*)
error-message
stop

I Best practice: if your program has to fail, always have it fail in a
controlled way

Sorting it Out

I Let’s give names to if constructs:
no2nd: if (a == 0.0) then
no1st: if (b == 0.0) then
no0th: if (c == 0.0) then

write(0,*) ’A trivial identity!’
else no0th

write(0,*) ’Plainly absurd!’
end if no0th

else no1st
write(0,*) ’Too simple problem!’

end if no1st
stop

end if no2nd

I Giving names to constructs makes program logic more explicit
I Names are for readability purposes only, do not enforce pairing

rules

I Best practice: always give names to constructs which span
many lines of code or are deeply nested

Sorting it Out

I Let’s give names to if constructs:
no2nd: if (a == 0.0) then
no1st: if (b == 0.0) then
no0th: if (c == 0.0) then

write(0,*) ’A trivial identity!’
else no0th

write(0,*) ’Plainly absurd!’
end if no0th

else no1st
write(0,*) ’Too simple problem!’

end if no1st
stop

end if no2nd

I Giving names to constructs makes program logic more explicit

I Names are for readability purposes only, do not enforce pairing
rules

I Best practice: always give names to constructs which span
many lines of code or are deeply nested

Sorting it Out

I Let’s give names to if constructs:
no2nd: if (a == 0.0) then
no1st: if (b == 0.0) then
no0th: if (c == 0.0) then

write(0,*) ’A trivial identity!’
else no0th

write(0,*) ’Plainly absurd!’
end if no0th

else no1st
write(0,*) ’Too simple problem!’

end if no1st
stop

end if no2nd

I Giving names to constructs makes program logic more explicit
I Names are for readability purposes only, do not enforce pairing

rules

I Best practice: always give names to constructs which span
many lines of code or are deeply nested

Sorting it Out

I Let’s give names to if constructs:
no2nd: if (a == 0.0) then
no1st: if (b == 0.0) then
no0th: if (c == 0.0) then

write(0,*) ’A trivial identity!’
else no0th

write(0,*) ’Plainly absurd!’
end if no0th

else no1st
write(0,*) ’Too simple problem!’

end if no1st
stop

end if no2nd

I Giving names to constructs makes program logic more explicit
I Names are for readability purposes only, do not enforce pairing

rules

I Best practice: always give names to constructs which span
many lines of code or are deeply nested

Fortran Code, in the Beginning of Times

I The one on the left, is the statement Z(I) = Y + W(I)

I The one in the middle, is an IBM punch card reader

I The one on the right, is a complete Fortran source program

I But you’ll only encounter these in museums, nowadays

A Taste of Fortran in the Late 70s

C ROOTS OF A 2ND DEGREE EQUATION WITH REAL COEFFICIENTS

PROGRAM EQ2DEG

IMPLICIT NONE
REAL DELTA
REAL RP
REAL A, B, C

PRINT *,’SOLVING AX^2+BX+C=0, ENTER A, B, C: ’
READ(*,*) A, B, C

DELTA = B*B - 4.0*A*C
IF (DELTA.LT.0.0) STOP ’NO REAL ROOTS!’
DELTA = SQRT(DELTA)/(2.0*A)

RP = -B/(2.0*A)

PRINT *,’REAL ROOTS: ’, RP+DELTA, RP-DELTA

END

Legacy Code: Distinctive Characters

I Code is all capitals
I First computers had only uppercase letters

I Fixed source form
I The legacy of punch cards
I Comment lines must be marked with a C or * in first column
I First six columns on each line are reserved for labels and to

mark continuation lines
I Columns after the 72nd are ignored (cause of really nasty bugs!)

I No double colon on variable declarations
I And no way to initialize a variable at declaration, for that matter
I More on this later

I And this example is not that different...

A Bottle of Fortran, Vintage Year 1963
C SOLUTION OF QUADRATIC EQUATION
C (P. 122 OF A FORTRAN PRIMER BY E. ORGANICK)

1 READ INPUT TAPE 5, 51, ANAME, N
51 FORMAT(A6,I2)

WRITE OUTPUT TAPE 6,52, ANAME
52 FORMAT(1H1,33HROOTS OF QUADRATIC EQUATIONS FROM A6)

DO 21 I = 1, N
READ INPUT TAPE 5, 53, A, B, C

53 FORMAT(3F10.2)
WRITE OUTPUT TAPE 6,54, I, A, B, C

54 FORMAT(1H0,8HSET NO. I2/5H A = F8.2,12X,4HB = F8.2,12X,4HC = F8.2)
IF(A) 10, 7, 10

7 RLIN = -C/B
WRITE OUTPUT TAPE 6, 55, RLIN

55 FORMAT(7H LINEAR,25X,4HX = F10.3)
GO TO 21

10 D = B**2 - 4.*A*C
IF(D) 12, 17, 17

12 COMPR = -B/(2.*A)
COMP1 = SQRTF(-D)/(2.*A)
COMP2= -COMP1
WRITE OUTPUT TAPE 6, 56, COMPR, COMP1, COMPR, COMP2

56 FORMAT(8H COMPLEX,21X,7HR(X1)= F10.3,11X,7HI(X1)= F10.3,/1H ,28X,
17HR(X2)= F10.3,11X,7HI(X2)= F10.3)

16 GO TO 21
17 REAL1 = (-B + SQRTF(D))/(2.*A)

REAL2 = (-B - SQRTF(D))/(2.*A)
20 WRITE OUTPUT TAPE 6, 57, REAL1, REAL2
57 FORMAT(6H REAL 25X,5HX1 = F10.3,13X,5HX2 = F10.3)
21 CONTINUE

WRITE OUTPUT TAPE 6, 58, ANAME
58 FORMAT(8H0END OF A6)

GO TO 1
END

Best Practice: Free Yourself

I Write new code in free source form
I No limits on beginning of program statements
I Each line may contain up to 132 default characters
I Comments can be added at end of line
I And it comes for free: just give your source file name

an .f90 extension

I Use new language features
I Like new styles for declarations
I Or naming of constructs
I They are more powerful and readable

I We’ll focus on modern Fortran programming style
I Making you aware of differences you are most likely to

encounter
I Look at compiler manuals or reference books to tame very old

codes

Outline

Introduction

Fortran Basics
My First Fortran Program
Compiling and Linking Your First Program
Making Choices
More Types and Choices
Wrapping it Up 1

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

A Fortran Program is Made of: I

I Comments
I Compiler disregards them, but humans do not
I Please, use them
I Do not abuse them, please

I Program units
I One, at least: program
I Some of them (functions) are intrinsic to the language

I Variables
I Named memory location you can store values into
I Must be declared

I Variables declarations
I Give name to memory location you can store values into
I An initial value can be specified

A Fortran Program is Made of: II

I Expressions
I Compute values to store in variables
I Compute values to pass to functions and statements

I Statements
I Units of executable work
I Whose execution can be controlled by other constructs

I if statements and constructs
I Allow for conditional and alternative execution
I For both single statements and blocks of

Best Practices

I Use free source form
I implicit none statement

I Turn off implicit declarations
I Use proper indentation

I Compilers don’t care about
I Readers visualize flow control

I Give names to complex control structures, readers will
appreciate

I Do non-regression testing
I Whenever functionalities are added
I Whenever you rewrite a code in a different way

I Fail in a controlled way
I Giving feedback to humans

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Functions and their Definition
I Functions are program units

I Function name must be a legal Fortran name
I Functions specialty is performing computations and returning a

value

I Type of returned value must be declared

I In the definition and in each unit calling them
I Same as a variable declaration
I Could be declared on the function heading, but it’s less flexible

and less readable
I More on this later...

I How to return a value

I Just assign it to the function name, as if it were a variable
I But this doesn’t force function termination
I Multiple assignments can be done
I The last assigned value before function execution is complete

will be returned

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Functions and their Definition
I Functions are program units

I Function name must be a legal Fortran name
I Functions specialty is performing computations and returning a

value

I Type of returned value must be declared
I In the definition and in each unit calling them
I Same as a variable declaration
I Could be declared on the function heading, but it’s less flexible

and less readable
I More on this later...

I How to return a value

I Just assign it to the function name, as if it were a variable
I But this doesn’t force function termination
I Multiple assignments can be done
I The last assigned value before function execution is complete

will be returned

Functions and their Definition
I Functions are program units

I Function name must be a legal Fortran name
I Functions specialty is performing computations and returning a

value

I Type of returned value must be declared
I In the definition and in each unit calling them
I Same as a variable declaration
I Could be declared on the function heading, but it’s less flexible

and less readable
I More on this later...

I How to return a value
I Just assign it to the function name, as if it were a variable
I But this doesn’t force function termination
I Multiple assignments can be done
I The last assigned value before function execution is complete

will be returned

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Function Arguments and Local Variables

I Functions have arguments
I Declared like variables inside the function
I Arguments are termed dummy arguments inside the function
I The arguments passed to a function by a calling unit are termed

actual arguments

I What if two functions have arguments with identical names?

I No conflicts of sort, they are completely independent

I What if a dummy argument has the same name of a variable
elsewhere in the program?

I No conflicts of sort, they are completely independent

I Variables can be defined inside functions

I Again, they are local, thus completely independent from the rest
of the program

Function Arguments and Local Variables

I Functions have arguments
I Declared like variables inside the function
I Arguments are termed dummy arguments inside the function
I The arguments passed to a function by a calling unit are termed

actual arguments
I What if two functions have arguments with identical names?

I No conflicts of sort, they are completely independent

I What if a dummy argument has the same name of a variable
elsewhere in the program?

I No conflicts of sort, they are completely independent

I Variables can be defined inside functions

I Again, they are local, thus completely independent from the rest
of the program

Function Arguments and Local Variables

I Functions have arguments
I Declared like variables inside the function
I Arguments are termed dummy arguments inside the function
I The arguments passed to a function by a calling unit are termed

actual arguments
I What if two functions have arguments with identical names?

I No conflicts of sort, they are completely independent
I What if a dummy argument has the same name of a variable

elsewhere in the program?
I No conflicts of sort, they are completely independent

I Variables can be defined inside functions

I Again, they are local, thus completely independent from the rest
of the program

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Function Arguments and Local Variables

I Functions have arguments
I Declared like variables inside the function
I Arguments are termed dummy arguments inside the function
I The arguments passed to a function by a calling unit are termed

actual arguments
I What if two functions have arguments with identical names?

I No conflicts of sort, they are completely independent
I What if a dummy argument has the same name of a variable

elsewhere in the program?
I No conflicts of sort, they are completely independent

I Variables can be defined inside functions
I Again, they are local, thus completely independent from the rest

of the program

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Intrinsic vs. External

I Fortran sports a wealth (over a hundred!) of predefined
functions and procedures

I These are termed intrinsic
I acos(x) returns the arc cosine of x such that |x | ≤ 1 in the

range 0 ≤ arccos(x) ≤ π
I sin(x) returns the sine function value of x in radians
I abs(x) returns the absolute value of x

I What’s this external keyword?
I It’s one of the many attributes you can give to something you

define

I external tells the compiler theta is an external (i.e. non
intrinsic) function

I So the compiler is not forced to guess what it is from its use
I And that way, masters can override intrinsic functions

Intrinsic vs. External

I Fortran sports a wealth (over a hundred!) of predefined
functions and procedures

I These are termed intrinsic
I acos(x) returns the arc cosine of x such that |x | ≤ 1 in the

range 0 ≤ arccos(x) ≤ π
I sin(x) returns the sine function value of x in radians
I abs(x) returns the absolute value of x

I What’s this external keyword?
I It’s one of the many attributes you can give to something you

define
I external tells the compiler theta is an external (i.e. non

intrinsic) function
I So the compiler is not forced to guess what it is from its use
I And that way, masters can override intrinsic functions

My First Fortran Functions
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

The parameter Attribute

I The parameter attribute is used to declare named constants
I i.e. variables that cannot be modified after initialization (compiler

will bark if you try)

I In initialization expressions:

I only constants (possibly other parameters) can be used
I only intrinsic operators or functions are allowed

I Best practice: always give name to constants

I Particularly if unobvious, like 1.0/137.0
I It also helps to centralize updates (well, not for π)

The parameter Attribute

I The parameter attribute is used to declare named constants
I i.e. variables that cannot be modified after initialization (compiler

will bark if you try)

I In initialization expressions:

I only constants (possibly other parameters) can be used
I only intrinsic operators or functions are allowed

I Best practice: always give name to constants

I Particularly if unobvious, like 1.0/137.0
I It also helps to centralize updates (well, not for π)

The parameter Attribute

I The parameter attribute is used to declare named constants
I i.e. variables that cannot be modified after initialization (compiler

will bark if you try)

I In initialization expressions:
I only constants (possibly other parameters) can be used

I only intrinsic operators or functions are allowed

I Best practice: always give name to constants

I Particularly if unobvious, like 1.0/137.0
I It also helps to centralize updates (well, not for π)

The parameter Attribute

I The parameter attribute is used to declare named constants
I i.e. variables that cannot be modified after initialization (compiler

will bark if you try)

I In initialization expressions:
I only constants (possibly other parameters) can be used
I only intrinsic operators or functions are allowed

I Best practice: always give name to constants

I Particularly if unobvious, like 1.0/137.0
I It also helps to centralize updates (well, not for π)

The parameter Attribute

I The parameter attribute is used to declare named constants
I i.e. variables that cannot be modified after initialization (compiler

will bark if you try)

I In initialization expressions:
I only constants (possibly other parameters) can be used
I only intrinsic operators or functions are allowed

I Best practice: always give name to constants
I Particularly if unobvious, like 1.0/137.0
I It also helps to centralize updates (well, not for π)

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

On To Testing

I Let’s put the code in a file named dsp.f90
I Best practice: always put different groups of related functions

in different files
I Helps to tame complexity
I You can always pass all source files to the compiler
I And you’ll learn to do better ...

I And let’s write a program to test all functions

I And be wary, check again actual arguments after all function
calls

I Best practice: always write a special purpose program to test
each subset of functions

I Best to include in the program automated testing of all relevant
cases

I Let’s do by hand with I/O for now, to make it short

On To Testing

I Let’s put the code in a file named dsp.f90
I Best practice: always put different groups of related functions

in different files
I Helps to tame complexity
I You can always pass all source files to the compiler
I And you’ll learn to do better ...

I And let’s write a program to test all functions
I And be wary, check again actual arguments after all function

calls
I Best practice: always write a special purpose program to test

each subset of functions
I Best to include in the program automated testing of all relevant

cases
I Let’s do by hand with I/O for now, to make it short

Hands-on Session #2
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

DSP test program

I We have collected DSP functions in dsp.f90 source file

I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions

I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k

real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

DSP test program

I We have collected DSP functions in dsp.f90 source file
I We want to test these functions
I Let’s write a dsp_test.f90 program:

program dsp_test

real :: i,j,k
real :: rtheta, rsinc, rrect
real, external :: theta, sinc, rect

print *, ’Enter i, j, k:’
read(*,*) i, j, k

rtheta = theta(i)
rsinc = sinc(i)
rrect = rect(j, k)

write(*,*) ’theta(’, i, ’)= ’, rtheta
write(*,*) ’sinc(’, i , ’)= ’, rsinc
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rrect

end program dsp_test

Testing DSP Functions

I Let’s build our test program putting all together:

user@cineca$> gfortran dsp.f90 dsp_test.f90 -o dsp_test

I -o option specifies the name dsp_test for the executable

I Now run the program:

user@cineca$> ./dsp_test
Enter i, j, k:

-1 0 1

theta(-3.1415927) = 0.0000000
sinc(-3.1415927) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Something is going wrong, isn’t it?
I Seems like one function changed its actual argument!

Testing DSP Functions

I Let’s build our test program putting all together:

user@cineca$> gfortran dsp.f90 dsp_test.f90 -o dsp_test

I -o option specifies the name dsp_test for the executable
I Now run the program:

user@cineca$> ./dsp_test
Enter i, j, k:

-1 0 1

theta(-3.1415927) = 0.0000000
sinc(-3.1415927) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Something is going wrong, isn’t it?
I Seems like one function changed its actual argument!

Testing DSP Functions

I Let’s build our test program putting all together:

user@cineca$> gfortran dsp.f90 dsp_test.f90 -o dsp_test

I -o option specifies the name dsp_test for the executable
I Now run the program:

user@cineca$> ./dsp_test
Enter i, j, k:
-1 0 1

theta(-3.1415927) = 0.0000000
sinc(-3.1415927) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Something is going wrong, isn’t it?
I Seems like one function changed its actual argument!

Testing DSP Functions

I Let’s build our test program putting all together:

user@cineca$> gfortran dsp.f90 dsp_test.f90 -o dsp_test

I -o option specifies the name dsp_test for the executable
I Now run the program:

user@cineca$> ./dsp_test
Enter i, j, k:
-1 0 1

theta(-3.1415927) = 0.0000000
sinc(-3.1415927) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Something is going wrong, isn’t it?
I Seems like one function changed its actual argument!

Testing DSP Functions

I Let’s build our test program putting all together:

user@cineca$> gfortran dsp.f90 dsp_test.f90 -o dsp_test

I -o option specifies the name dsp_test for the executable
I Now run the program:

user@cineca$> ./dsp_test
Enter i, j, k:
-1 0 1

theta(-3.1415927) = 0.0000000
sinc(-3.1415927) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Something is going wrong, isn’t it?
I Seems like one function changed its actual argument!

On To Testing

I Let’s put the code in a file named dsp.f90
I Best practice: always put different groups of related functions

in different files
I Helps to tame complexity
I You can always pass all source files to the compiler
I And you’ll learn to do better ...

I And let’s write a program to test all functions
I And be wary, check again actual arguments after all function

calls
I Best practice: always write a special purpose program to test

each subset of functions
I Best to include in the program automated testing of all relevant

cases
I Let’s do by hand with I/O for now, to make it short

State Your Intent!
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real, intent(in) :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc
real, intent(in) :: x
real, parameter :: pi = acos(-1.0)

x = x*pi
sinc = 1.0
if (x /= 0.0) sinc = sin(x)/x

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Testing DSP Functions Again

I Try to recompile dsp.f90...

I Now compiler will check if you respect your stated intents:

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
dsp.f90:16.2:

x = x*pi
1

Error: Cannot assign to INTENT(IN) variable ’x’ at (1)

I Got a compiler error message? Good!

Testing DSP Functions Again

I Try to recompile dsp.f90...
I Now compiler will check if you respect your stated intents:

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
dsp.f90:16.2:

x = x*pi
1

Error: Cannot assign to INTENT(IN) variable ’x’ at (1)

I Got a compiler error message? Good!

Testing DSP Functions Again

I Try to recompile dsp.f90...
I Now compiler will check if you respect your stated intents:

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
dsp.f90:16.2:

x = x*pi
1

Error: Cannot assign to INTENT(IN) variable ’x’ at (1)

I Got a compiler error message? Good!

It’s Pass by Reference!

I Arguments are passed by reference in Fortran

I Dummy and actual arguments share the same memory
locations

I (And if you pass a constant or expression, an unnamed variable
is created for you)

I When a dummy argument is assigned to, the actual argument is
assigned to

I This is a great feature, but a source of bugs too (particularly for
C programmers)

I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations

I (And if you pass a constant or expression, an unnamed variable
is created for you)

I When a dummy argument is assigned to, the actual argument is
assigned to

I This is a great feature, but a source of bugs too (particularly for
C programmers)

I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)

I When a dummy argument is assigned to, the actual argument is
assigned to

I This is a great feature, but a source of bugs too (particularly for
C programmers)

I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to

I This is a great feature, but a source of bugs too (particularly for
C programmers)

I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)

I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)
I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)
I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)
I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from

I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)
I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to

I intent(inout) (default) for those you plan to do both

It’s Pass by Reference!

I Arguments are passed by reference in Fortran
I Dummy and actual arguments share the same memory

locations
I (And if you pass a constant or expression, an unnamed variable

is created for you)
I When a dummy argument is assigned to, the actual argument is

assigned to
I This is a great feature, but a source of bugs too (particularly for

C programmers)
I And it’s one possible side effect you’ll have to watch over

I Best practice: always give dummy arguments the proper
attribute

I intent(in) for those you only plan to read values from
I intent(out) for those you only plan to write values to
I intent(inout) (default) for those you plan to do both

My First Fortran Functions Fixed!
function theta(x) !Heaviside function, useful in DSP

implicit none
real :: theta
real, intent(in) :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
implicit none
real :: sinc, xpi
real, intent(in) :: x
real, parameter :: pi = acos(-1.0)

xpi = x*pi
sinc = 1.0
if (xpi /= 0.0) sinc = sin(xpi)/xpi

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau
real, external :: theta

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

Testing DSP Function the Last Time

I Way much better!

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
user@cineca$> ./dsp_test
Enter i, j, k:

-1 0 1
theta(-1.0000000) = 0.0000000
sinc(-1.0000000) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Now comment out real :: i, j, k in dsp_test.f90,
recompile and rerun

I Now add implicit none to dsp_test.f90 and do it again

Testing DSP Function the Last Time

I Way much better!

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
user@cineca$> ./dsp_test
Enter i, j, k:

-1 0 1
theta(-1.0000000) = 0.0000000
sinc(-1.0000000) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Now comment out real :: i, j, k in dsp_test.f90,
recompile and rerun

I Now add implicit none to dsp_test.f90 and do it again

Testing DSP Function the Last Time

I Way much better!

user@cineca$> gfortran -o dsp_test dsp_test.f90 dsp.f90
user@cineca$> ./dsp_test
Enter i, j, k:

-1 0 1
theta(-1.0000000) = 0.0000000
sinc(-1.0000000) = -2.78275341E-08
rect(0.0000000 , 1.0000000) = 1.0000000

I Now comment out real :: i, j, k in dsp_test.f90,
recompile and rerun

I Now add implicit none to dsp_test.f90 and do it again

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling

I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks

I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?

I Our testing program doesn’t know enough about external
functions it is calling

I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks

I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks

I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks

I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

Explicit Interface
program dsp

implicit none

real :: i,j,k

real, external :: theta, sinc, rect

interface
function theta(x)

real :: theta, x
end function theta

end interface

interface
function sinc(x)

real :: sinc, x
end function sinc

end interface

interface
function rect(t, tau)

real :: rect, t, tau
end function rect

end interface

print *, ’Enter i, j, k:’
read(*,*) i, j, k

write(*,*) ’theta(’, i, ’)= ’, theta(i)
write(*,*) ’sinc(’, i , ’)= ’, sinc(i)
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rect(j,k)

end program dsp

Explicit Interface
program dsp

implicit none

real :: i,j,k

interface
function theta(x)
real :: theta, x

end function theta
end interface

interface
function sinc(x)
real :: sinc, x

end function sinc
end interface

interface
function rect(t, tau)
real :: rect, t, tau

end function rect
end interface

print *, ’Enter i, j, k:’
read(*,*) i, j, k

write(*,*) ’theta(’, i, ’)= ’, theta(i)
write(*,*) ’sinc(’, i , ’)= ’, sinc(i)
write(*,*) ’rect(’, j, ’,’, k, ’)= ’, rect(j,k)

end program dsp

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks
I Just type it in each program unit calling dsp functions

I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks
I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it

I But life is too short to modify interfaces spread around 56
program units

I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks
I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units

I Good, but still error prone, no better way?

Ignorance is Evil

I Try to pass integer variables as actual arguments to
theta(), sinc(), and rect()

I Got some surprising behavior?
I Our testing program doesn’t know enough about external

functions it is calling
I It is knowledgeable about return types
I It is totally ignorant about argument types

I We can make it aware using interface blocks
I Just type it in each program unit calling dsp functions
I Or, if your life is too short for typing, copy and paste it
I But life is too short to modify interfaces spread around 56

program units
I Good, but still error prone, no better way?

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:

I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices

I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill

I But there is a lot more to say about modules

My First Module
module dsp

implicit none
contains

function theta(x) !Heaviside function, useful in DSP
real :: theta
real, intent(in) :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
real :: sinc, xpi
real, intent(in) :: x
real, parameter :: pi = acos(-1.0)

xpi = x*pi
sinc = 1.0
if (xpi /= 0.0) sinc = sin(xpi)/xpi

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

My First Module
module dsp

implicit none
contains

function theta(x) !Heaviside function, useful in DSP
real :: theta
real, intent(in) :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
real :: sinc, xpi
real, intent(in) :: x
real, parameter :: pi = acos(-1.0)

xpi = x*pi
sinc = 1.0
if (xpi /= 0.0) sinc = sin(xpi)/xpi

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices

I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill

I But there is a lot more to say about modules

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices

I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill

I But there is a lot more to say about modules

Try it Now!
module dsp

implicit none
contains

function theta(x) !Heaviside function, useful in DSP
real :: theta
real, intent(in) :: x

theta = 1.0
if (x < 0.0) theta = 0.0

end function theta

function sinc(x) !sinc function as used in DSP
real :: sinc, xpi
real, intent(in) :: x
real, parameter :: pi = acos(-1.0)

xpi = x*pi
sinc = 1.0
if (xpi /= 0.0) sinc = sin(xpi)/xpi

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices

I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill
I But there is a lot more to say about modules

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices
I If you have a set of related procedures, always make a module

I If you have a single procedure, just to tame code complexity,
called by a single program unit, a module could be overkill

I But there is a lot more to say about modules

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices
I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill

I But there is a lot more to say about modules

use Modules, Instead!

I Modules are the Fortran way to complete and robust
management of sets of related routines and more

I Interfaces are automatically defined for each procedure a
module contains

I To use theta(), sinc(), and rect() in a program unit:
I just add a use dsp statement
I before you declare anything else in the unit

I Try it now!

I Best practices
I If you have a set of related procedures, always make a module
I If you have a single procedure, just to tame code complexity,

called by a single program unit, a module could be overkill
I But there is a lot more to say about modules

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source

I use dsp, only : theta, sinc
and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:

I use dsp, only : heaviside=>theta, sinc

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source
I use dsp, only : theta, sinc

and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:

I use dsp, only : heaviside=>theta, sinc

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source
I use dsp, only : theta, sinc

and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:

I use dsp, only : heaviside=>theta, sinc

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source
I use dsp, only : theta, sinc

and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:

I use dsp, only : heaviside=>theta, sinc

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source
I use dsp, only : theta, sinc

and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:

I use dsp, only : heaviside=>theta, sinc

Modules Give You Fine Control

I A nice colleague handed you the dsp module...

I but you prefer your own version of rect(), which returns 1 on
borders:

I don’t change the module source
I use dsp, only : theta, sinc

and keep using your own rect()

I or you already have a function called theta(), called all over
your code, and don’t want to change it:

I rename the theta() function in dsp like this:
use dsp, heaviside=>theta

I or maybe both:
I use dsp, only : heaviside=>theta, sinc

Managing Wrong Arguments

function rect(t, tau)
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I What if rect() is passed a negative argument for tau?

I Wrong results
I Taking the absolute value of tau it’s a possibility
I But not a good one, because:

I a negative rectangle width is nonsensical
I probably flags a mistake in the calling code
I and a zero rectangle width is also a problem

Managing Wrong Arguments

function rect(t, tau)
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I What if rect() is passed a negative argument for tau?
I Wrong results

I Taking the absolute value of tau it’s a possibility
I But not a good one, because:

I a negative rectangle width is nonsensical
I probably flags a mistake in the calling code
I and a zero rectangle width is also a problem

Managing Wrong Arguments

function rect(t, tau)
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I What if rect() is passed a negative argument for tau?
I Wrong results

I Taking the absolute value of tau it’s a possibility

I But not a good one, because:

I a negative rectangle width is nonsensical
I probably flags a mistake in the calling code
I and a zero rectangle width is also a problem

Managing Wrong Arguments

function rect(t, tau)
implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I What if rect() is passed a negative argument for tau?
I Wrong results

I Taking the absolute value of tau it’s a possibility
I But not a good one, because:

I a negative rectangle width is nonsensical
I probably flags a mistake in the calling code
I and a zero rectangle width is also a problem

Failing Predictably
function rect(t, tau)

implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) stop ’rect() non positive second argument’
abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I A known approach...

I but too rude!

I No clue at the argument value
I No clue at which call to rect() was wrong
I And stopping a program in a procedure, called by another

procedure, called by another procedure, ..., is widely reputed
bad programming practice

Failing Predictably
function rect(t, tau)

implicit none
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) stop ’rect() non positive second argument’
abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect

I A known approach...
I but too rude!

I No clue at the argument value
I No clue at which call to rect() was wrong
I And stopping a program in a procedure, called by another

procedure, called by another procedure, ..., is widely reputed
bad programming practice

A Better Approach
module dsp

implicit none
integer :: dsp_info
integer, parameter :: DSPERR_DOMAIN = 1

contains
function theta(x) !Heaviside function, useful in DSP

! code as in previous examples...
end function theta

function sinc(x) !sinc function as used in DSP
! code as in previous examples...

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) then
dsp_info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

A Better Approach
module dsp

implicit none
integer :: dsp_info
integer, parameter :: DSPERR_DOMAIN = 1

contains
function theta(x) !Heaviside function, useful in DSP

! code as in previous examples...
end function theta

function sinc(x) !sinc function as used in DSP
! code as in previous examples...

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) then
dsp_info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

More Module Power, and More Types

I Yes, a module can define variables, too

I And they will be accessible to all program units using it

I And yes, integer it’s another Fortran type

I For variables hosting integer numerical values
I More on this later...

I And yes, return forces function execution to terminate and
return to calling unit

More Module Power, and More Types

I Yes, a module can define variables, too
I And they will be accessible to all program units using it

I And yes, integer it’s another Fortran type

I For variables hosting integer numerical values
I More on this later...

I And yes, return forces function execution to terminate and
return to calling unit

A Better Approach
module dsp

implicit none
integer :: dsp_info
integer, parameter :: DSPERR_DOMAIN = 1

contains
function theta(x) !Heaviside function, useful in DSP

! code as in previous examples...
end function theta

function sinc(x) !sinc function as used in DSP
! code as in previous examples...

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) then
dsp_info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

More Module Power, and More Types

I Yes, a module can define variables, too
I And they will be accessible to all program units using it

I And yes, integer it’s another Fortran type
I For variables hosting integer numerical values
I More on this later...

I And yes, return forces function execution to terminate and
return to calling unit

A Better Approach
module dsp

implicit none
integer :: dsp_info
integer, parameter :: DSPERR_DOMAIN = 1

contains
function theta(x) !Heaviside function, useful in DSP

! code as in previous examples...
end function theta

function sinc(x) !sinc function as used in DSP
! code as in previous examples...

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) then
dsp_info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

More Module Power, and More Types

I Yes, a module can define variables, too
I And they will be accessible to all program units using it

I And yes, integer it’s another Fortran type
I For variables hosting integer numerical values
I More on this later...

I And yes, return forces function execution to terminate and
return to calling unit

A Better Approach
module dsp

implicit none
integer :: dsp_info
integer, parameter :: DSPERR_DOMAIN = 1

contains
function theta(x) !Heaviside function, useful in DSP

! code as in previous examples...
end function theta

function sinc(x) !sinc function as used in DSP
! code as in previous examples...

end function sinc

function rect(t, tau) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
real :: abs_t, half_tau

if (tau <= 0.0) then
dsp_info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

Error Management Strategy

I Set a module variable to a constant corresponding to the error
class

I And return a sensible result

I Then a wise user would do something like this:
dsp_info = 0
r = rect(x, width)
if (dsp_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I Note: even if Fortran ignores case, constants are often
highlighted using all capitals

Error Management Strategy

I Set a module variable to a constant corresponding to the error
class

I And return a sensible result
I Then a wise user would do something like this:

dsp_info = 0
r = rect(x, width)
if (dsp_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I Note: even if Fortran ignores case, constants are often
highlighted using all capitals

Error Management Strategy

I Set a module variable to a constant corresponding to the error
class

I And return a sensible result
I Then a wise user would do something like this:

dsp_info = 0
r = rect(x, width)
if (dsp_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I Note: even if Fortran ignores case, constants are often
highlighted using all capitals

A Widely Used Approach

module dsp
implicit none
integer, parameter :: DSPERR_DOMAIN = 1

contains

! ...

function rect(t, tau, info) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
integer, intent(out) :: info
real :: abs_t, half_tau

info = 0
if (tau <= 0.0) then

info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

A Widely Used Approach

module dsp
implicit none
integer, parameter :: DSPERR_DOMAIN = 1

contains

! ...

function rect(t, tau, info) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
integer, intent(out) :: info
real :: abs_t, half_tau

info = 0
if (tau <= 0.0) then

info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

Using Arguments to Return Error Codes

I Set a dedicated argument to a constant corresponding to the
error class

I And return a sensible result

I Then a wise user would do something like this:
r = rect(x, width, rect_info)
if (rect_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I But this is annoying when the arguments are guaranteed to be
correct

I info can be given the optional attribute
I and omitted when you feel it’s safe: rect(x, 5.0)

Using Arguments to Return Error Codes

I Set a dedicated argument to a constant corresponding to the
error class

I And return a sensible result
I Then a wise user would do something like this:

r = rect(x, width, rect_info)
if (rect_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I But this is annoying when the arguments are guaranteed to be
correct

I info can be given the optional attribute
I and omitted when you feel it’s safe: rect(x, 5.0)

Using Arguments to Return Error Codes

I Set a dedicated argument to a constant corresponding to the
error class

I And return a sensible result
I Then a wise user would do something like this:

r = rect(x, width, rect_info)
if (rect_info == DSPERR_DOMAIN) then
! take corrective action or fail gracefully

end if

I But this is annoying when the arguments are guaranteed to be
correct

I info can be given the optional attribute
I and omitted when you feel it’s safe: rect(x, 5.0)

Making Argument Optionals

module dsp
implicit none
integer, parameter :: DSPERR_DOMAIN = 1

contains

! ...

function rect(t, tau, info) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
integer, intent(out), optional :: info
real :: abs_t, half_tau

if (present(info)) info = 0
if (tau <= 0.0) then

if (present(info)) info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

Making Argument Optionals

module dsp
implicit none
integer, parameter :: DSPERR_DOMAIN = 1

contains

! ...

function rect(t, tau, info) !generalized rectangular function, useful in DSP
real :: rect
real, intent(in) :: t, tau
integer, intent(out), optional :: info
real :: abs_t, half_tau

if (present(info)) info = 0
if (tau <= 0.0) then

if (present(info)) info = DSPERR_DOMAIN
rect = 0.0
return

end if

abs_t = abs(t)
half_tau = 0.5*tau
rect = 0.5
if (abs_t /= half_tau) rect = theta(half_tau-abs_t)

end function rect
end module dsp

Total Robustness
I Your platform could support IEEE floating point standard

I Most common ones do, at least in a good part

I This means more bad cases:

I one of the arguments is a NaN
I both arguments are infinite (they are not ordered!)

I Best strategy: return a NaN and set dsp_info in these bad
cases

I And do it also for non positive values of tau
I But then the floating point environment configuration should be

checked, proper floating point exceptions set...

I Being absolutely robust is difficult

I Too advanced stuff to cover in this course
I But not an excuse, some robustness is better than none
I It’s a process to do in steps
I Always comment in your code bad cases you don’t

cover yet!

Total Robustness
I Your platform could support IEEE floating point standard

I Most common ones do, at least in a good part
I This means more bad cases:

I one of the arguments is a NaN
I both arguments are infinite (they are not ordered!)

I Best strategy: return a NaN and set dsp_info in these bad
cases

I And do it also for non positive values of tau
I But then the floating point environment configuration should be

checked, proper floating point exceptions set...

I Being absolutely robust is difficult

I Too advanced stuff to cover in this course
I But not an excuse, some robustness is better than none
I It’s a process to do in steps
I Always comment in your code bad cases you don’t

cover yet!

Total Robustness
I Your platform could support IEEE floating point standard

I Most common ones do, at least in a good part
I This means more bad cases:

I one of the arguments is a NaN
I both arguments are infinite (they are not ordered!)

I Best strategy: return a NaN and set dsp_info in these bad
cases

I And do it also for non positive values of tau
I But then the floating point environment configuration should be

checked, proper floating point exceptions set...

I Being absolutely robust is difficult

I Too advanced stuff to cover in this course
I But not an excuse, some robustness is better than none
I It’s a process to do in steps
I Always comment in your code bad cases you don’t

cover yet!

Total Robustness
I Your platform could support IEEE floating point standard

I Most common ones do, at least in a good part
I This means more bad cases:

I one of the arguments is a NaN
I both arguments are infinite (they are not ordered!)

I Best strategy: return a NaN and set dsp_info in these bad
cases

I And do it also for non positive values of tau
I But then the floating point environment configuration should be

checked, proper floating point exceptions set...

I Being absolutely robust is difficult
I Too advanced stuff to cover in this course
I But not an excuse, some robustness is better than none
I It’s a process to do in steps
I Always comment in your code bad cases you don’t

cover yet!

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

A Glimpse to Fortran 77
FUNCTION SINC(X)

IMPLICIT NONE
REAL SINC, X, XPI
REAL PI
PARAMETER (PI = 3.1415926)

XPI = X*PI
SINC = 1.0
IF (XPI .NE. 0.0) SINC = SIN(XPI)/XPI

END

FUNCTION RECT(T, TAU)
IMPLICIT NONE
REAL RECT, T, TAU
REAL ABS_T, HALF_TAU
REAL THETA
EXTERNAL THETA
INTEGER DSPINFO
COMMON /DSP/ DSPINFO

IF (TAU .LE. 0.0) THEN
DSPINFO = 1
RECT = 0.0;
RETURN

END IF

ABS_T = ABS(T)
HALF_TAU = 0.5*TAU
RECT = 0.5
IF (ABS_T .NE. HALF_TAU) RECT = THETA(HALF_TAU-ABS_T)

END

Many Things are Missing
I Strange looking relational operators
I No attributes

I Declarations spread over many lines, error prone
I No initialization expressions

I You had to type in the actual number
I No intent i.e. no defense from subtle bugs
I No interface

I No easy way to share variables among program units

I To share you had to use common statements
I And type in variable types and common statements in each unit
I And the smallest mistake can turn into a nightmare

I Bottom line:

I Is common good or bad? The jury is still out
I We’ll not cover them, but you’ll encounter them
I Read the fine print, or better switch to modules, they are way

much better

Many Things are Missing
I Strange looking relational operators
I No attributes

I Declarations spread over many lines, error prone
I No initialization expressions

I You had to type in the actual number
I No intent i.e. no defense from subtle bugs
I No interface

I No easy way to share variables among program units
I To share you had to use common statements
I And type in variable types and common statements in each unit
I And the smallest mistake can turn into a nightmare

I Bottom line:

I Is common good or bad? The jury is still out
I We’ll not cover them, but you’ll encounter them
I Read the fine print, or better switch to modules, they are way

much better

Many Things are Missing
I Strange looking relational operators
I No attributes

I Declarations spread over many lines, error prone
I No initialization expressions

I You had to type in the actual number
I No intent i.e. no defense from subtle bugs
I No interface

I No easy way to share variables among program units
I To share you had to use common statements
I And type in variable types and common statements in each unit
I And the smallest mistake can turn into a nightmare

I Bottom line:
I Is common good or bad? The jury is still out
I We’ll not cover them, but you’ll encounter them
I Read the fine print, or better switch to modules, they are way

much better

Refurbishing Old Code

I You are lucky, and inherit a 4000 lines of code library, coming
from the dark ages

I Tested and tried

I But no interface

I Thus no compiler checks when you call it
I And rewriting a working code in modern language is soooo

dangerous...

I Modules come to rescue

I They don’t need to include the actual code
I But they can publish an interface for code which is elsewhere
I And then you can use the module in calling program units

Refurbishing Old Code

I You are lucky, and inherit a 4000 lines of code library, coming
from the dark ages

I Tested and tried
I But no interface

I Thus no compiler checks when you call it
I And rewriting a working code in modern language is soooo

dangerous...

I Modules come to rescue

I They don’t need to include the actual code
I But they can publish an interface for code which is elsewhere
I And then you can use the module in calling program units

Refurbishing Old Code

I You are lucky, and inherit a 4000 lines of code library, coming
from the dark ages

I Tested and tried
I But no interface

I Thus no compiler checks when you call it
I And rewriting a working code in modern language is soooo

dangerous...

I Modules come to rescue
I They don’t need to include the actual code
I But they can publish an interface for code which is elsewhere
I And then you can use the module in calling program units

Wrapping Old Code in a Module

module dspmod

implicit none

interface
function theta(x)

real :: theta
real, intent(in) ::x

end function theta
end interface

interface
function sinc(x)

real :: sinc
real, intent(in) :: x

end function sinc
end interface

interface
function rect(t, tau)

real :: rect
real, intent(in) :: t, tau

end function rect
end interface

end module dspmod

Outline

Introduction

Fortran Basics

More Fortran Basics
My First Fortran Functions
Making it Correct
Making it Robust
Copying with Legacy
Wrapping it Up 2

Integer Types and Iterating

More on Compiling and Linking

Homeworks

We Did Progress!

I A program can be subdivided in more source files
I Functions and their arguments
I Arguments are passed to functions by reference
I intent attribute is precious to prevent subtle bugs
I Intrinsic and external procedures are two different things
I parameter variables
I Explicit interfaces
I Modules allow complete management of procedures
I Modules allow access to variables from many program units
I Modules can be used to make proper use of legacy, reliable

codes

Best Practices

I Always name constants
I Test every function you write

I Writing specialized programs to do it
I Use language support and compiler to catch mistakes
I Use explicit interfaces
I Use modules
I Describe all attributes of a variable at declaration
I Anticipate causes of problems

I Find a rational way to react
I Fail predictably and in a user friendly way
I Robustness it’s a long way to do in steps
I Comment in your code issues still to address

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

Greatest Common Divisor

I Euclid’s Algorithm
1. Take two integers a and b
2. Let r ← a mod b
3. Let a← b
4. Let b ← r
5. If b is not zero, go back to step 2
6. a is the GCD

I Let’s implement it and learn some more Fortran

GCD & LCM

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = a
gb = b

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

GCD & LCM

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = a
gb = b

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1

I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this

I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...

I ...on all platforms we know of, the intrinsic function kind() will
return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer

I And works for real values too, or values of any type, for that
matter

I More on this later
I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter

I More on this later
I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?

I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

The Integer Type
I As we said, integer means that a value is an integer

I Only integer values, positive, negative or zero
I On most platforms, integer means a 32 bits value, ranging

from −231 to 231 − 1
I Want to know the actual size?

I The standard is absolutely generic on this
I But we’ll tell you a secret...
I ...on all platforms we know of, the intrinsic function kind() will

return the size in bytes of any integer expression you’ll pass as
an argument

I Try with kind(0), to know the size of a normal integer
I And works for real values too, or values of any type, for that

matter
I More on this later

I Want to know more?
I Intrinsic function huge(0) returns the greatest positive value an
integer can assume

I Again, we’ll be back at this

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

GCD & LCM

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = a
gb = b

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Iterating with do ... end do

I do
block of statements
end do

1. Executes again and again the block of statements
2. And does this forever...
3. ... unless exit is executed, forcing execution to proceed at

code following end do

I In this specific example:

I the code following end do is the end of the function
I thus, we could use return instead of exit, which is legal,
I but generally regarded bad practice

I Best practice: do not bail out of a function from inside a loop,
particularly a long one

Iterating with do ... end do

I do
block of statements
end do

1. Executes again and again the block of statements
2. And does this forever...
3. ... unless exit is executed, forcing execution to proceed at

code following end do

I In this specific example:

I the code following end do is the end of the function
I thus, we could use return instead of exit, which is legal,
I but generally regarded bad practice

I Best practice: do not bail out of a function from inside a loop,
particularly a long one

Iterating with do ... end do

I do
block of statements
end do

1. Executes again and again the block of statements
2. And does this forever...
3. ... unless exit is executed, forcing execution to proceed at

code following end do

I In this specific example:
I the code following end do is the end of the function
I thus, we could use return instead of exit, which is legal,
I but generally regarded bad practice

I Best practice: do not bail out of a function from inside a loop,
particularly a long one

Iterating with do ... end do

I do
block of statements
end do

1. Executes again and again the block of statements
2. And does this forever...
3. ... unless exit is executed, forcing execution to proceed at

code following end do

I In this specific example:
I the code following end do is the end of the function
I thus, we could use return instead of exit, which is legal,
I but generally regarded bad practice

I Best practice: do not bail out of a function from inside a loop,
particularly a long one

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

Hands-on Session #3

I Put the code in file numbertheory.f90

I Write a program to test both gcd() and lcm() on a pair of
integer numbers

I Test it:
I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0

I In some cases, we get wrong results or runtime errors

I Euclid’s algorithm is only defined for positive integers

GCD & LCM: Try it Now!

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = a
gb = b

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Hands-on Session #3

I Put the code in file numbertheory.f90

I Write a program to test both gcd() and lcm() on a pair of
integer numbers

I Test it:
I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0

I In some cases, we get wrong results or runtime errors
I Euclid’s algorithm is only defined for positive integers

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do

I gcd(a,0) is |a|

I Conditional statements will do

I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:

I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:

I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I and with the pair: 1000000, 1000000

GCD & LCM: Dealing with 0 and Negatives

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = abs(a)
gb = abs(b)

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do
I gcd(a,0) is |a|

I Conditional statements will do

I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:

I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:

I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I and with the pair: 1000000, 1000000

GCD & LCM: Dealing with 0 and Negatives

module number_theory
implicit none

contains
function gcd(a, b) ! Greatest Common Divisor

integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = abs(a)
gb = abs(b)

if (a == 0) gcd = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do
I gcd(a,0) is |a|

I Conditional statements will do
I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:

I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:

I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I and with the pair: 1000000, 1000000

GCD & LCM: Dealing with 0 and Negatives
module number_theory

implicit none
contains

function gcd(a, b) ! Greatest Common Divisor
integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = abs(a)
gb = abs(b)

if (a == 0) gcd = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

if (a == 0 .and. b == 0) then
lcm = 0 ; return

end if

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do
I gcd(a,0) is |a|

I Conditional statements will do
I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:
I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:

I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I and with the pair: 1000000, 1000000

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do
I gcd(a,0) is |a|

I Conditional statements will do
I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:
I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:
I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0

I and with the pair: 1000000, 1000000

GCD & LCM: Try it Now!
module number_theory

implicit none
contains

function gcd(a, b) ! Greatest Common Divisor
integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = abs(a)
gb = abs(b)

if (a == 0) gcd = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

if (a == 0 .and. b == 0) then
lcm = 0 ; return

end if

lcm = a*b/gcd(a,b)
end function lcm

end module number_theory

Let’s Generalize to the Whole Integer Set
I gcd(a,b) is non negative, even if a or b is less than zero

I Taking the absolute value of a and b using abs() will do
I gcd(a,0) is |a|

I Conditional statements will do
I gcd(0,0) is 0

I Already covered by the previous item, but let’s pay attention to
lcm()

I By the way:
I .and. and .or. combine two logical conditions
I ; makes for two statements on the same line: but its use is only

justified when space is at a premium, like in slides

I Try and test it:
I with pairs of small positive integers
I with the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I and with the pair: 1000000, 1000000

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

Beware of Type Ranges

I a*b/gcd(a,b) same as (a*b)/gcd(a,b)

I What if the result of a calculation cannot be represented in the
given type?

I Technically, you get an arithmetic overflow
I To Fortran, it’s your fault: you are on your own
I Best practice: be very careful of intermediate results

I Easy fix: gcd(a,b) is an exact divisor of b

I Try and test it:

I with pairs of small positive integers
I on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I with the pair: 1000000, 1000000
I and let’s test also with: 1000000, 1000001

Beware of Type Ranges

I a*b/gcd(a,b) same as (a*b)/gcd(a,b)

I What if the result of a calculation cannot be represented in the
given type?

I Technically, you get an arithmetic overflow
I To Fortran, it’s your fault: you are on your own
I Best practice: be very careful of intermediate results

I Easy fix: gcd(a,b) is an exact divisor of b

I Try and test it:

I with pairs of small positive integers
I on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I with the pair: 1000000, 1000000
I and let’s test also with: 1000000, 1000001

Beware of Type Ranges

I a*b/gcd(a,b) same as (a*b)/gcd(a,b)

I What if the result of a calculation cannot be represented in the
given type?

I Technically, you get an arithmetic overflow
I To Fortran, it’s your fault: you are on your own
I Best practice: be very careful of intermediate results

I Easy fix: gcd(a,b) is an exact divisor of b

I Try and test it:

I with pairs of small positive integers
I on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I with the pair: 1000000, 1000000
I and let’s test also with: 1000000, 1000001

GCD & LCM: Preventing Overflow
module number_theory

implicit none
contains

function gcd(a, b) ! Greatest Common Divisor
integer :: gcd
integer, intent(in) :: a, b
integer :: gb, t

gcd = abs(a)
gb = abs(b)

if (a == 0) gcd = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd,gb)
gcd = gb
if (t == 0) exit
gb = t

end do
end function gcd

function lcm(a, b) ! Least Common Multiple
integer :: lcm
integer, intent(in) :: a, b

if (a == 0 .and. b == 0) then
lcm = 0 ; return

end if

lcm = a*(b/gcd(a,b))
end function lcm

end module number_theory

Beware of Type Ranges

I a*b/gcd(a,b) same as (a*b)/gcd(a,b)

I What if the result of a calculation cannot be represented in the
given type?

I Technically, you get an arithmetic overflow
I To Fortran, it’s your fault: you are on your own
I Best practice: be very careful of intermediate results

I Easy fix: gcd(a,b) is an exact divisor of b

I Try and test it:
I with pairs of small positive integers
I on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I with the pair: 1000000, 1000000

I and let’s test also with: 1000000, 1000001

Beware of Type Ranges

I a*b/gcd(a,b) same as (a*b)/gcd(a,b)

I What if the result of a calculation cannot be represented in the
given type?

I Technically, you get an arithmetic overflow
I To Fortran, it’s your fault: you are on your own
I Best practice: be very careful of intermediate results

I Easy fix: gcd(a,b) is an exact divisor of b

I Try and test it:
I with pairs of small positive integers
I on the following pairs: 15, 18; -15, 18; 15, -18;

-15, -18; 0, 15; 15, 0; 0, 0
I with the pair: 1000000, 1000000
I and let’s test also with: 1000000, 1000001

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

Wider Integer Types

I On most nowadays platforms:

I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):

I returns a kind type parameter corresponding to an internal
representation capable to host the value 10n

I or -1 if none is wide enough

I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647

I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):

I returns a kind type parameter corresponding to an internal
representation capable to host the value 10n

I or -1 if none is wide enough

I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer

I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):

I returns a kind type parameter corresponding to an internal
representation capable to host the value 10n

I or -1 if none is wide enough

I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):

I returns a kind type parameter corresponding to an internal
representation capable to host the value 10n

I or -1 if none is wide enough

I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):

I returns a kind type parameter corresponding to an internal
representation capable to host the value 10n

I or -1 if none is wide enough
I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):
I returns a kind type parameter corresponding to an internal

representation capable to host the value 10n

I or -1 if none is wide enough
I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):
I returns a kind type parameter corresponding to an internal

representation capable to host the value 10n
I or -1 if none is wide enough

I integer accepts an optional kind type parameter

I integer(kind=selected_int_kind(9)) :: di usually
makes di a 32 bits wide variable

I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

Wider Integer Types

I On most nowadays platforms:
I integers have 32 bits and huge(0) returns 2147483647
I range(0) returns 9, i.e. you can store 109 in an integer
I but 64 bits wide integers can safely host 1018

I selected_int_kind(n):
I returns a kind type parameter corresponding to an internal

representation capable to host the value 10n
I or -1 if none is wide enough

I integer accepts an optional kind type parameter
I integer(kind=selected_int_kind(9)) :: di usually

makes di a 32 bits wide variable
I integer(kind=selected_int_kind(18)) :: wi makes
wi a 64 bits wide variable

I integer(selected_int_kind(18)) :: wi will also do

GCD & LCM: Let’s Make Kind Explicit
module number_theory

implicit none
contains

function gcd9(a, b) ! Greatest Common Divisor
integer(selected_int_kind(9)) :: gcd9
integer(selected_int_kind(9)), intent(in) :: a, b
integer(selected_int_kind(9)) :: gb, t

gcd9 = abs(a)
gb = abs(b)

if (a == 0) gcd9 = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd9,gb)
gcd9 = gb
if (t == 0) exit
gb = t

end do
end function gcd9

function lcm9(a, b) ! Least Common Multiple
integer(selected_int_kind(9)) :: lcm9
integer(selected_int_kind(9)), intent(in) :: a, b

if (a == 0 .and. b == 0) then
lcm9 = 0 ; return

end if

lcm9 = a*(b/gcd9(a,b))
end function lcm9

end module number_theory

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!

I Now we have to remember to call the right function, depending
on the integer kind

I But this is not Fortran style: we didn’t have to change the call to
intrinsic abs(), it’s name is generic

I Can we do better?

I Yes, we can do better!

I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

GCD & LCM: Let’s Add Headroom

module number_theory

! add right after: end function lcm9

contains

function gcd18(a, b) ! Greatest Common Divisor
integer(selected_int_kind(18)) :: gcd18
integer(selected_int_kind(18)), intent(in) :: a, b
integer(selected_int_kind(18)) :: gb, t

gcd18 = abs(a)
gb = abs(b)

if (a == 0) gcd18 = gb
if (a == 0 .or. b == 0) return

do
t = mod(gcd18,gb)
gcd18 = gb
if (t == 0) exit
gb = t

end do
end function gcd18

function lcm18(a, b) ! Least Common Multiple
integer(selected_int_kind(18)) :: lcm18
integer(selected_int_kind(18)), intent(in) :: a, b

if (a == 0 .and. b == 0) then
lcm18 = 0 ; return

end if

lcm18 = a*(b/gcd18(a,b))
end function lcm18

end module number_theory

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!

I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!

I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue

I Beware: specific functions under a same generic interface must
differ in type of at least one argument

I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

GCD & LCM: Making it Generic
module number_theory

implicit none

private gcd9, lcm9, gcd18, lcm18

interface gcd
module procedure gcd9, gcd18

end interface

interface lcm
module procedure lcm9, lcm18

end interface

contains

function gcd9(a, b) ! Greatest Common Divisor
! code as before
end function gcd9

function lcm9(a,b) ! Least Common Multiple
! code as before
end function lcm9

function gcd18(a, b) ! Greatest Common Divisor
! code as before
end function gcd18

function lcm18(a,b) ! Least Common Multiple
! code as before
end function lcm18

end module number_theory

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument

I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

GCD & LCM: Making it Generic
module number_theory

implicit none

private gcd9, lcm9, gcd18, lcm18

interface gcd
module procedure gcd9, gcd18

end interface

interface lcm
module procedure lcm9, lcm18

end interface

contains

function gcd9(a, b) ! Greatest Common Divisor
! code as before
end function gcd9

function lcm9(a,b) ! Least Common Multiple
! code as before
end function lcm9

function gcd18(a, b) ! Greatest Common Divisor
! code as before
end function gcd18

function lcm18(a,b) ! Least Common Multiple
! code as before
end function lcm18

end module number_theory

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies

I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

GCD & LCM: Making it Generic
module number_theory

implicit none

private gcd9, lcm9, gcd18, lcm18

interface gcd
module procedure gcd9, gcd18

end interface

interface lcm
module procedure lcm9, lcm18

end interface

contains

function gcd9(a, b) ! Greatest Common Divisor
! code as before
end function gcd9

function lcm9(a,b) ! Least Common Multiple
! code as before
end function lcm9

function gcd18(a, b) ! Greatest Common Divisor
! code as before
end function gcd18

function lcm18(a,b) ! Least Common Multiple
! code as before
end function lcm18

end module number_theory

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:

I write generic procedures, whenever possible
I hide implementation details, whenever possible

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:
I write generic procedures, whenever possible

I hide implementation details, whenever possible

Being More General and Generic
I And let’s add support for a wider integer range

I Wait!
I Now we have to remember to call the right function, depending

on the integer kind
I But this is not Fortran style: we didn’t have to change the call to

intrinsic abs(), it’s name is generic
I Can we do better?

I Yes, we can do better!
I interface blocks come to rescue
I Beware: specific functions under a same generic interface must

differ in type of at least one argument
I and module procedure spares us typing and inconsistencies
I and private allows us to hide implementation details

I Best practices for robustness:
I write generic procedures, whenever possible
I hide implementation details, whenever possible

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

Dusty Decks

FUNCTION GCD18(A, B)
INTEGER*8 GCD18, A, B
INTEGER*8 GB, T

GCD18 = A
GB = B

1 T = MOD(GCD18,GB)
GCD18 = GB
IF (T .EQ. 0) GO TO 2
GB = T
GO TO 1

2 CONTINUE
END

FUNCTION LCM18(A, B)
INTEGER*8 LCM18, A, B
INTEGER*8 GCD18
EXTERNAL GCD18

LCM18 = A*B/GCD18(A,B)
END

A Limited Language with Many Dialects

I No structured endless loops
I Labels and GO TOs where used instead

I CONTINUE was a no-op
I Used to mark destination of jumps
I No comment

I INTEGER*8 was used to declare an 8 bytes integer variable
I Absolutely non standard
I As are INTEGER*1, INTEGER*2, INTEGER*4, REAL*4,
REAL*8, COMPLEX*8, COMPLEX*16

I Many dialects
I Many proprietary extensions used to be developed
I And then copied among vendors for compatibility reasons
I Many extensions were eventually standardized
I But not all of them!
I They still lurk around, and can be tempting: resist!

Outline
Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating
Play it Again, Please
Testing and Fixing it
Hitting Limits
Wider Integer Types
How Bad it Used to Be
Wrapping it Up 3

More on Compiling and Linking

Homeworks

More Types and Flow Control

I There are many integer types
I With implementation dependent ranges
I Selectable by kind type parameters
I Whose limits can be devised using huge() or range()

I Library functions have generic names, good for most types
I And you can write your own generic interfaces
I Behavior on integer overflow is implementation defined

I Some control is possible using parentheses
I Blocks of statements can be iterated forever...

I ... and exit gets off the roundabout
I Logical conditions can be combined using .or. and .and.

operators

Best Practices

I Do not rely on type sizes, they are implementation dependent
I Do not leave a function from inside a loop
I Think of intermediate results in expressions: they can overflow

or underflow
I Be consistent with Fortran approach

I E.g. writing generic interfaces
I Even if it costs more work
I Even if it costs learning more Fortran
I Once again, you can do it in steps
I You’ll appreciate it in the future

I Hide implementation details as much as possible
I You’ll never regret

I Resist the temptation of old Fortran or non standard extensions

I Will pay back in the future

Outline

Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings

I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings

I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings
I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings
I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings
I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...

I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings
I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Compiler Errors and Warnings

I Compiler stops on errors (grammar violation, syntactic errors,
...)

I Goes on if you write non-sensical code complying with the
rules!

I Compiler may perform extra checks and report warnings
I Very useful in early development phases
I ... sometimes pedantic
I Read them carefully anyway

I -Wall option turns on commonly used warning on gfortran
but not -Wimplicit-interface for example

I If given earlier ...
I Something is an error if not in Fortran 95 standard

I Use -std=f95 to force reference standard

Building a Program
Creating an executable from source files is in general
a three phase process:

I pre-processing:
I each source file is read by the pre-processor

I substitute (#define) MACROs
I insert code by #include statements
I insert or delete code evaluating #ifdef, #if ...

I compiling:
I each source file is translated into an object code file

I an object code file is an organised collection of symbols, referring
to variables and functions defined or used in the source file

I linking:
I object files should be combined together to build a single

executable program
I every symbol should be resolved

I symbols can be defined in your object files
I or available in other object code (external libraries)

Compiling with GNU gfortran
I When you give the command:

user@cineca$> gfortran dsp.f90 dsp_test.f90

I It’s like going through three steps
I Pre-processing

user@cineca$> gfortran -E -cpp dsp.f90
user@cineca$> gfortran -E -cpp dsp_test.f90

I -E -cpp option, tells gfortran to stop after pre-process
I Simply calls cpp (automatically invoked if the file extension is
F90)

I Output sent to standard output

I Compiling sources

user@cineca$> gfortran -c dsp.f90
user@cineca$> gfortran -c dsp_test.f90

I -c option tells gfortran to only compile the source
I An object file .o is produced from each source file

Compiling with GNU gfortran
I When you give the command:

user@cineca$> gfortran dsp.f90 dsp_test.f90

I It’s like going through three steps

I Pre-processing

user@cineca$> gfortran -E -cpp dsp.f90
user@cineca$> gfortran -E -cpp dsp_test.f90

I -E -cpp option, tells gfortran to stop after pre-process
I Simply calls cpp (automatically invoked if the file extension is
F90)

I Output sent to standard output

I Compiling sources

user@cineca$> gfortran -c dsp.f90
user@cineca$> gfortran -c dsp_test.f90

I -c option tells gfortran to only compile the source
I An object file .o is produced from each source file

Compiling with GNU gfortran
I When you give the command:

user@cineca$> gfortran dsp.f90 dsp_test.f90

I It’s like going through three steps
I Pre-processing

user@cineca$> gfortran -E -cpp dsp.f90
user@cineca$> gfortran -E -cpp dsp_test.f90

I -E -cpp option, tells gfortran to stop after pre-process
I Simply calls cpp (automatically invoked if the file extension is
F90)

I Output sent to standard output

I Compiling sources

user@cineca$> gfortran -c dsp.f90
user@cineca$> gfortran -c dsp_test.f90

I -c option tells gfortran to only compile the source
I An object file .o is produced from each source file

Compiling with GNU gfortran
I When you give the command:

user@cineca$> gfortran dsp.f90 dsp_test.f90

I It’s like going through three steps
I Pre-processing

user@cineca$> gfortran -E -cpp dsp.f90
user@cineca$> gfortran -E -cpp dsp_test.f90

I -E -cpp option, tells gfortran to stop after pre-process
I Simply calls cpp (automatically invoked if the file extension is
F90)

I Output sent to standard output
I Compiling sources

user@cineca$> gfortran -c dsp.f90
user@cineca$> gfortran -c dsp_test.f90

I -c option tells gfortran to only compile the source
I An object file .o is produced from each source file

Linking with GNU gfortran
I Linking object files together

user@cineca$> gfortran dsp.o dsp_test.o

I To resolve symbols defined in external libraries, specify:
I which libraries to use (-l option)
I in which directories they are (-L option)

I How to link the library libdsp.a in /mypath

user@cineca$> gfortran file1.o file2.o -L/mypath -ldsp

I How to create and link the DSP library:

user@cineca$> gfortran -c dsp.f90
ar curv libdsp.a dsp.o
ranlib libdsp.a
gfortran test_dsp.f90 -L. -ldsp

I ar create the archive libdsp.a containing dsp.o
I ranlib generate index to archive

I To include file like .mod, specify
I in which directories they are (-I option)

Outline

Introduction

Fortran Basics

More Fortran Basics

Integer Types and Iterating

More on Compiling and Linking

Homeworks

Homework I

I Write a program that reads an integer value limit and prints
the first limit prime numbers

I Use the GCD function to identify those numbers
I After testing the basic version, handle negative limit values:

print an error message and attempt to read the value again

Homework II

I Write a module containing a function that takes an integer n as
input, and returns the n-th element of the Fibonacci series fn

I Hint:
I F0 = 0
I F1 = 1
I Fn = Fn−1 + Fn−2

I Write a main program to test your function
I Read n from standard input
I Try with n=2, 10, 40, 46, 48, ...
I What’s the greatest n := maxn, for which fn is representable by

a default integer? (huge can help to find it out)
I Use this information to handle too large values of n in your

function:
I If n > maxn print an error message and return -1

Part II

A Fortran Survey 2

Passing functions as arguments of procedurs. Conditional and
numerical loops. Managing the precision, conversions,
overflow, underflow, Inf e NaN. Expressions and
subexpressions with mixed types. Types, operators and logical
expressions. Type character and intrinsic functions for strings.
Subroutine. Array. Default constructor for arrays and implicit
loops. Assumed-shape array and automatic object.
Expressions with arrays and conformity.

Outline

More Flow Control
Numerical Integration
Wrapping it Up 4

Fortran Intrinsic Types, Variables and Math

Arrays

Caveat Emptor

The code in this section is meant for didactical
purposes only.

It is deliberately naive: focus is on language
aspects, not on precision or accuracy.

As a consequence, it is prone to numerical
problems.

Outline

More Flow Control
Numerical Integration
Wrapping it Up 4

Fortran Intrinsic Types, Variables and Math

Arrays

Numerical Integration

I Let’s use the trapezoidal rule to estimate
∫ b

a f (x)dx

I Dividing the interval [a,b] into n equal sized slices, it boils
down to:∫ b

a f (x)dx ≈ b−a
n

(
1
2 f (a) + 1

2 f (b) +
∑n−1

k=1 f
(
a + k b−a

n

))
I And to make it more juicy, let’s make a succession of estimates,

doubling n each time, until the estimate seems stable

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Function Arguments
I Yes, a function can be passed as an argument to another

function!
I Simply pass the name on call, like this:
g = trap_int(-pi, pi, sinc, 0.0001)

I And then the function can be called using the dummy
argument name

I And this can be done for any procedure
I And allows for very generic code to be written

I i.e. reuse the same routine to integrate different functions in the
same program

I Integer and real values can be mixed in expressions

I As well as values of same type but different kind
I And the right thing will be done
I Which is: when two values of different type/kind meet each

other at a binary operator, the one with smaller numeric range is
converted to the other

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Function Arguments
I Yes, a function can be passed as an argument to another

function!
I Simply pass the name on call, like this:
g = trap_int(-pi, pi, sinc, 0.0001)

I And then the function can be called using the dummy
argument name

I And this can be done for any procedure
I And allows for very generic code to be written

I i.e. reuse the same routine to integrate different functions in the
same program

I Integer and real values can be mixed in expressions
I As well as values of same type but different kind
I And the right thing will be done
I Which is: when two values of different type/kind meet each

other at a binary operator, the one with smaller numeric range is
converted to the other

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Iterating with do while ... end do
I do while (logical-condition)

block of statements
end do

1. Evaluates logical-condition
2. If logical-condition is false, goes to 5
3. Executes the block of statements
4. Goes back to 1
5. Execution proceeds to the statement following end do

I do loops too can be given a name

1. And it can be used on exit statements to make the flow more
evident

2. Particularly for nested loops

I Best practices:

1. use names to mark loops when they are long or belong to a
deep nest

2. NEVER, NEVER permit your code to loop forever for some
inputs

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Iterating with do while ... end do
I do while (logical-condition)

block of statements
end do

1. Evaluates logical-condition
2. If logical-condition is false, goes to 5
3. Executes the block of statements
4. Goes back to 1
5. Execution proceeds to the statement following end do

I do loops too can be given a name
1. And it can be used on exit statements to make the flow more

evident
2. Particularly for nested loops

I Best practices:

1. use names to mark loops when they are long or belong to a
deep nest

2. NEVER, NEVER permit your code to loop forever for some
inputs

Iterating with do while ... end do
I do while (logical-condition)

block of statements
end do

1. Evaluates logical-condition
2. If logical-condition is false, goes to 5
3. Executes the block of statements
4. Goes back to 1
5. Execution proceeds to the statement following end do

I do loops too can be given a name
1. And it can be used on exit statements to make the flow more

evident
2. Particularly for nested loops

I Best practices:
1. use names to mark loops when they are long or belong to a

deep nest
2. NEVER, NEVER permit your code to loop forever for some

inputs

Double Steps
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified

2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var

3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}

4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6

5. Executes niter times the block of statements, adding step to var
at the end of each block of statements

6. Execution proceeds to the statement following end do
I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements

6. Execution proceeds to the statement following end do
I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers

I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues
I Less flexible than a do while but more efficient execution

(exit works, anyway)
I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers
I Mandatory in Fortran 2003

I Reals can be used up to Fortran 95, but a bad idea, for both
performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers
I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues

I Less flexible than a do while but more efficient execution
(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers
I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues
I Less flexible than a do while but more efficient execution

(exit works, anyway)

I Best practice: do not give name to very tight loops

Iterating with Counted do
I do var = init,limit [,step]

block of statements
end do

1. Sets step to 1, if none was specified
2. Assign the init value to var
3. Evaluates niter = max{0, b(limit − init + step)/stepc}
4. If niter is zero goes to 6
5. Executes niter times the block of statements, adding step to var

at the end of each block of statements
6. Execution proceeds to the statement following end do

I var, init, limit, and step should be integers
I Mandatory in Fortran 2003
I Reals can be used up to Fortran 95, but a bad idea, for both

performance and reliability issues
I Less flexible than a do while but more efficient execution

(exit works, anyway)
I Best practice: do not give name to very tight loops

Hands-on Session #1
module integrals

implicit none
contains

function trap_int(a,b,f,tol) ! recursive approximation of integral
real :: trap_int ! by trapezoidal rule
real, intent(in) :: a, b, tol ! integration interval and tolerance
interface

real function f(x) ! function to integrate
real, intent(in) :: x

end function f
end interface
integer, parameter :: maxsteps = 2**23
integer :: steps, i
real :: acc, dx, prev_estimate, estimate

steps = 2
prev_estimate = 0.0 ; estimate = huge(0.0)
dx = (b - a)*0.5
acc = (f(a) + f(b))*0.5

conv: do while (abs(estimate - prev_estimate) > tol)
prev_estimate = estimate
do i=1, steps, 2 ! only contributions from new points
acc = acc + f(a + i*dx)

end do
estimate = acc*dx
steps = steps*2
if (steps > maxsteps) exit conv
dx = dx*0.5

end do conv

trap_int = estimate
end function trap_int

end module

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:

I trap_int() arguments are naively handled: wrong results
could be produced

I Robustness has been almost totally overlooked (except for the
safety exit)

I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:

I trap_int() arguments are naively handled: wrong results
could be produced

I Robustness has been almost totally overlooked (except for the
safety exit)

I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:

I trap_int() arguments are naively handled: wrong results
could be produced

I Robustness has been almost totally overlooked (except for the
safety exit)

I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:
I trap_int() arguments are naively handled: wrong results

could be produced

I Robustness has been almost totally overlooked (except for the
safety exit)

I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:
I trap_int() arguments are naively handled: wrong results

could be produced
I Robustness has been almost totally overlooked (except for the

safety exit)

I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:
I trap_int() arguments are naively handled: wrong results

could be produced
I Robustness has been almost totally overlooked (except for the

safety exit)
I What if some arguments take a NaN value?

I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:
I trap_int() arguments are naively handled: wrong results

could be produced
I Robustness has been almost totally overlooked (except for the

safety exit)
I What if some arguments take a NaN value?
I What if some arguments take an Inf value?

I What if some arguments take a ... value?

Time to Put it at Work

I Write a program to exercise trap_int() on functions with
known integrals

I Then take care of what was left out

I Hints:
I trap_int() arguments are naively handled: wrong results

could be produced
I Robustness has been almost totally overlooked (except for the

safety exit)
I What if some arguments take a NaN value?
I What if some arguments take an Inf value?
I What if some arguments take a ... value?

Good Ol’ Fortran

I Procedure arguments and mixed-mode expressions were
already there

I Counted loops looked like this:
do 10, i=1,10,3

write(*,*) i
10 continue

I do while, exit, end do weren’t there...

I ... at least in the standard...
I but are often found in codes, as dialect extensions.

Good Ol’ Fortran

I Procedure arguments and mixed-mode expressions were
already there

I Counted loops looked like this:
do 10, i=1,10,3

write(*,*) i
10 continue

I do while, exit, end do weren’t there...

I ... at least in the standard...
I but are often found in codes, as dialect extensions.

Good Ol’ Fortran

I Procedure arguments and mixed-mode expressions were
already there

I Counted loops looked like this:
do 10, i=1,10,3

write(*,*) i
10 continue

I do while, exit, end do weren’t there...
I ... at least in the standard...
I but are often found in codes, as dialect extensions.

Outline

More Flow Control
Numerical Integration
Wrapping it Up 4

Fortran Intrinsic Types, Variables and Math

Arrays

Forward Steps

I More flow control
I Procedure arguments
I do while
I Counted do

I Mixed-mode expressions

I Name your loops
I Particularly if long or nested
I Particularly if you exit them
I But don’t do it for short ones

I Prevent any loop from running forever for some program inputs

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Data

I Computing == manipulating data and calculating results
I Data are manipulated using internal, binary formats
I Data are kept in memory locations and CPU registers

I Fortran doesn’t make assumptions on internal data
representations

I And tries to abstract
I Most CPU are similar but all have peculiarities
I Some details depend on the specific executing (a.k.a. target)

hardware architecture and software implementation
I Fortran provides facilities to translate between internal formats

and human readable ones
I Fortran allows programmers to:

I think in terms of data types and named containers
I disregard details on actual memory locations and data

movements

Fortran is a Strongly Typed Language
I Each literal constant has a type

I Dictates internal representation of the data value
I Each variable has a type

I Dictates content internal representation and amount of memory
I Type must be specified in a declaration before use
I Unless you are so naive to rely on implicit declaration

I Each expression has a type
I And subexpressions have too
I Depends on operators and their arguments

I Each function has a type
I That is the type of the returned value
I Specified in function interface

I Procedure arguments have types
I i.e. type of arguments to be passed in calls
I Specified in procedure interface
I If the compiler doesn’t know the interface, it will blindly pass

whatever you provide

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Integer Types (as on most CPUs)

Type Sign Usual Usual Usual
huge() Width (bits) Size (bytes)

integer(selected_int_kind(2)) +/- 127 8 1
integer(selected_int_kind(5)) +/- 32767 16 2
integer

+/- 2147483647 32 4integer(kind(0))
integer(selected_int_kind(9))
integer(selected_int_kind(18)) +/- 9223372036854775807 64 8

I selected_int_kind(n) returns the least type able to host
10n

I selected_int_kind(n) returns -1 if no suitable type is
available

I New platform/compiler? Always check maximum headroom
with huge() or range()

I As we said, on most platforms kind() returns the byte size,
but it’s not standard

Integer Literal Constants
I Integer literal constants have kinds too

I By default, kind(0)
I Unless you specify it

I In a non portable way:

-123456_8

I Or in a portable way:

integer, parameter :: i8=selected_int_kind(18)
-123456_i8

I Rule of thumb:

I write the number as is, if it is in default integer kind range
I otherwise, specify kind

I Remember:

I do not write spokes = bycicles*2*36
I integer, parameter :: SpokesPerWheel = 36
I code will be more readable, and you’ll be ready for easy

changes

Integer Literal Constants
I Integer literal constants have kinds too
I By default, kind(0)

I Unless you specify it

I In a non portable way:

-123456_8

I Or in a portable way:

integer, parameter :: i8=selected_int_kind(18)
-123456_i8

I Rule of thumb:

I write the number as is, if it is in default integer kind range
I otherwise, specify kind

I Remember:

I do not write spokes = bycicles*2*36
I integer, parameter :: SpokesPerWheel = 36
I code will be more readable, and you’ll be ready for easy

changes

Integer Literal Constants
I Integer literal constants have kinds too
I By default, kind(0)
I Unless you specify it

I In a non portable way:

-123456_8

I Or in a portable way:

integer, parameter :: i8=selected_int_kind(18)
-123456_i8

I Rule of thumb:

I write the number as is, if it is in default integer kind range
I otherwise, specify kind

I Remember:

I do not write spokes = bycicles*2*36
I integer, parameter :: SpokesPerWheel = 36
I code will be more readable, and you’ll be ready for easy

changes

Integer Literal Constants
I Integer literal constants have kinds too
I By default, kind(0)
I Unless you specify it

I In a non portable way:

-123456_8

I Or in a portable way:

integer, parameter :: i8=selected_int_kind(18)
-123456_i8

I Rule of thumb:
I write the number as is, if it is in default integer kind range
I otherwise, specify kind

I Remember:

I do not write spokes = bycicles*2*36
I integer, parameter :: SpokesPerWheel = 36
I code will be more readable, and you’ll be ready for easy

changes

Integer Literal Constants
I Integer literal constants have kinds too
I By default, kind(0)
I Unless you specify it

I In a non portable way:

-123456_8

I Or in a portable way:

integer, parameter :: i8=selected_int_kind(18)
-123456_i8

I Rule of thumb:
I write the number as is, if it is in default integer kind range
I otherwise, specify kind

I Remember:
I do not write spokes = bycicles*2*36
I integer, parameter :: SpokesPerWheel = 36
I code will be more readable, and you’ll be ready for easy

changes

integer Math
Function Returns
abs(i) |i|
sign(i,j) |i| if j ≥ 0, −|i| otherwise
dim(i,j) if i > j returns i− j else returns 0
mod(i,j) Remainder function i− int(i/j)× j
modulo(i,j) Modulo function i− floor(i/j)× j
min(i,j[, ...]) min{i,j[, ...]}
max(i,j[, ...]) max{i,j[, ...]}

I Use like: a = abs(b+i) + c
I More functions are available to manipulate values

I E.g. for bit manipulations on binary computers
I We’ll not cover them in this course, you can learn more about if

you need to
I They can be found under different names (e.g. iabs()): these

are relics from the past

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Floating Types (as on most CPUs)
Type Usual Usual Usual

huge() Width (bits) Size (bytes)
real

3.40282347e38 32 4real(kind(0.0))
real(selected_real_kind(6))
double precision

1.79769313486231573e308 64 8real(kind(0.0d0))
real(selected_real_kind(15))
real(selected_real_kind(18)) > 1.2e4932 80 or 128 10 or 16
complex

NA NA 8complex(kind(0.0))
complex(selected_real_kind(6))
complex(kind(0.0d0) NA NA 16
complex(selected_real_kind(15))
complex(selected_real_kind(18)) NA NA 20 or 32

I In practice, always in IEEE Standard binary format, but not a
Standard requirement

I selected_real_kind() gets number of significant decimal
digits, plus a second optional argument for exponent range,
returns negative result if no suitable type is available

I tiny() returns smallest positive value
I New platform/compiler? Always check maximum headroom

with huge() or range()

real Literal Constants
I Need something to distinguish them from integers

I Decimal notation: 1.0, -17., .125, 0.22
I Exponential decimal notation: 2e19 (2× 1019), -123.4e9

(−1.234× 1011), .72e-6 (7.2× 10−7)

I By default, kind(0.0)
I Unless you specify it

I For double precision only:

-1.23456d5

I For all kinds:

integer, parameter :: r8=selected_real_kind(15)
-123456.0_r8

I Remember:

I do not write charge = protons*1.602176487E-19
I real,parameter::UnitCharge=1.602176487E-19
I it will come handier when more precise measurements will be

available

real Literal Constants
I Need something to distinguish them from integers

I Decimal notation: 1.0, -17., .125, 0.22
I Exponential decimal notation: 2e19 (2× 1019), -123.4e9

(−1.234× 1011), .72e-6 (7.2× 10−7)
I By default, kind(0.0)

I Unless you specify it

I For double precision only:

-1.23456d5

I For all kinds:

integer, parameter :: r8=selected_real_kind(15)
-123456.0_r8

I Remember:

I do not write charge = protons*1.602176487E-19
I real,parameter::UnitCharge=1.602176487E-19
I it will come handier when more precise measurements will be

available

real Literal Constants
I Need something to distinguish them from integers

I Decimal notation: 1.0, -17., .125, 0.22
I Exponential decimal notation: 2e19 (2× 1019), -123.4e9

(−1.234× 1011), .72e-6 (7.2× 10−7)
I By default, kind(0.0)
I Unless you specify it

I For double precision only:

-1.23456d5

I For all kinds:

integer, parameter :: r8=selected_real_kind(15)
-123456.0_r8

I Remember:

I do not write charge = protons*1.602176487E-19
I real,parameter::UnitCharge=1.602176487E-19
I it will come handier when more precise measurements will be

available

real Literal Constants
I Need something to distinguish them from integers

I Decimal notation: 1.0, -17., .125, 0.22
I Exponential decimal notation: 2e19 (2× 1019), -123.4e9

(−1.234× 1011), .72e-6 (7.2× 10−7)
I By default, kind(0.0)
I Unless you specify it

I For double precision only:

-1.23456d5

I For all kinds:

integer, parameter :: r8=selected_real_kind(15)
-123456.0_r8

I Remember:
I do not write charge = protons*1.602176487E-19
I real,parameter::UnitCharge=1.602176487E-19
I it will come handier when more precise measurements will be

available

real Math
Function Returns
abs(x) |x|
sign(x,y) |x| if y ≥ 0, −|x| otherwise
dim(x,y) if x > y returns x− y else returns 0
mod(x,y) Remainder function x− int(x/y)× y
modulo(x,y) Modulo function x− floor(x/y)× y
aint(x)2, int(x)1,2 if x > 0 returns bxc else returns dxe
anint(x)2, nint(x)1,2 nearest integer to x
floor(x)1,2, ceiling(x)1,2 bxc, dxe
fraction(x) fractional part of x

nearest(x,s)
next representable value to x,

in direction given by the sign of s
spacing(x) absolute spacing of numbers near x
max(x,y[, ...]) max{x,y[, ...]}
min(x,y[, ...]) min{x,y[, ...]}
1. Result is of integer type 2. Accept an optional argument for kind type of the result

I They can be found under different names (e.g. dabs()): these
are relics from the past

I More functions are available to manipulate values
I Mostly in the spirit of IEEE Floating Point Standard
I We’ll not cover them in this course, but encourage you to learn

more about

real Higher Math

Functions Compute
sqrt(x)

√
x

sin(x), cos(x),
Trigonometric functionstan(x), asin(x),

acos(x), atan(x)
atan2(x, y) Arc tangent in (−π, π]
exp(x), ex,
log(x), log10(x) loge x, log10 x
sinh(x), cosh(x),

Hyperbolic functions
tanh(x)

I Again, they can be found under different names (e.g. dcos()):
these are relics from the past

complex Math

Functions Compute
abs(z), |z|,
aimag(z) imaginary part of z,
real(z)1 real part of z
cmplx(x,y)1 converts from real to complex
conj(z) Complex conjugate of z
sqrt(z)

√
z

sin(z), cos(z) sine and cosine
exp(z), ez,
log(z) loge z
1. Accept an optional argument for kind type of the result

I Once again, they can be found under different names (e.g.
cabs()): again, these are relics from the past

Hands-on Session #2
I The intrinsic function precision (x) for real or complex x

returns the number of significant decimal digits.
I Write a module which defines the kind constant for single,

double and quadruple real precision

module real_kinds
integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = selected_real_kind(2*precision(1.0_sp))
integer, parameter :: qp = selected_real_kind(2*precision(1.0_dp))

end module real_kinds

I To gain confidence: write a small program to print out range
and huge values for these kinds

I Something going wrong?
I GNU Fortran compiler, up to release 4.5, lacks support for the

quad-precision
I If you are using Linux, load the most recent GNU compiler

version and try again:
module load gnu

Hands-on Session #2
I The intrinsic function precision (x) for real or complex x

returns the number of significant decimal digits.
I Write a module which defines the kind constant for single,

double and quadruple real precision
module real_kinds

integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = selected_real_kind(2*precision(1.0_sp))
integer, parameter :: qp = selected_real_kind(2*precision(1.0_dp))

end module real_kinds

I To gain confidence: write a small program to print out range
and huge values for these kinds

I Something going wrong?
I GNU Fortran compiler, up to release 4.5, lacks support for the

quad-precision
I If you are using Linux, load the most recent GNU compiler

version and try again:
module load gnu

Hands-on Session #2
I The intrinsic function precision (x) for real or complex x

returns the number of significant decimal digits.
I Write a module which defines the kind constant for single,

double and quadruple real precision
module real_kinds

integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = selected_real_kind(2*precision(1.0_sp))
integer, parameter :: qp = selected_real_kind(2*precision(1.0_dp))

end module real_kinds

I To gain confidence: write a small program to print out range
and huge values for these kinds

I Something going wrong?
I GNU Fortran compiler, up to release 4.5, lacks support for the

quad-precision
I If you are using Linux, load the most recent GNU compiler

version and try again:
module load gnu

Hands-on Session #2
I The intrinsic function precision (x) for real or complex x

returns the number of significant decimal digits.
I Write a module which defines the kind constant for single,

double and quadruple real precision
module real_kinds

integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = selected_real_kind(2*precision(1.0_sp))
integer, parameter :: qp = selected_real_kind(2*precision(1.0_dp))

end module real_kinds

I To gain confidence: write a small program to print out range
and huge values for these kinds

I Something going wrong?

I GNU Fortran compiler, up to release 4.5, lacks support for the
quad-precision

I If you are using Linux, load the most recent GNU compiler
version and try again:
module load gnu

Hands-on Session #2
I The intrinsic function precision (x) for real or complex x

returns the number of significant decimal digits.
I Write a module which defines the kind constant for single,

double and quadruple real precision
module real_kinds

integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = selected_real_kind(2*precision(1.0_sp))
integer, parameter :: qp = selected_real_kind(2*precision(1.0_dp))

end module real_kinds

I To gain confidence: write a small program to print out range
and huge values for these kinds

I Something going wrong?
I GNU Fortran compiler, up to release 4.5, lacks support for the

quad-precision
I If you are using Linux, load the most recent GNU compiler

version and try again:
module load gnu

Let’s Be Generic

I Use the real_kinds module to rewrite dsp module functions
to support both single and double precision

I And make all of them generic procedures
I Modify your test program to see exercise the new dsp module

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Arithmetic Expressions and Assignment

I Binary operators +, -, * (multiplication) and / have
the usual meaning and behavior

I And so do unary operators - and +
I Precedence

I -a*b + c/d same as ((-a)*b) + (c/d)
I -a + b same as (-a) + b

I Associativity of binary ones is from left to right
I a + b + c same as (a + b) + c
I a*b/c*d same as ((a*b)/c)*d

I Explicit (and) override precedence and associativity
I ** is the exponentiation operator

I Assignment: =
I Assigns the value of expression on right hand side to a variable

on the left hand side
I Prior to first assignment, a variable content is undefined

Hitting Limits

I All types are limited in range
I What about:

I huge(0) + 1? (too big)
I -huge(0.0)*3.0? (too negative)

I Technically speaking, this is an arithmetic overflow
I And division by zero is a problem too
I For integer types, the Standard says:

I behavior and results are unpredictable
I i.e. up to the implementation

I For real types, it also depends on the floating point
environment

I i.e. how behavior is configured for those cases
I you could get -huge(0.0), or a NaN, or -Inf

I Best practice: NEVER rely on behaviors observed with a
specific architecture and/or compiler

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O

I As you’ll remember, these are known as side effects
I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!

I You don’t know in advance the order in which foo() and bar()
are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!

I You don’t know in advance the order in which foo() and bar()
are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!

I You don’t know in advance the order in which foo() and bar()
are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!

I Order of subexpressions evaluation is implementation
dependent!

I You don’t know in advance the order in which foo() and bar()
are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!

I You don’t know in advance the order in which foo() and bar()
are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!
I You don’t know in advance the order in which foo() and bar()

are called

I Thus program behavior could differ among different
implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!
I You don’t know in advance the order in which foo() and bar()

are called
I Thus program behavior could differ among different

implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!
I You don’t know in advance the order in which foo() and bar()

are called
I Thus program behavior could differ among different

implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Order of Subexpressions Evaluation
I Just imagine both functions foo(x,y) and bar(x,y)

modify their actual arguments, or do I/O
I As you’ll remember, these are known as side effects

I Now imagine you meet code like this:
t = foo(a,b) - bar(b,a)
q = mod(foo(a,b),bar(a,b))

I Code like this is evil!
I Order of subexpressions evaluation is implementation

dependent!
I You don’t know in advance the order in which foo() and bar()

are called
I Thus program behavior could differ among different

implementations, or even among different compilations by the
same compiler!

I Ditto for order of evaluation of function arguments!

I NEVER! NEVER write code that relies on order of evaluation of
subexpressions, or actual arguments!

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Mixing Types in Expressions

I Fortran allows for expressions mixing any arithmetic types
I A result will always be produced
I Whether this is the result you expect, it’s another story

I Broadly speaking, the base concept is clear
I For each binary operator in the expression, in order of

precedence and associativity:

I if both operands have the same type, fine
I otherwise, operand with narrower range is converted to type of

other operand

I OK when mixing floating types

I The wider range includes the narrower one

I OK when mixing integer types

I The wider range includes the narrower one

Mixing Types in Expressions

I Fortran allows for expressions mixing any arithmetic types
I A result will always be produced
I Whether this is the result you expect, it’s another story

I Broadly speaking, the base concept is clear

I For each binary operator in the expression, in order of
precedence and associativity:

I if both operands have the same type, fine
I otherwise, operand with narrower range is converted to type of

other operand

I OK when mixing floating types

I The wider range includes the narrower one

I OK when mixing integer types

I The wider range includes the narrower one

Mixing Types in Expressions

I Fortran allows for expressions mixing any arithmetic types
I A result will always be produced
I Whether this is the result you expect, it’s another story

I Broadly speaking, the base concept is clear
I For each binary operator in the expression, in order of

precedence and associativity:
I if both operands have the same type, fine
I otherwise, operand with narrower range is converted to type of

other operand

I OK when mixing floating types

I The wider range includes the narrower one

I OK when mixing integer types

I The wider range includes the narrower one

Mixing Types in Expressions

I Fortran allows for expressions mixing any arithmetic types
I A result will always be produced
I Whether this is the result you expect, it’s another story

I Broadly speaking, the base concept is clear
I For each binary operator in the expression, in order of

precedence and associativity:
I if both operands have the same type, fine
I otherwise, operand with narrower range is converted to type of

other operand

I OK when mixing floating types
I The wider range includes the narrower one

I OK when mixing integer types

I The wider range includes the narrower one

Mixing Types in Expressions

I Fortran allows for expressions mixing any arithmetic types
I A result will always be produced
I Whether this is the result you expect, it’s another story

I Broadly speaking, the base concept is clear
I For each binary operator in the expression, in order of

precedence and associativity:
I if both operands have the same type, fine
I otherwise, operand with narrower range is converted to type of

other operand

I OK when mixing floating types
I The wider range includes the narrower one

I OK when mixing integer types
I The wider range includes the narrower one

Type Conversion Traps

I For the assignment statement:
I if variable and expression have the same type, fine
I otherwise, right operand is converted to left operand type
I if the value cannot be represented in the destination type, it’s an

overflow, and you are on your own

I We said: in order of precedence and associativity

I if a is a 64 bits wide integer variable, and b is a 32 bits wide
integer variable and contains value huge(0), in:
a = b*2
multiplication will overflow

I and in (i8 as in a previous example):
a = b*2 + 1_i8
multiplication will overflow too

I while:
a = b*2_i8 + 1
is OK

Type Conversion Traps

I For the assignment statement:
I if variable and expression have the same type, fine
I otherwise, right operand is converted to left operand type
I if the value cannot be represented in the destination type, it’s an

overflow, and you are on your own

I We said: in order of precedence and associativity

I if a is a 64 bits wide integer variable, and b is a 32 bits wide
integer variable and contains value huge(0), in:
a = b*2
multiplication will overflow

I and in (i8 as in a previous example):
a = b*2 + 1_i8
multiplication will overflow too

I while:
a = b*2_i8 + 1
is OK

Type Conversion Traps

I For the assignment statement:
I if variable and expression have the same type, fine
I otherwise, right operand is converted to left operand type
I if the value cannot be represented in the destination type, it’s an

overflow, and you are on your own

I We said: in order of precedence and associativity
I if a is a 64 bits wide integer variable, and b is a 32 bits wide

integer variable and contains value huge(0), in:
a = b*2
multiplication will overflow

I and in (i8 as in a previous example):
a = b*2 + 1_i8
multiplication will overflow too

I while:
a = b*2_i8 + 1
is OK

Type Conversion Traps

I For the assignment statement:
I if variable and expression have the same type, fine
I otherwise, right operand is converted to left operand type
I if the value cannot be represented in the destination type, it’s an

overflow, and you are on your own

I We said: in order of precedence and associativity
I if a is a 64 bits wide integer variable, and b is a 32 bits wide

integer variable and contains value huge(0), in:
a = b*2
multiplication will overflow

I and in (i8 as in a previous example):
a = b*2 + 1_i8
multiplication will overflow too

I while:
a = b*2_i8 + 1
is OK

Type Conversion Traps

I For the assignment statement:
I if variable and expression have the same type, fine
I otherwise, right operand is converted to left operand type
I if the value cannot be represented in the destination type, it’s an

overflow, and you are on your own

I We said: in order of precedence and associativity
I if a is a 64 bits wide integer variable, and b is a 32 bits wide

integer variable and contains value huge(0), in:
a = b*2
multiplication will overflow

I and in (i8 as in a previous example):
a = b*2 + 1_i8
multiplication will overflow too

I while:
a = b*2_i8 + 1
is OK

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones
I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones

I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones
I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones
I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones
I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Subtle Type Conversion Traps

I Think of mixing floating and integer types

I Floating types have wider dynamic range than integer ones
I But not necessarily more precision

I A 32 bits real has fewer digits of precision than a 32 bits
integer

I And a 64 bits real has fewer digits of precision than a 64 bits
integer

I The result of a conversion could actually be smaller than
expected!

Get in Control!

I Do not blindly rely on implementation dependent chance!

I Use explicit type conversion functions:

I int(x[, kind])
I real(x[, kind])
I cmplx(x[, y][, kind])

I They let you override standard conversion rules

I In previous example, you could use it like this:
a = int(b,i8)*2 + 1

I Type conversion functions are not magic

I Only convert values, not type of variables you assign to

I Do not abuse them

I Make codes unreadable
I Could be evidence of design mistakes
I Or that your Fortran needs a refresh

Get in Control!

I Do not blindly rely on implementation dependent chance!
I Use explicit type conversion functions:

I int(x[, kind])
I real(x[, kind])
I cmplx(x[, y][, kind])

I They let you override standard conversion rules

I In previous example, you could use it like this:
a = int(b,i8)*2 + 1

I Type conversion functions are not magic

I Only convert values, not type of variables you assign to

I Do not abuse them

I Make codes unreadable
I Could be evidence of design mistakes
I Or that your Fortran needs a refresh

Get in Control!

I Do not blindly rely on implementation dependent chance!
I Use explicit type conversion functions:

I int(x[, kind])
I real(x[, kind])
I cmplx(x[, y][, kind])

I They let you override standard conversion rules
I In previous example, you could use it like this:
a = int(b,i8)*2 + 1

I Type conversion functions are not magic

I Only convert values, not type of variables you assign to

I Do not abuse them

I Make codes unreadable
I Could be evidence of design mistakes
I Or that your Fortran needs a refresh

Get in Control!

I Do not blindly rely on implementation dependent chance!
I Use explicit type conversion functions:

I int(x[, kind])
I real(x[, kind])
I cmplx(x[, y][, kind])

I They let you override standard conversion rules
I In previous example, you could use it like this:
a = int(b,i8)*2 + 1

I Type conversion functions are not magic
I Only convert values, not type of variables you assign to

I Do not abuse them

I Make codes unreadable
I Could be evidence of design mistakes
I Or that your Fortran needs a refresh

Get in Control!

I Do not blindly rely on implementation dependent chance!
I Use explicit type conversion functions:

I int(x[, kind])
I real(x[, kind])
I cmplx(x[, y][, kind])

I They let you override standard conversion rules
I In previous example, you could use it like this:
a = int(b,i8)*2 + 1

I Type conversion functions are not magic
I Only convert values, not type of variables you assign to

I Do not abuse them
I Make codes unreadable
I Could be evidence of design mistakes
I Or that your Fortran needs a refresh

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math
Integer Types
Floating Types
Expressions
Arithmetic Conversions
More Intrinsic Types

Arrays

Being logical

I A type good at reasoning
I May have .false. or .true. value
I Kind only affects size in memory

I Arithmetic comparison operators return logical values

I == (equal), /= (not equal), >, <, >=, <=
I or, in ancient Fortran, .eq., .ne., .gt., .lt., .ge., .le.

I Logical expressions

I .not. is unary NOT, .and. and .or. are binary AND and OR
respectively, .eqv. is logical equivalence (.true. if operands
both .true. or both .false.)

I .not. a .and. b .or. a .and. .not. b
means
((.not.a).and.b).or.(a.and.(.not.b))

I In doubt, add parentheses, but be sober

Being logical

I A type good at reasoning
I May have .false. or .true. value
I Kind only affects size in memory

I Arithmetic comparison operators return logical values
I == (equal), /= (not equal), >, <, >=, <=
I or, in ancient Fortran, .eq., .ne., .gt., .lt., .ge., .le.

I Logical expressions

I .not. is unary NOT, .and. and .or. are binary AND and OR
respectively, .eqv. is logical equivalence (.true. if operands
both .true. or both .false.)

I .not. a .and. b .or. a .and. .not. b
means
((.not.a).and.b).or.(a.and.(.not.b))

I In doubt, add parentheses, but be sober

Being logical

I A type good at reasoning
I May have .false. or .true. value
I Kind only affects size in memory

I Arithmetic comparison operators return logical values
I == (equal), /= (not equal), >, <, >=, <=
I or, in ancient Fortran, .eq., .ne., .gt., .lt., .ge., .le.

I Logical expressions
I .not. is unary NOT, .and. and .or. are binary AND and OR

respectively, .eqv. is logical equivalence (.true. if operands
both .true. or both .false.)

I .not. a .and. b .or. a .and. .not. b
means
((.not.a).and.b).or.(a.and.(.not.b))

I In doubt, add parentheses, but be sober

More Logic

I Logical friends from ieee_arithmetic module (simply use
it)

I ieee_is_finite(x): .true. if argument value is finite
I ieee_is_nan(x): .true. if argument value is NaN
I ieee_unordered(x, y): .true. if at least one among x

and y is NaN

I As usual, order of subexpressions evaluation is implementation
dependent

I But it’s worse:

I if test() is a function returning a logical type value
I and a is .true.
I and b is .false.
I implementation is free (but not forced!) to not call test() at all

in a.or.test(x) and b.and.test(x)
I Again, do not rely on expressions side effects

More Logic

I Logical friends from ieee_arithmetic module (simply use
it)

I ieee_is_finite(x): .true. if argument value is finite
I ieee_is_nan(x): .true. if argument value is NaN
I ieee_unordered(x, y): .true. if at least one among x

and y is NaN

I As usual, order of subexpressions evaluation is implementation
dependent

I But it’s worse:

I if test() is a function returning a logical type value
I and a is .true.
I and b is .false.
I implementation is free (but not forced!) to not call test() at all

in a.or.test(x) and b.and.test(x)
I Again, do not rely on expressions side effects

More Logic

I Logical friends from ieee_arithmetic module (simply use
it)

I ieee_is_finite(x): .true. if argument value is finite
I ieee_is_nan(x): .true. if argument value is NaN
I ieee_unordered(x, y): .true. if at least one among x

and y is NaN

I As usual, order of subexpressions evaluation is implementation
dependent

I But it’s worse:
I if test() is a function returning a logical type value
I and a is .true.
I and b is .false.
I implementation is free (but not forced!) to not call test() at all

in a.or.test(x) and b.and.test(x)
I Again, do not rely on expressions side effects

character

I Fortran is not that good at manipulating text

I But it has some character:
I character :: c defines a variable holding a single character,

like ’f’
I character(len=80) :: s1, s2, s3 defines three

variables holding strings of up to 80 characters, like ’Fortran
2003’

I There are character expressions, like:
I s3(1:40) = s1(1:20)//s2(21:40)

which assigns to first half of s3 the first quarter of s1 and
second quarter of s2

I On assignment of a character expression to a longer variable,
blank filling will take place

I On assignment of a character expression to a shorter variable,
truncation will happen

String Manipulation
Function Returns
len(s) string length
len_trim(s) string length with trailing blanks ignored
trim(s) string with trailing blanks removed
repeat(s, n) string made of n copies of s
adjustl(s) move leading blanks to trailing position
adjustr(s) move trailing blanks to leading position
lge(s1,s2),

string comparisonslgt(s1,s2),
lle(s1,s2),
llt(s1,s2)
index(s,subs) starting position of subs in s, 0 if not found
scan(s,set) first position in s of a character matching set, 0 if none found
verify(s,set) first position in s of a character not matching set, 0 if all match
achar(i) character with ASCII code i
iachar(c) ASCII code of character c

I Our advice:
I For most practical purposes, use I/O statements to manipulate

strings as internal files (more on this later)
I If you are really serious about textual data, learn more
I Or switch to a different language

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math

Arrays
Smoothing Signals
A More Compact Notation

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math

Arrays
Smoothing Signals
A More Compact Notation

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

Subroutines

I Subroutines are procedures, like functions, except they do not
return any value

I They are invoked by:
call subroutine-name(argument-list)

I Like functions, they have dummy arguments that will be
associated to actual arguments at call time

I Unlike functions, they can not be used inside expressions

I Their use is to be preferred to functions when:
I actual arguments must be modified
I more than one result needs to be returned

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

Arrays

I real :: x(n)
I Declares an array named x
I A collection of variables of the same type (elements),

laid out contiguously in memory
I i-th element can be accessed with x(i)
I n must be an integer expression whose value must be known at

declaration time

I What’s that x = (/.../) ?

I (/.../) is an array constructor
I i.e. a sequence of values forming an array
I Assigned to array in a single statement
I (expression, index=initial, final) evaluates
expression for each value of index as in a do-loop (hence is
termed implied do-loop)

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

Arrays

I real :: x(n)
I Declares an array named x
I A collection of variables of the same type (elements),

laid out contiguously in memory
I i-th element can be accessed with x(i)
I n must be an integer expression whose value must be known at

declaration time

I What’s that x = (/.../) ?
I (/.../) is an array constructor
I i.e. a sequence of values forming an array
I Assigned to array in a single statement
I (expression, index=initial, final) evaluates
expression for each value of index as in a do-loop (hence is
termed implied do-loop)

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

Subroutines and Arrays
I Arrays can be passed as arguments to procedures
I How can subroutine smooth know the size of the actual

argument passed as v?
I real :: v(:) states that size of v will be that of the actual

argument
I v is termed an assumed-shape array
I This only works if the subroutine has explicit interface

I Otherwise, you can still use the good ol’ way:
subroutine smooth(v,k,n)
integer n
real v(n)
...

I How can subroutine smooth declare a local array matching in
size the actual argument?

I size(v) returns the number of elements (size) of v
I real :: work(size(v)) gives work same size as v
I work is termed an automatic object

In Place Smoothing of a Periodic Signal
module smoothing

implicit none
contains

subroutine smooth(v, k)
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work = 0.0
do i=1,n

do j=i-k,i+k
work(i) = work(i) + v(1+mod(n-1+j, n))

enddo
enddo
v = work/l

end subroutine smooth
end module smoothing

program test_smooth
use smoothing
implicit none
integer, parameter :: n=10
integer :: i, k
real :: x(n)

k = 2
x = (/ (real(mod(i,n/2)), i=1,n) /)
if (k > n) stop ’More smoothing points than array elements’
call smooth(x,k)
write(*,*) x

end program test_smooth

Subroutines and Arrays
I Arrays can be passed as arguments to procedures
I How can subroutine smooth know the size of the actual

argument passed as v?
I real :: v(:) states that size of v will be that of the actual

argument
I v is termed an assumed-shape array
I This only works if the subroutine has explicit interface

I Otherwise, you can still use the good ol’ way:
subroutine smooth(v,k,n)
integer n
real v(n)
...

I How can subroutine smooth declare a local array matching in
size the actual argument?

I size(v) returns the number of elements (size) of v
I real :: work(size(v)) gives work same size as v
I work is termed an automatic object

WARNING: NO BOUNDS CHECKING!
I In Fortran, there is no bounds checking on array access
I And it is possible for something like this to happen

real :: a(10)
...
do i=-100,100
a(i) = i

end do

I If you are lucky, you’ll get a runtime error, otherwise you’ll
corrupt surrounding memory areas, with really puzzling
behavior

I Once upon a long ago, it used to be a ‘feature’:
subroutine smooth(v,k,n)
integer n
real v(1)
...

I Use compiler options to enable runtime detection of out of
bounds accesses

I But execution is incredibly slowed down
I Just a debugging tool, do not use it in production

WARNING: NO BOUNDS CHECKING!
I In Fortran, there is no bounds checking on array access
I And it is possible for something like this to happen

real :: a(10)
...
do i=-100,100
a(i) = i

end do

I If you are lucky, you’ll get a runtime error, otherwise you’ll
corrupt surrounding memory areas, with really puzzling
behavior

I Once upon a long ago, it used to be a ‘feature’:
subroutine smooth(v,k,n)
integer n
real v(1)
...

I Use compiler options to enable runtime detection of out of
bounds accesses

I But execution is incredibly slowed down
I Just a debugging tool, do not use it in production

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?
I Yes: once work(1) is computed, we can compute

work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument

I And returns in it processor time consumed by the program in
seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?
I Yes: once work(1) is computed, we can compute

work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?
I Yes: once work(1) is computed, we can compute

work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program

I Can we use less operations to get the same results (within
round-off errors)?

I Yes: once work(1) is computed, we can compute
work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?

I Yes: once work(1) is computed, we can compute
work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?
I Yes: once work(1) is computed, we can compute

work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on

I Try it now!

Hands-on Session #3
I The intrinsic subroutine cpu_time() is used to time code

regions
real :: t1, t2
...
call cpu_time(t1)

... ! code to be timed
call cpu_time(t2)
write(*,*) ’Execution time for section 1: ’, t2-t1, ’seconds’

I Takes a default real argument
I And returns in it processor time consumed by the program in

seconds

I Use it to measure execution time of test_smooth program
I Can we use less operations to get the same results (within

round-off errors)?
I Yes: once work(1) is computed, we can compute

work(2) = work(1)+v(1+mod(n+1+k, n))-v(1+mod(n-k, n))

and so on
I Try it now!

Outline

More Flow Control

Fortran Intrinsic Types, Variables and Math

Arrays
Smoothing Signals
A More Compact Notation

Same Smoothing in a Different Idiom

module smoothing
implicit none

contains

subroutine smoothinplace(v, k)
implicit none
real,intent(inout) :: v(:)
integer,intent(in) :: k
real :: work(-k+1:size(v)+k)
integer :: i, j, l, n

n=size(v)
l = 2*k +1
work(1:n) = v
work(-k+1:0) = v(n-k+1:n)
work(n+1:n+k) = v(1:k)

do j=1, k
v = v + work(1-j:n-j) + work(1+j:n+j)

end do
v = v/l

end subroutine smoothinplace

end module smoothing

Same Smoothing in a Different Idiom

module smoothing
implicit none

contains

subroutine smoothinplace(v, k)
implicit none
real,intent(inout) :: v(:)
integer,intent(in) :: k
real :: work(-k+1:size(v)+k)
integer :: i, j, l, n

n=size(v)
l = 2*k +1
work(1:n) = v
work(-k+1:0) = v(n-k+1:n)
work(n+1:n+k) = v(1:k)

do j=1, k
v = v + work(1-j:n-j) + work(1+j:n+j)

end do
v = v/l

end subroutine smoothinplace

end module smoothing

Array Slices
I By default, first element of a Fortran array has index 1

I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check

I Our work array is larger than v, to accommodate copies of
values needed to smooth the first and last k elements

I work is initialized in steps, each corresponding to a different
section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check

I Our work array is larger than v, to accommodate copies of
values needed to smooth the first and last k elements

I work is initialized in steps, each corresponding to a different
section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements

I work is initialized in steps, each corresponding to a different
section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section

I An array section is a subset of the elements, and is itself an
array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section
I An array section is a subset of the elements, and is itself an

array

I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section
I An array section is a subset of the elements, and is itself an

array
I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Array Slices
I By default, first element of a Fortran array has index 1
I But you can pick one to your taste, as in
work(-k+1:size(v)+k)

I If first element index > last element index than the number of
elements will be zero

I lbound() and ubound() functions help to check
I Our work array is larger than v, to accommodate copies of

values needed to smooth the first and last k elements
I work is initialized in steps, each corresponding to a different

section
I An array section is a subset of the elements, and is itself an

array
I work(-k+1:0) selects the first k elements
work(1:n) selects the successive n elements
work(n+1:n+k) selects...

I Arrays and array sections are assigned to by = in a natural
manner (more on this later)

Same Smoothing in a Different Idiom

module smoothing
implicit none

contains

subroutine smoothinplace(v, k)
implicit none
real,intent(inout) :: v(:)
integer,intent(in) :: k
real :: work(-k+1:size(v)+k)
integer :: i, j, l, n

n=size(v)
l = 2*k +1
work(1:n) = v
work(-k+1:0) = v(n-k+1:n)
work(n+1:n+k) = v(1:k)

do j=1, k
v = v + work(1-j:n-j) + work(1+j:n+j)

end do
v = v/l

end subroutine smoothinplace

end module smoothing

Array Expressions

I Arrays and array sections may be
I referenced and used in expressions
I passed as arguments to procedures

do j=1, k
v = v + work(1-j:n-j) + work(1+j:n+j)

end do

I Without array expressions, this code would look like:
do j=1, k
do i=1, n
v(i) = v(i) + work(i-j) + work(i+j)

end do
end do

I In an array expression, result must not depend in any way on
the order of evaluation of elements

I You should think of array expressions as if all elements were
computed at the same time

In Good Shape
I The size of a one-dimensional array is its shape
I Arithmetic operators act on arrays element by element
I Binary operators combine pairs of corresponding elements

from the operands
I With binary operators and assignments, you must use

conformable, i.e. identically shaped, arrays
I Except for scalar values (not variables!), that match any shape,

as if they were replicated
real, dimension(4) :: u, v, w
real :: t(1), s
t = s ! it’s right
s = t ! it’s wrong
w = (u-v)**2 ! it’s right
w = s*u+v+2.3 ! it’s OK
w = u+v(1:2) ! it’s wrong

I By the way, dimension attribute lets you specify
bounds and dimensions for a list of identical arrays

Hands-on Session #4: RNG

I Intrinsic subroutine random_number(x) returns
pseudo-random numbers uniformly distributed in [0,1) interval

I Takes an argument of type real, that can be either a scalar or
an array

I Returns one random number if x is a scalar
I Returns an array of random numbers if x is an array

I Is random_number() as uniform as advertised? Let’s check...

Let’s Build An Histogram

I Write a program that:
1. reads an integer niter from standard input
2. generates niter random numbers in interval [0,10)
3. builds an histogram and computes their average
4. Prints out results

I To build the histogram:
1. Initialize to 0s an array hist of 20 integers to hold the bin

count, then, at each iteration:
2. generate a random number
3. find out the bin it belongs to (i.e. its index in the array hist)
4. intrinsic ceiling(x) function helps: it returns dxe
5. increment the corresponding array element and compute the

percentages
6. accumulate the sum of the random numbers to compute the

average value

Hands-on Session #5

I A prime number is a natural number which has only two distinct
natural divisors: 1 and itself

I Find all primes less than or equal to a given n by Eratosthenes’
algorithm:

1. create a list of consecutive integers from 2 to n
2. let be p ← 2 the first prime
3. strike from the list all multiples of p up to n
4. let p ← next number still in the list after p
5. if 2p < n, get back to step 3
6. all remaining numbers in the list are primes

Try it now!

I How could you spare iterations?
I How could you spare memory?

Hands-on Session #5

I A prime number is a natural number which has only two distinct
natural divisors: 1 and itself

I Find all primes less than or equal to a given n by Eratosthenes’
algorithm:

1. create a list of consecutive integers from 2 to n
2. let be p ← 2 the first prime
3. strike from the list all multiples of p up to n
4. let p ← next number still in the list after p
5. if 2p < n, get back to step 3
6. all remaining numbers in the list are primes

Try it now!

I How could you spare iterations?
I How could you spare memory?

Part III

Array Syntax and I/O

Multidimensional arrays, array-syntax, array-value function,
temporary array, shape, data, reshape, constant array and
elemental procedure. Costructs where, forall, array reduction.
Advanced I/O: formats and descriptors, I/O to/from file,
namelist, internal file, unformatted I/O, positioning instructions,
stream access. Managing errors.

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k

! do x=1, size(avgk,1)

do i=1, k

! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k)

! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)

end do

! end do

end do

! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k

! do x=1, size(avgk,1)

do i=1, k

! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k)

! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)

end do

! end do

end do

! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

More Dimensions

I Arrays may have up to 7 dimensions
I Lower bounds default to 1, but you can specify them as for

one-dimensional arrays, like in q(-k:k,11:20)

I Elements are referenced by a list of indices: v(1,1)

I The sequence of extents of an array is termed its shape, e.g. if
a is real :: a(3,2:5) then:

I shape(a) returns the array of extents (/3,4/)
I whereas size(a) returns 12

I Multidimensional (i.e. rank>1) arrays and array sections may
be involved in array expressions

I As in the case of rank 1 arrays, they must be conformable
when needed:
avgk(1:3,:) = avgk(5:9,:) is wrong

Arrays and memory
I Some statements treat the elements of an array one by

one in a special order, the array element order
I obtained by counting most rapidly in the early dimensions
I in the natural matrix representation this corresponds to storing

the elements by column

I Most implementations actually store arrays in contiguous
storage following the array element order

I not required by the Standard, though
I but crucial wrt performances, a typical optimization topic

I When dealing with complex data structures, the contiguity
issue arises

I Fortran 2008 adds the contiguous keyword to somehow
address it

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k

! do x=1, size(avgk,1)

do i=1, k

! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k)

! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)

end do

! end do

end do

! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Array-Valued Functions

I Yes, a function may return an array
I And can be used in array expressions
I Its type is defined like any automatic object
I It must be assigned values inside the function
I No array-sections of the result can be selected on invocation

I An explicit interface is mandatory in the calling program

I size(array,dim) returns the integer extent of array along
dimension dim

I Number of dimensions (a.k.a. rank) is mandatory in assumed
shape arrays

Array-Valued Functions

I Yes, a function may return an array
I And can be used in array expressions
I Its type is defined like any automatic object
I It must be assigned values inside the function
I No array-sections of the result can be selected on invocation

I An explicit interface is mandatory in the calling program

I size(array,dim) returns the integer extent of array along
dimension dim

I Number of dimensions (a.k.a. rank) is mandatory in assumed
shape arrays

Array-Valued Functions

I Yes, a function may return an array
I And can be used in array expressions
I Its type is defined like any automatic object
I It must be assigned values inside the function
I No array-sections of the result can be selected on invocation

I An explicit interface is mandatory in the calling program

I size(array,dim) returns the integer extent of array along
dimension dim

I Number of dimensions (a.k.a. rank) is mandatory in assumed
shape arrays

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k

! do x=1, size(avgk,1)

do i=1, k

! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k)

! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)

end do

! end do

end do

! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Array-Valued Functions

I Yes, a function may return an array
I And can be used in array expressions
I Its type is defined like any automatic object
I It must be assigned values inside the function
I No array-sections of the result can be selected on invocation

I An explicit interface is mandatory in the calling program

I size(array,dim) returns the integer extent of array along
dimension dim

I Number of dimensions (a.k.a. rank) is mandatory in assumed
shape arrays

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax

I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k

! do x=1, size(avgk,1)

do i=1, k

! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k)

! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)

end do

! end do

end do

! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k ! do x=1, size(avgk,1)
do i=1, k ! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k) ! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)
end do ! end do

end do ! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Matrix Averaging
function avgk(v, k)

implicit none

real,intent(in) :: v(:,:)
integer,intent(in) :: k
real :: avgk(size(v,1)/k,size(v,2)/k)

integer :: i, j, n, m

n = (size(v,1)/k)*k
m = (size(v,2)/k)*k

avgk = 0.0

! do j=1, k
! do i=1, k

do j=1, k ! do x=1, size(avgk,1)
do i=1, k ! do y=1, size(avgk,2)

avgk = avgk + v(i:n:k,j:m:k) ! avgk(x,y) = avgk(x,y) + v(i+(x-1)*k,j+(y-1)*k)
end do ! end do

end do ! end do
! end do
! end do

avgk = avgk/k**2

end function avgk

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?

I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:

I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable

I This cannot be checked at compile time, when shape of v and
value of k are still unknown

I Runtime checking is too costly for a performance oriented
language

I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown

I Runtime checking is too costly for a performance oriented
language

I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language

I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking

I Again, very slow, only tolerable in debugging

Pay Attention to Conformability
I Readability of array syntax may become questionable...

Try to translate the previous code without using array syntax
I Why are n and m computed that way?
I To prevent a problem:
I what if v extents aren’t multiple of k?

I v(i:n:k,j:m:k) and avgk would not be conformable
I This cannot be checked at compile time, when shape of v and

value of k are still unknown
I Runtime checking is too costly for a performance oriented

language
I And out of bounds access could happen

I Compile time detection of non conformable operands only
works in a few cases

I Again, use compiler options for runtime bounds checking
I Again, very slow, only tolerable in debugging

Lower-Triangular Linear System

I Good ol’ style:
do i=1,n
x(i) = b(i) / a(i,i)
do j=i+1,n
b(j) = b(j) - A(j,i)*x(i)

enddo
enddo

I In modern idiom:
do i=1,n
x(i) = b(i) / a(i,i)
b(i+1:n) = b(i+1:n) - A(i+1:n,i)*x(i)

enddo

I What happens for i==n?

I the array section b(n+1:n) has zero size:
lower bound > upper bound

I No operation is performed

Lower-Triangular Linear System

I Good ol’ style:
do i=1,n
x(i) = b(i) / a(i,i)
do j=i+1,n
b(j) = b(j) - A(j,i)*x(i)

enddo
enddo

I In modern idiom:
do i=1,n
x(i) = b(i) / a(i,i)
b(i+1:n) = b(i+1:n) - A(i+1:n,i)*x(i)

enddo

I What happens for i==n?

I the array section b(n+1:n) has zero size:
lower bound > upper bound

I No operation is performed

Lower-Triangular Linear System

I Good ol’ style:
do i=1,n
x(i) = b(i) / a(i,i)
do j=i+1,n
b(j) = b(j) - A(j,i)*x(i)

enddo
enddo

I In modern idiom:
do i=1,n
x(i) = b(i) / a(i,i)
b(i+1:n) = b(i+1:n) - A(i+1:n,i)*x(i)

enddo

I What happens for i==n?

I the array section b(n+1:n) has zero size:
lower bound > upper bound

I No operation is performed

Lower-Triangular Linear System

I Good ol’ style:
do i=1,n
x(i) = b(i) / a(i,i)
do j=i+1,n
b(j) = b(j) - A(j,i)*x(i)

enddo
enddo

I In modern idiom:
do i=1,n
x(i) = b(i) / a(i,i)
b(i+1:n) = b(i+1:n) - A(i+1:n,i)*x(i)

enddo

I What happens for i==n?
I the array section b(n+1:n) has zero size:

lower bound > upper bound

I No operation is performed

Lower-Triangular Linear System

I Good ol’ style:
do i=1,n
x(i) = b(i) / a(i,i)
do j=i+1,n
b(j) = b(j) - A(j,i)*x(i)

enddo
enddo

I In modern idiom:
do i=1,n
x(i) = b(i) / a(i,i)
b(i+1:n) = b(i+1:n) - A(i+1:n,i)*x(i)

enddo

I What happens for i==n?
I the array section b(n+1:n) has zero size:

lower bound > upper bound
I No operation is performed

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20

I a(11:20:2) specifies all odd index elements from index 11 to
index 19

I a(19:10:-2) specifies the same elements, but in reverse
order

I Thus b = a(11:20) takes elements 11th to 20th of a and
assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19

I a(19:10:-2) specifies the same elements, but in reverse
order

I Thus b = a(11:20) takes elements 11th to 20th of a and
assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order

I Thus b = a(11:20) takes elements 11th to 20th of a and
assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:

I size(shape(b)) returns 1
I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:
I size(shape(b)) returns 1

I and size(b) returns 10

Picking Up Array Elements

I a(11:20) specifies all elements from index 11 to index 20
I a(11:20:2) specifies all odd index elements from index 11 to

index 19
I a(19:10:-2) specifies the same elements, but in reverse

order
I Thus b = a(11:20) takes elements 11th to 20th of a and

assigns them to b

I And b = a(20:11:-1) does the same, but elements order is
reversed

I Remember: b and the right hand side expression must be
conformable

I Which in this case implies:
I size(shape(b)) returns 1
I and size(b) returns 10

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant

I But temporary copies may impact performance, use your
compiler options to spot them

A Closer Look To Array Expressions

I In array assignment everything must happen ‘as if’ the r.h.s.
expression is evaluated before assignment

I To the benefit of performances, this is in many cases
unnecessary

I But difficult ones exist, like x(2:10) = x(1:9)

I In which x(2) may not be assigned x(1) value until the
existing x(2) value is assigned to x(3), which itself...

I A prudent (lazy?) compiler could add intermediate copies to
temporary arrays

I x(10:2:-1) = x(9:1:-1) is more easily understood by
some compilers

I Array syntax can be very compact and elegant
I But temporary copies may impact performance, use your

compiler options to spot them

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Trace

function trace(matrix)
implicit none
real, intent(in) :: matrix(:,:)
real :: trace
integer :: i
integer :: dim(2)

dim = shape(matrix)
trace = 0.0
if (dim(1) /= dim(2)) return

do i=1,dim(1)
trace = trace + matrix(i,i)

enddo
end function trace

I Not all operations on arrays can easily be expressed in array
syntax

I Do you remember shape()? It returns an array whose
elements are the extents of its argument

Optimized Array Smoothing
subroutine smooth(v, k)

implicit none
real,intent(inout) :: v(:)
integer,intent(in) :: k
integer :: n, l, i, j
real :: work(size(v))

n=size(v)
l = 2*k +1
work(1) = 0.0
do j=1-k,1+k

work(1) = work(1) + v(1+mod(n-1+j, n))
enddo
do i=2,n

work(i)=work(i-1)+v(1+mod(n-1+i+k, n))-v(1+mod(n-2+i-k, n))
enddo
v = work/l

end subroutine smooth

I The above code does the smoothing with minimal operations
count

I And cannot be expressed at all in array syntax
I This is a quite common situation: optimal algorithms operating

on arrays often sport dependencies in elements evaluations
and updates

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Tables of Coefficients

! Polinomial approximation of J0(x) for -3<=x<=3
! See Abramowitz&Stegun for details

function j0(x)
implicit none
real :: j0
real, intent(in) :: x

integer, parameter :: order = 6
real, parameter, dimension(0:order) :: coeff = &

(/ 1.0000000, &
-2.2499997, &
1.2656208, &
-0.3163866, &
0.0444479, &
-0.0039444, &
0.0002100 /)

real :: xo3sq
integer :: i

xo3sq = (x/3.0)**2
j0 = coeff(order)

! horner method
do i=order, 1, -1

j0 = j0*xo3sq + coeff(i-1)
end do

end function j0

parameter Arrays

I parameter arrays are very good at storing tables of:
I polynomial coefficients
I physical measurements
I function values at discrete points

I In the past, data statements were used:
data coeff /1.0,-2.2499997,1.2656208,-0.3163866, &

0.0444479,-0.0039444,0.0002100/

I data statements:
I are very versatile
I very difficult to decipher
I and tend to float away from variable declaration

I Use initialization instead

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Arrays Swap
program array_swap

implicit none
integer :: i, j
real :: a(0:10,10), b(11,10)

interface
subroutine swap(a,b)

real, intent(inout) :: a(:,:), b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

end subroutine swap
end interface

a=reshape((/ (i*0.1, i=1,110) /), (/11,10/))
b=reshape((/ ((i*j+i, i=1,11), j=1,10) /), (/11,10/))
call swap(a,b)

end program array_swap

subroutine swap(a,b)

implicit none

real, intent(inout) :: a(:,:),b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

tmp = a
a = b
b = tmp

end subroutine swap

Arrays Swap
program array_swap

implicit none
integer :: i, j
real :: a(0:10,10), b(11,10)

interface
subroutine swap(a,b)

real, intent(inout) :: a(:,:), b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

end subroutine swap
end interface

a=reshape((/ (i*0.1, i=1,110) /), (/11,10/))
b=reshape((/ ((i*j+i, i=1,11), j=1,10) /), (/11,10/))
call swap(a,b)

end program array_swap

subroutine swap(a,b)

implicit none

real, intent(inout) :: a(:,:),b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

tmp = a
a = b
b = tmp

end subroutine swap

Assumed-shape arrays & Automatic objects

I The scope of the implied do loop indices i and j is the loop
itself

I Other variables with same names are unaffected

I reshape(source,new_shape) returns an array with shape
given by the rank one integer array new_shape, and elements
taken from source in array element order

I Interface is as always mandatory for assumed shape
arguments, so the compiler knows that additional information
must be passed in to the function

I But life can be simpler...

Arrays Swap
program array_swap

implicit none
integer :: i, j
real :: a(0:10,10), b(11,10)

interface
subroutine swap(a,b)

real, intent(inout) :: a(:,:), b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

end subroutine swap
end interface

a=reshape((/ (i*0.1, i=1,110) /), (/11,10/))
b=reshape((/ ((i*j+i, i=1,11), j=1,10) /), (/11,10/))
call swap(a,b)

end program array_swap

subroutine swap(a,b)

implicit none

real, intent(inout) :: a(:,:),b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

tmp = a
a = b
b = tmp

end subroutine swap

Assumed-shape arrays & Automatic objects

I The scope of the implied do loop indices i and j is the loop
itself

I Other variables with same names are unaffected

I reshape(source,new_shape) returns an array with shape
given by the rank one integer array new_shape, and elements
taken from source in array element order

I Interface is as always mandatory for assumed shape
arguments, so the compiler knows that additional information
must be passed in to the function

I But life can be simpler...

Arrays Swap
program array_swap

implicit none
integer :: i, j
real :: a(0:10,10), b(11,10)

interface
subroutine swap(a,b)

real, intent(inout) :: a(:,:), b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

end subroutine swap
end interface

a=reshape((/ (i*0.1, i=1,110) /), (/11,10/))
b=reshape((/ ((i*j+i, i=1,11), j=1,10) /), (/11,10/))
call swap(a,b)

end program array_swap

subroutine swap(a,b)

implicit none

real, intent(inout) :: a(:,:),b(:,:)
real, dimension(size(a,1),size(a,2)) :: tmp

tmp = a
a = b
b = tmp

end subroutine swap

Assumed-shape arrays & Automatic objects

I The scope of the implied do loop indices i and j is the loop
itself

I Other variables with same names are unaffected

I reshape(source,new_shape) returns an array with shape
given by the rank one integer array new_shape, and elements
taken from source in array element order

I Interface is as always mandatory for assumed shape
arguments, so the compiler knows that additional information
must be passed in to the function

I But life can be simpler...

Assumed-shape arrays & Automatic objects

I The scope of the implied do loop indices i and j is the loop
itself

I Other variables with same names are unaffected

I reshape(source,new_shape) returns an array with shape
given by the rank one integer array new_shape, and elements
taken from source in array element order

I Interface is as always mandatory for assumed shape
arguments, so the compiler knows that additional information
must be passed in to the function

I But life can be simpler...

Elemental Arrays Swap
program array_swap

implicit none
integer :: i, j
real :: a(0:10,10), b(11,10)

interface
elemental subroutine swap(a,b)

real, intent(inout) :: a, b
real :: tmp

end subroutine swap
end interface

a = reshape((/ (i*0.1, i=1,110) /), (/11,10/))
b = reshape((/ ((i*j+i, i=1,11), j=1,10) /), (/11,10/))

call swap(a,b)

end program array_swap

elemental subroutine swap(a,b)
implicit none

real, intent(inout) :: a, b
real :: tmp

tmp = a
a = b
b = tmp

end subroutine swap

Elemental Procedures

I Elemental procedures are applied element-wise to arrays (like
most intrinsic arithmetic operators and mathematical functions)

I To define one, it has to be pure

I If a function, it shall not have side effects of sort (not even
stop!)

I If a subroutine, side effects shall be restricted to intent(out)
and intent(inout) arguments

I Of course, a procedure that appears to be pure, but calls a non
pure procedure, is not pure at all!

I And some more constraints ensure the different procedure calls
can be safely executed in any order

I An explicit interface is mandatory

I It must specify the procedure as elemental
I It must specify intent() attribute for all arguments

Elemental Procedures

I Elemental procedures are applied element-wise to arrays (like
most intrinsic arithmetic operators and mathematical functions)

I To define one, it has to be pure
I If a function, it shall not have side effects of sort (not even
stop!)

I If a subroutine, side effects shall be restricted to intent(out)
and intent(inout) arguments

I Of course, a procedure that appears to be pure, but calls a non
pure procedure, is not pure at all!

I And some more constraints ensure the different procedure calls
can be safely executed in any order

I An explicit interface is mandatory

I It must specify the procedure as elemental
I It must specify intent() attribute for all arguments

Elemental Procedures

I Elemental procedures are applied element-wise to arrays (like
most intrinsic arithmetic operators and mathematical functions)

I To define one, it has to be pure
I If a function, it shall not have side effects of sort (not even
stop!)

I If a subroutine, side effects shall be restricted to intent(out)
and intent(inout) arguments

I Of course, a procedure that appears to be pure, but calls a non
pure procedure, is not pure at all!

I And some more constraints ensure the different procedure calls
can be safely executed in any order

I An explicit interface is mandatory
I It must specify the procedure as elemental
I It must specify intent() attribute for all arguments

Outline

Array Syntax
More dimensions
Not a Panacea
Arrays of Constants
Elemental Procedures
More Array Syntax

Input/Output

Masks and where

I Logical array expressions like a(:)>0.0 are often termed
masks

I They come useful to restrict computations to specific array
elements, as in the where statement:
where (abs(a) > abs(b)) a = b
the elemental assignment is evaluated only on elements
satisfying the condition

I The general form is the where construct
where (abs(a) > abs(b))
c=b

elsewhere
c=a

end where

I Pay attention if you use non elemental functions in a where,
you could be in for a surprise!

I where constructs can be nested and given a name

Masks and where

I Logical array expressions like a(:)>0.0 are often termed
masks

I They come useful to restrict computations to specific array
elements, as in the where statement:
where (abs(a) > abs(b)) a = b
the elemental assignment is evaluated only on elements
satisfying the condition

I The general form is the where construct
where (abs(a) > abs(b))
c=b

elsewhere
c=a

end where

I Pay attention if you use non elemental functions in a where,
you could be in for a surprise!

I where constructs can be nested and given a name

Masks and where

I Logical array expressions like a(:)>0.0 are often termed
masks

I They come useful to restrict computations to specific array
elements, as in the where statement:
where (abs(a) > abs(b)) a = b
the elemental assignment is evaluated only on elements
satisfying the condition

I The general form is the where construct
where (abs(a) > abs(b))
c=b

elsewhere
c=a

end where

I Pay attention if you use non elemental functions in a where,
you could be in for a surprise!

I where constructs can be nested and given a name

Masks and where

I Logical array expressions like a(:)>0.0 are often termed
masks

I They come useful to restrict computations to specific array
elements, as in the where statement:
where (abs(a) > abs(b)) a = b
the elemental assignment is evaluated only on elements
satisfying the condition

I The general form is the where construct
where (abs(a) > abs(b))
c=b

elsewhere
c=a

end where

I Pay attention if you use non elemental functions in a where,
you could be in for a surprise!

I where constructs can be nested and given a name

Masks and where

I Logical array expressions like a(:)>0.0 are often termed
masks

I They come useful to restrict computations to specific array
elements, as in the where statement:
where (abs(a) > abs(b)) a = b
the elemental assignment is evaluated only on elements
satisfying the condition

I The general form is the where construct
where (abs(a) > abs(b))
c=b

elsewhere
c=a

end where

I Pay attention if you use non elemental functions in a where,
you could be in for a surprise!

I where constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:

I Unlike do, there is no ordering of iterations, and changes
appear as they were deferred

I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:

I Unlike do, there is no ordering of iterations, and changes
appear as they were deferred

I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:

I Unlike do, there is no ordering of iterations, and changes
appear as they were deferred

I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:
I Unlike do, there is no ordering of iterations, and changes

appear as they were deferred

I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:
I Unlike do, there is no ordering of iterations, and changes

appear as they were deferred
I Thus, no conflicts between reads and writes to a

I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:
I Unlike do, there is no ordering of iterations, and changes

appear as they were deferred
I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:
I Unlike do, there is no ordering of iterations, and changes

appear as they were deferred
I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure

I forall constructs can be nested and given a name

Say it With foralls
I forall allows writing array assignments which cannot be

expressed with array expressions:
forall(i = 1:n) a(i,i) = x(i)**2

I forall also accepts masks:
forall(i = 1:n, j = 1:n, y(i,j)/=0.) x(j,i) = 1.0/y(i,j)

I In its construct form, it looks like:
forall(i = 2:n-1, j = 2:n-1)
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

end forall

It works like array assignments:
I Unlike do, there is no ordering of iterations, and changes

appear as they were deferred
I Thus, no conflicts between reads and writes to a
I Assignment to b(i,j) takes place after that to a(i,j)

I Referenced procedures must be pure
I forall constructs can be nested and given a name

Laplace Equation in Three Idioms

I Using do loops (dependencies! loop order is crucial)
do j=2,n-1
do i=2,n-1
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
enddo

enddo

I Using array syntax (compiler enforces correct semantics)
T(2:n-1,2:n-1) = (T(1:n-2,2:n-1) + T(3:n,2:n-1) &

+ T(2:n-1,1:n-2) + T(2:n-1,3:n))/4.0

I Using forall (ditto, but more readable)
forall (i=2:n-1, j=2:n-1)
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
end forall

Laplace Equation in Three Idioms

I Using do loops (dependencies! loop order is crucial)
do j=2,n-1
do i=2,n-1
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
enddo

enddo

I Using array syntax (compiler enforces correct semantics)
T(2:n-1,2:n-1) = (T(1:n-2,2:n-1) + T(3:n,2:n-1) &

+ T(2:n-1,1:n-2) + T(2:n-1,3:n))/4.0

I Using forall (ditto, but more readable)
forall (i=2:n-1, j=2:n-1)
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
end forall

Laplace Equation in Three Idioms

I Using do loops (dependencies! loop order is crucial)
do j=2,n-1
do i=2,n-1
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
enddo

enddo

I Using array syntax (compiler enforces correct semantics)
T(2:n-1,2:n-1) = (T(1:n-2,2:n-1) + T(3:n,2:n-1) &

+ T(2:n-1,1:n-2) + T(2:n-1,3:n))/4.0

I Using forall (ditto, but more readable)
forall (i=2:n-1, j=2:n-1)
T(i,j) = (T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))/4.0
end forall

Bilateral Filter Using forall

integer, parameter :: maxn=768, maxm=939, R=3
real, parameter :: sd=10.0, sr=10.0
real, parameter :: sd22=2.0*sd**2, sr22=2.0*sr**2
integer :: i,j,m,n
real :: B(maxn,maxm), A(maxn,maxm)
real :: z(-R:R,-R:R), aw(-R:R,-R:R)
real, dimension(-R:R,-R:R), parameter :: z0=&

reshape((/ ((exp(-(m**2 + n**2)/sr22), m=-R, R), n=-R,R) /), (/ 2*R+1, 2*R+1 /))
...
do i=1,maxn ! These two cannot be changed into forall

do j=1,maxm ! Why?
z = 0.0
forall (m=max(1,i-R):min(maxn,i+R))

forall (n=max(1,j-R):min(maxm,j+R))
aw(m-i,n-j) = A(m,n)
z(m-i,n-j) = exp(-(aw(m-i,n-j)-A(i,j))**2/sd22)*z0(m-i,n-j)

end forall
end forall
B(i,j) = sum(z*aw)/sum(z)

end do
end do

Bilateral Filter Using forall

integer, parameter :: maxn=768, maxm=939, R=3
real, parameter :: sd=10.0, sr=10.0
real, parameter :: sd22=2.0*sd**2, sr22=2.0*sr**2
integer :: i,j,m,n
real :: B(maxn,maxm), A(maxn,maxm)
real :: z(-R:R,-R:R), aw(-R:R,-R:R)
real, dimension(-R:R,-R:R), parameter :: z0=&

reshape((/ ((exp(-(m**2 + n**2)/sr22), m=-R, R), n=-R,R) /), (/ 2*R+1, 2*R+1 /))
...
do i=1,maxn ! These two cannot be changed into forall

do j=1,maxm ! Why?
z = 0.0 ! Because this happens at every iteration, it’s a dependency!
forall (m=max(1,i-R):min(maxn,i+R))

forall (n=max(1,j-R):min(maxm,j+R))
aw(m-i,n-j) = A(m,n)
z(m-i,n-j) = exp(-(aw(m-i,n-j)-A(i,j))**2/sd22)*z0(m-i,n-j)

end forall
end forall
B(i,j) = sum(z*aw)/sum(z)

end do
end do

Array Reductions

I Reductions squeeze an array to a scalar
I all(mask) returns true if all the elements of mask are true
I any(mask) returns true if any of the elements of mask are true
I count(mask) returns the number of .true. elements in mask
I maxval(array) returns the maximum value of array
I minval(array) returns the minimum value of array
I sum(array) returns the sum of the elements of array
I product(array) returns the product of the elements of array

I Or to an array of rank reduced by one, if you specify an
optional dimension to perform reduction along, like in
sum(a(:,:,:), dim=2)

More Array Little Helpers

I More functions, good to know:
I maxloc() and minloc() return locations of maximum and

minimum value respectively
I cshift() performs a circular shift along an array dimension
I eoshift() perform a end-off shift along an array dimension
I spread() increases by one the rank of an array expression
I pack() selects elements from an array according to a mask

and packs them in a rank-1 array
I And unpack() does the reverse

I But too much detail to cover in this introduction, look for them
on your compiler documentation, and experiment

Matrix Algebra

I Vector and matrix multiplication functions
I dot_product(vector_a, vector_b)
I matmul(matrix_a, matrix_b)

I But the BLAS libraries are around
I Widely used
I Highly optimized implementations available

I Outstanding compilers include special purpose, optimized
BLAS version for those calls

I Good compilers do not include BLAS, but give option to link
them for those calls

I Average compilers do not shine for those calls
I Our advice: install a reputably good BLAS version and use it
I There is more to matrix algebra than matrix multiplies and

vector products

Hands-on Session #1

I Re-write the Sieve of Eratosthenes algorithm using array
syntax

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Formatted I/O

I Data are manipulated in internal (usually binary) format
I Fortran Standard leaves internal format details up to the

implementation
I Formatted I/O translates internal representation of variables

into human readable format

I Best practices:
I Use formatted I/O just for small amount of data meant to be

read by humans
I Beware: human readable representation may cause problems

because of rounding or not enough digits
I Do not use I/O inside heavy computations: inhibits some code

optimizations, and significantly affects performance

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

write(*,*) ’Enter start value, tol, max iterations’
read(*,*) phi_start, tol, max_iter

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(*,100) ’Start value:’,phi_start
write(*,100) ’Tolerance:’,tol
write(*,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,100) ’Final value:’,phi

100 format(A," ",F13.10)
end program golden_ratio

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

write(*,*) ’Enter start value, tol, max iterations’
read(*,*) phi_start, tol, max_iter

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(*,100) ’Start value:’,phi_start
write(*,100) ’Tolerance:’,tol
write(*,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,100) ’Final value:’,phi

100 format(A," ",F13.10)
end program golden_ratio

List Directed I/O

I The easiest way to do formatted I/O
I Specified using *
I Values are translated according to their types
I In the order they are listed on I/O statements
I No-nonsense, implementation dependent format
I Often outputs more digits than you actually care of

I Best practices:
I Use it for terminal input
I Use it for input of white-space separated values
I Use it for quick output
I Not suitable for rigid tabular formats

Explicit formats
I Put you in total control of what is read/written

I Specified by (format-list)
I Where format-list is a comma separated list of items,

which can be:

I string literals, usually in double quotes, emitted as-is
I or proper edit descriptors, which dictate how a corresponding

element on the I/O list should be converted

I Repeat counts can be used

I Like in 5I3, which will convert 5 integer values
I Like in 2(I3,F7.4), which will convert 2 pairs, each made of

an integer and a real value

I Formats must be specified on I/O statements

I As a literal string, usually in single quotes
I As a character expression
I As a numeric label of a format statement in the same

program unit (traditionally, before its end), reusable in many
statements

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

write(*,*) ’Enter start value, tol, max iterations’
read(*,*) phi_start, tol, max_iter

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(*,100) ’Start value:’,phi_start
write(*,100) ’Tolerance:’,tol
write(*,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,100) ’Final value:’,phi

100 format(A," ",F13.10)
end program golden_ratio

Explicit formats
I Put you in total control of what is read/written
I Specified by (format-list)

I Where format-list is a comma separated list of items,
which can be:

I string literals, usually in double quotes, emitted as-is
I or proper edit descriptors, which dictate how a corresponding

element on the I/O list should be converted

I Repeat counts can be used

I Like in 5I3, which will convert 5 integer values
I Like in 2(I3,F7.4), which will convert 2 pairs, each made of

an integer and a real value

I Formats must be specified on I/O statements

I As a literal string, usually in single quotes
I As a character expression
I As a numeric label of a format statement in the same

program unit (traditionally, before its end), reusable in many
statements

Explicit formats
I Put you in total control of what is read/written
I Specified by (format-list)
I Where format-list is a comma separated list of items,

which can be:
I string literals, usually in double quotes, emitted as-is
I or proper edit descriptors, which dictate how a corresponding

element on the I/O list should be converted

I Repeat counts can be used

I Like in 5I3, which will convert 5 integer values
I Like in 2(I3,F7.4), which will convert 2 pairs, each made of

an integer and a real value

I Formats must be specified on I/O statements

I As a literal string, usually in single quotes
I As a character expression
I As a numeric label of a format statement in the same

program unit (traditionally, before its end), reusable in many
statements

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

write(*,*) ’Enter start value, tol, max iterations’
read(*,*) phi_start, tol, max_iter

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(*,100) ’Start value:’,phi_start
write(*,100) ’Tolerance:’,tol
write(*,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,100) ’Final value:’,phi

100 format(A," ",F13.10)
end program golden_ratio

Explicit formats
I Put you in total control of what is read/written
I Specified by (format-list)
I Where format-list is a comma separated list of items,

which can be:
I string literals, usually in double quotes, emitted as-is
I or proper edit descriptors, which dictate how a corresponding

element on the I/O list should be converted
I Repeat counts can be used

I Like in 5I3, which will convert 5 integer values
I Like in 2(I3,F7.4), which will convert 2 pairs, each made of

an integer and a real value

I Formats must be specified on I/O statements

I As a literal string, usually in single quotes
I As a character expression
I As a numeric label of a format statement in the same

program unit (traditionally, before its end), reusable in many
statements

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

write(*,*) ’Enter start value, tol, max iterations’
read(*,*) phi_start, tol, max_iter

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(*,100) ’Start value:’,phi_start
write(*,100) ’Tolerance:’,tol
write(*,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,100) ’Final value:’,phi

100 format(A," ",F13.10)
end program golden_ratio

Explicit formats
I Put you in total control of what is read/written
I Specified by (format-list)
I Where format-list is a comma separated list of items,

which can be:
I string literals, usually in double quotes, emitted as-is
I or proper edit descriptors, which dictate how a corresponding

element on the I/O list should be converted
I Repeat counts can be used

I Like in 5I3, which will convert 5 integer values
I Like in 2(I3,F7.4), which will convert 2 pairs, each made of

an integer and a real value
I Formats must be specified on I/O statements

I As a literal string, usually in single quotes
I As a character expression
I As a numeric label of a format statement in the same

program unit (traditionally, before its end), reusable in many
statements

Edit Descriptors: characters and integers

I A is used to translate character values
I A will emit the value as is
I A10 will emit 10 characters, truncating the value if longer, right

justifying it if shorter
I Beware: leading white-space skipped on input
I Beware: A10 and 10A mean very different things!

I I is used to translate integer values

I I6 will emit up to 6 characters (sign included!), right justified
with blanks

I I6.3 will emit 6 characters (sign included!), containing at least
3 (possibly zero) digits, right justified with blanks

I Beware: again, I10 and 10I mean very different things!

Edit Descriptors: characters and integers

I A is used to translate character values
I A will emit the value as is
I A10 will emit 10 characters, truncating the value if longer, right

justifying it if shorter
I Beware: leading white-space skipped on input
I Beware: A10 and 10A mean very different things!

I I is used to translate integer values
I I6 will emit up to 6 characters (sign included!), right justified

with blanks
I I6.3 will emit 6 characters (sign included!), containing at least

3 (possibly zero) digits, right justified with blanks
I Beware: again, I10 and 10I mean very different things!

Edit Descriptors: reals

I F can be used to translate real values
I F8.3 will emit up to 8 characters (sign and decimal point

included!) in total, with 3 decimal digits (possibly zero), right
justified with blanks

I Beware: if F6.2 is specified in input, and -12345 is met, the
value -123.45 will be read in!

I Beware: if F6.2 is specified in input, and -1.234 is met, the
value -1.234 will be read in anyhow!

I Beware of rounding: internal representation could have more
precision than specified in edit descriptors

More Edit Descriptors for reals

I E (or D) can also be used to translate real values
I Exponential form is used (mantissa in the [0,1) range)
I Values |x | < 1099, as −1.5372× 1098, will be converted like:
-.15372E+99

I Values |x | ≥ 1099, as −1.5372× 1099, will be converted like:
-.15372+100

I E15.7 will emit up to 15 characters (sign, decimal point, and
exponent field included!), with 7 decimal mantissa digits
(possibly zero), right justified with blanks

I Ditto for E15.7E4, except that 4 digits will be used for exponent
I Again, input is more liberal

I And more can be used to the same purpose

I Like EN (engineering notation), same as E, with exponent
always multiple of 3

I Like G, which uses the most suitable between F and E,
depending on the value magnitude

More Edit Descriptors for reals

I E (or D) can also be used to translate real values
I Exponential form is used (mantissa in the [0,1) range)
I Values |x | < 1099, as −1.5372× 1098, will be converted like:
-.15372E+99

I Values |x | ≥ 1099, as −1.5372× 1099, will be converted like:
-.15372+100

I E15.7 will emit up to 15 characters (sign, decimal point, and
exponent field included!), with 7 decimal mantissa digits
(possibly zero), right justified with blanks

I Ditto for E15.7E4, except that 4 digits will be used for exponent
I Again, input is more liberal

I And more can be used to the same purpose
I Like EN (engineering notation), same as E, with exponent

always multiple of 3
I Like G, which uses the most suitable between F and E,

depending on the value magnitude

Even More Edit Descriptors

I /
I Forces a new line on output
I Skips to next line on input

I Leading sign of numeric values

I SP forces following numeric conversions to emit a leading +
character for positive values

I SS restores the default (sign is suppressed for positive values)

I Embedded blanks in numeric input fields

I BZ forces embedded blanks to be treated as 0 digits
I BN restores the default (blanks are skipped)

I And more... browse your compiler manuals

Even More Edit Descriptors

I /
I Forces a new line on output
I Skips to next line on input

I Leading sign of numeric values
I SP forces following numeric conversions to emit a leading +

character for positive values
I SS restores the default (sign is suppressed for positive values)

I Embedded blanks in numeric input fields

I BZ forces embedded blanks to be treated as 0 digits
I BN restores the default (blanks are skipped)

I And more... browse your compiler manuals

Even More Edit Descriptors

I /
I Forces a new line on output
I Skips to next line on input

I Leading sign of numeric values
I SP forces following numeric conversions to emit a leading +

character for positive values
I SS restores the default (sign is suppressed for positive values)

I Embedded blanks in numeric input fields
I BZ forces embedded blanks to be treated as 0 digits
I BN restores the default (blanks are skipped)

I And more... browse your compiler manuals

Even More Edit Descriptors

I /
I Forces a new line on output
I Skips to next line on input

I Leading sign of numeric values
I SP forces following numeric conversions to emit a leading +

character for positive values
I SS restores the default (sign is suppressed for positive values)

I Embedded blanks in numeric input fields
I BZ forces embedded blanks to be treated as 0 digits
I BN restores the default (blanks are skipped)

I And more... browse your compiler manuals

complexes and Arrays

I complex values are made of two reals
I Thus two edit descriptors must be provided
I First one for real part, second one for imaginary part

I Arrays are indexed collections of elements

I Thus a proper edit descriptor must be provided for each element
I And if elements are of complex, or derived types, see above

complexes and Arrays

I complex values are made of two reals
I Thus two edit descriptors must be provided
I First one for real part, second one for imaginary part

I Arrays are indexed collections of elements
I Thus a proper edit descriptor must be provided for each element
I And if elements are of complex, or derived types, see above

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?

I After read, remaining ones are ignored up to end of line
I What if the list of items to read/write is exhausted before end of

edit descriptors in a format?

I Following edit descriptors are ignored

I What if the list of edit descriptors in a format is exhausted
before end of items to read/write?

I Easy answer: I/O continues on a new line, reapplying the format
list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored

I What if the list of edit descriptors in a format is exhausted
before end of items to read/write?

I Easy answer: I/O continues on a new line, reapplying the format
list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?

I Easy answer: I/O continues on a new line, reapplying the format
list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored

I What if the list of edit descriptors in a format is exhausted
before end of items to read/write?

I Easy answer: I/O continues on a new line, reapplying the format
list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?

I Easy answer: I/O continues on a new line, reapplying the format
list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more
I What if a numeric value is too big to fit the characters you

specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Iterative Matrix Inversion
program iterative_inversion
! experiments with matrix iterative inversion

implicit none
real, dimension(4,4) :: a, x, x_old, x_start
real :: tol, err
integer :: i, max_iter

write(*,*) ’Enter 4x4 matrix to invert’
read(*,*) a
write(*,*) ’Enter 4x4 start matrix’
read(*,*) x_start
write(*,*) ’Enter tol, max iterations’
read(*,*) tol, max_iter

x_old = x_start
do i=1,max_iter

x = 2.0*x_old - matmul(x_old,matmul(a,x_old))
err = maxval(abs(x - x_old))
if (err < tol) exit
x_old = x

end do

write(*,’("Matrix to invert:")’)
write(*,100) a
write(*,’(/,"Start matrix:")’)
write(*,100) x_start
write(*,’(/,A," ",E15.7)’) ’Tolerance:’,tol
write(*,’(/,2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(*,’("Final matrix:")’)
write(*,100) x

100 format(4(E15.7," "))
end program iterative_inversion

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays

I Could be more complex, look for reversion to know more
I What if a numeric value is too big to fit the characters you

specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays
I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays
I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)
I What if a type mismatch happens between an item to

read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays
I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)

I What if a type mismatch happens between an item to
read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays
I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)
I What if a type mismatch happens between an item to

read/write and its corresponding edit descriptor?

I Your fault, you are in for a runtime, implementation defined
surprise!

Fortran I/O is Robustly Designed
I What if more characters than needed are present

on an input line?
I After read, remaining ones are ignored up to end of line

I What if the list of items to read/write is exhausted before end of
edit descriptors in a format?

I Following edit descriptors are ignored
I What if the list of edit descriptors in a format is exhausted

before end of items to read/write?
I Easy answer: I/O continues on a new line, reapplying the format

list from its beginning, quite handy for arrays
I Could be more complex, look for reversion to know more

I What if a numeric value is too big to fit the characters you
specified on its corresponding edit descriptor?

I The field is filled with asterisks (i.e. *)
I What if a type mismatch happens between an item to

read/write and its corresponding edit descriptor?
I Your fault, you are in for a runtime, implementation defined

surprise!

Hands-on Session #2

I Play with golden.f90 and itinv.f90:
I trying good and bad inputs
I giving less or more inputs than needed
I changing format descriptors

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

open(11,FILE=’golden.in’,STATUS=’old’)
read(11,*) phi_start, tol, max_iter
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

open(12,FILE=’golden.out’)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

open(11,FILE=’golden.in’,STATUS=’old’)
read(11,*) phi_start, tol, max_iter
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

open(12,FILE=’golden.out’)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle

I file_name is a string specifying file name (and possibly path)
in your file system

I file handle is then used as first argument to read and write

I When you pass a * instead, you are using pre-opened units
mapping to user terminal

I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle
I file_name is a string specifying file name (and possibly path)

in your file system

I file handle is then used as first argument to read and write

I When you pass a * instead, you are using pre-opened units
mapping to user terminal

I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle
I file_name is a string specifying file name (and possibly path)

in your file system

I file handle is then used as first argument to read and write

I When you pass a * instead, you are using pre-opened units
mapping to user terminal

I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle
I file_name is a string specifying file name (and possibly path)

in your file system

I file handle is then used as first argument to read and write
I When you pass a * instead, you are using pre-opened units

mapping to user terminal

I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle
I file_name is a string specifying file name (and possibly path)

in your file system

I file handle is then used as first argument to read and write
I When you pass a * instead, you are using pre-opened units

mapping to user terminal
I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

opening a File for I/O

open(u,FILE=file_name[,option][,option][...])

I u is an integer, positive expression specifying a file handle
I file_name is a string specifying file name (and possibly path)

in your file system

I file handle is then used as first argument to read and write
I When you pass a * instead, you are using pre-opened units

mapping to user terminal
I Which usually means 5 for read and 6 for write, but *, or
input_unit and output_unit from iso_fortran_env
Fortran 2003 module are more portable

I For error messages, 0 is commonly used, but error_unit
from iso_fortran_env module is portable

Some open Options

I ACTION=act specifies allowed actions
I use ’read’ to only read
I use ’write’ to only write
I use ’readwrite’ (the default) to allow both

I STATUS=st tells how to behave wrt file existence:

I use ’old’ to open a file that must already exist
I use ’new’ to open a file that must not exist
I use ’replace’ to open a new file, even if one already exists
I use ’unknown’ (the default) to leave it up to the

implementation (in all cases we know of, this means
’replace’)

I POSITION=pos tells where to start I/O on an existing file

I use ’rewind’ (the default) to start at beginning of file
I use ’append’ to start at end of file

Some open Options

I ACTION=act specifies allowed actions
I use ’read’ to only read
I use ’write’ to only write
I use ’readwrite’ (the default) to allow both

I STATUS=st tells how to behave wrt file existence:
I use ’old’ to open a file that must already exist
I use ’new’ to open a file that must not exist
I use ’replace’ to open a new file, even if one already exists
I use ’unknown’ (the default) to leave it up to the

implementation (in all cases we know of, this means
’replace’)

I POSITION=pos tells where to start I/O on an existing file

I use ’rewind’ (the default) to start at beginning of file
I use ’append’ to start at end of file

Some open Options

I ACTION=act specifies allowed actions
I use ’read’ to only read
I use ’write’ to only write
I use ’readwrite’ (the default) to allow both

I STATUS=st tells how to behave wrt file existence:
I use ’old’ to open a file that must already exist
I use ’new’ to open a file that must not exist
I use ’replace’ to open a new file, even if one already exists
I use ’unknown’ (the default) to leave it up to the

implementation (in all cases we know of, this means
’replace’)

I POSITION=pos tells where to start I/O on an existing file
I use ’rewind’ (the default) to start at beginning of file
I use ’append’ to start at end of file

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

open(11,FILE=’golden.in’,STATUS=’old’)
read(11,*) phi_start, tol, max_iter
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

open(12,FILE=’golden.out’)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

How to close a File

close(u[,STATUS=st])

I close completes all pending I/O operations and disassociates
the file from the unit

I close is automatically executed on all open files at program
end, but closing a file explicitly when you are done with it is a
good practice

I st tells what to do with the file after closing it

I use ’keep’ to preserve the file (it’s the default)
I use ’delete’ to remove it (good for files used for temporary

storage)

How to close a File

close(u[,STATUS=st])

I close completes all pending I/O operations and disassociates
the file from the unit

I close is automatically executed on all open files at program
end, but closing a file explicitly when you are done with it is a
good practice

I st tells what to do with the file after closing it

I use ’keep’ to preserve the file (it’s the default)
I use ’delete’ to remove it (good for files used for temporary

storage)

How to close a File

close(u[,STATUS=st])

I close completes all pending I/O operations and disassociates
the file from the unit

I close is automatically executed on all open files at program
end, but closing a file explicitly when you are done with it is a
good practice

I st tells what to do with the file after closing it
I use ’keep’ to preserve the file (it’s the default)
I use ’delete’ to remove it (good for files used for temporary

storage)

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

namelist /golden_inputs/ phi_start, tol, max_iter

open(11,FILE=’golden.in’,STATUS=’old’)
read(11,golden_inputs)
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

open(12,FILE=’golden.out’)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

Iterative search for the Golden Ratio

program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter

namelist /golden_inputs/ phi_start, tol, max_iter

open(11,FILE=’golden.in’,STATUS=’old’)
read(11,golden_inputs)
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

open(12,FILE=’golden.out’)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

namelists

I namelists allow input/output of annotated lists of values

I Performed by read or write statements that do not have an
I/O list and in which format is replaced by a namelist name

I File content is structured, self-describing, order independent,
comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value
I Items can be added to a namelist in different statements, but a

code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

namelists

I namelists allow input/output of annotated lists of values
I Performed by read or write statements that do not have an

I/O list and in which format is replaced by a namelist name

I File content is structured, self-describing, order independent,
comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value
I Items can be added to a namelist in different statements, but a

code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

namelists

I namelists allow input/output of annotated lists of values
I Performed by read or write statements that do not have an

I/O list and in which format is replaced by a namelist name
I File content is structured, self-describing, order independent,

comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value
I Items can be added to a namelist in different statements, but a

code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

namelists

I namelists allow input/output of annotated lists of values
I Performed by read or write statements that do not have an

I/O list and in which format is replaced by a namelist name
I File content is structured, self-describing, order independent,

comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value

I Items can be added to a namelist in different statements, but a
code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

namelists

I namelists allow input/output of annotated lists of values
I Performed by read or write statements that do not have an

I/O list and in which format is replaced by a namelist name
I File content is structured, self-describing, order independent,

comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value
I Items can be added to a namelist in different statements, but a

code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

namelists

I namelists allow input/output of annotated lists of values
I Performed by read or write statements that do not have an

I/O list and in which format is replaced by a namelist name
I File content is structured, self-describing, order independent,

comments are allowed:
&golden_inputs
tol=1.e-4 ! tolerance
phi_start=5.0 ! 0th iteration
max_iter=10000000 /

I Items missing in the input will retain previous value
I Items can be added to a namelist in different statements, but a

code like this easily misleads readers (and you read your own
codes, don’t you?)

I Use them to make input robust, in output mostly good for
debugging

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Iterative search for the Golden Ratio
program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter, test_no
character(15) :: outfilename

namelist /golden_inputs/ phi_start, tol, max_iter, test_no

test_no = 1
open(11,FILE=’golden.in’,STATUS=’old’)
read(11,golden_inputs)
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(outfilename,’("golden",I5.5,".out")’) test_no
open(12,FILE=outfilename)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

Iterative search for the Golden Ratio
program golden_ratio
! experiments with the golden ratio iterative relation

implicit none
integer, parameter :: rk = kind(1.0d0)
real(rk) :: phi, phi_old
real(rk) :: phi_start, tol
integer :: i, max_iter, test_no
character(15) :: outfilename

namelist /golden_inputs/ phi_start, tol, max_iter, test_no

test_no = 1
open(11,FILE=’golden.in’,STATUS=’old’)
read(11,golden_inputs)
close(11)

phi_old = phi_start
do i=1,max_iter

phi = 1.0d0/phi_old + 1.0d0
if (abs(phi - phi_old) < tol) exit
phi_old = phi

end do

write(outfilename,’("golden",I5.5,".out")’) test_no
open(12,FILE=outfilename)
write(12,100) ’Start value:’,phi_start
write(12,100) ’Tolerance:’,tol
write(12,’(2(A," ",I11," "))’) ’Ended at iteration:’, i, ’of’, max_iter
write(12,100) ’Final value:’,phi
close(12)

100 format(A," ",F13.10)
end program golden_ratio

Internal Files
I character variables of default kind can be specified

in place of units in read and write statements

I Writing to internal files is good to:

I dynamically build file names according to a pattern (like number
of iterations)

I dynamically assemble complex I/O formats, depending on
actual data

I prepare complex labels for plot data formats
I build commands to be sent to hardware devices
I ...

I Reading from internal files can be useful to read complex
inputs

I You have a textual input file sporting different formats
I And the right format depends on actual data in the file
I Just read each line in a character variable, suitably sized
I Pick the suitable format
I And use it to read from the variable itself

Internal Files
I character variables of default kind can be specified

in place of units in read and write statements

I Writing to internal files is good to:
I dynamically build file names according to a pattern (like number

of iterations)
I dynamically assemble complex I/O formats, depending on

actual data
I prepare complex labels for plot data formats
I build commands to be sent to hardware devices
I ...

I Reading from internal files can be useful to read complex
inputs

I You have a textual input file sporting different formats
I And the right format depends on actual data in the file
I Just read each line in a character variable, suitably sized
I Pick the suitable format
I And use it to read from the variable itself

Internal Files
I character variables of default kind can be specified

in place of units in read and write statements

I Writing to internal files is good to:
I dynamically build file names according to a pattern (like number

of iterations)
I dynamically assemble complex I/O formats, depending on

actual data
I prepare complex labels for plot data formats
I build commands to be sent to hardware devices
I ...

I Reading from internal files can be useful to read complex
inputs

I You have a textual input file sporting different formats
I And the right format depends on actual data in the file
I Just read each line in a character variable, suitably sized
I Pick the suitable format
I And use it to read from the variable itself

Hands-on Session #3

I Play with goldenfile.f90, goldenfnl.f90, and
goldeniio.f90:

I writing input files
I writing good and bad data in input files
I giving input files wrong file names

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

Unformatted I/O

I Formatted I/O is good, but:
I internal data format is much more compact
I and roundoff may happen, making recovery of original values

impossible
I and conversion takes time

I Unformatted I/O is used to store and recover data in internal
representation

I Just give FORM=’unformatted’ option when opening the file
I And omit format in read and write statements

I Unformatted I/O is performed on a record basis

I In unformatted mode, each write writes a record
I As we’ll see, this allows walking your files backward and forward
I But has interesting consequences, as more than your data is

written to your file...

Iterative Matrix Inversion
program iterative_inversion
! experiments with matrix iterative inversion

implicit none
real, dimension(4,4) :: a, x, x_old, x_start
real :: tol, err
integer :: i, max_iter

open(21,FILE=’input.dat’,FORM=’unformatted’,STATUS=’old’)
read(21) a
read(21) x_start
read(21) tol,max_iter
close(21)

x_old = x_start
do i=1,max_iter

x = 2.0*x_old - matmul(x_old,matmul(a,x_old))
err = maxval(abs(x - x_old))
if (err < tol) exit
x_old = x

end do

open(22,FILE=’itinv.dat’,FORM=’unformatted’)
write(22) a
write(22) x_start
write(22) tol,max_iter
write(22) i
write(22) x
close(22)

end program iterative_inversion

Iterative Matrix Inversion
program iterative_inversion
! experiments with matrix iterative inversion

implicit none
real, dimension(4,4) :: a, x, x_old, x_start
real :: tol, err
integer :: i, max_iter

open(21,FILE=’input.dat’,FORM=’unformatted’,STATUS=’old’)
read(21) a
read(21) x_start
read(21) tol,max_iter
close(21)

x_old = x_start
do i=1,max_iter

x = 2.0*x_old - matmul(x_old,matmul(a,x_old))
err = maxval(abs(x - x_old))
if (err < tol) exit
x_old = x

end do

open(22,FILE=’itinv.dat’,FORM=’unformatted’)
write(22) a
write(22) x_start
write(22) tol,max_iter
write(22) i
write(22) x
close(22)

end program iterative_inversion

Unformatted I/O

I Formatted I/O is good, but:
I internal data format is much more compact
I and roundoff may happen, making recovery of original values

impossible
I and conversion takes time

I Unformatted I/O is used to store and recover data in internal
representation

I Just give FORM=’unformatted’ option when opening the file
I And omit format in read and write statements

I Unformatted I/O is performed on a record basis

I In unformatted mode, each write writes a record
I As we’ll see, this allows walking your files backward and forward
I But has interesting consequences, as more than your data is

written to your file...

Unformatted I/O

I Formatted I/O is good, but:
I internal data format is much more compact
I and roundoff may happen, making recovery of original values

impossible
I and conversion takes time

I Unformatted I/O is used to store and recover data in internal
representation

I Just give FORM=’unformatted’ option when opening the file
I And omit format in read and write statements

I Unformatted I/O is performed on a record basis
I In unformatted mode, each write writes a record
I As we’ll see, this allows walking your files backward and forward
I But has interesting consequences, as more than your data is

written to your file...

Hands-on Session #4

I Modify itinv.f90 to perform unformatted I/O

I To test it, you’ll need an additional program:
I taking text input from keyboard or initializing all needed data
I to write a good unformatted input file for the new version of
itinv.f90

As you are at it...
I Try different ways to output the results:

I element-wise
do j=1,n
do i=1,n

write(79) a(i,j)
end do

end do

I column-wise, using an implied do-loop:
do j=1,n
write(79) (a(i,j), i=1,n) ! a(:,j) will also do

end do

I with two implied do-loops:
write(79) ((a(i,j), i=1,n), j=1,n)

I Can you spot the difference?

I Not a big issue for 4× 4 matrices, but think of a
256× 256× 1024 grid!

As you are at it...
I Try different ways to output the results:

I element-wise
do j=1,n
do i=1,n

write(79) a(i,j)
end do

end do

I column-wise, using an implied do-loop:
do j=1,n
write(79) (a(i,j), i=1,n) ! a(:,j) will also do

end do

I with two implied do-loops:
write(79) ((a(i,j), i=1,n), j=1,n)

I Can you spot the difference?
I Not a big issue for 4× 4 matrices, but think of a

256× 256× 1024 grid!

File Positioning

I read always advance to next record, even if you read only part
of the record (or possibly nothing)

I backspace(u) moves position for subsequent I/Os to the
record preceding the current one

I rewind(u) moves position for subsequent I/Os to file
beginning

I To allow positioning back and forth, a four bytes record marker
is added in 32 bit mode (eight bytes in 64 bit mode) before and
after each record

I Best practice: write data in whole blocks

Fortran 2003: Stream Access I/O

I Record markers added in unformatted I/O make exchanging
data with other programs (notably C ones) troublesome

I open(unit,...,ACCESS=’stream’,...) is a new
method to access external files

I No record markers are written before or after a write
I Thus, advancing or backspacing over records is not possible
I But required position may be specified by:

write(unit,POS=position) x
read(unit,POS=position) y

I Best practice: if you are really serious about data exchanges,
across different programs and systems, use libraries like
HDF5, VTK, CGNS

Outline

Array Syntax

Input/Output
Formatted I/O
File I/O
Namelist
Internal Files
Unformatted I/O
Robust I/O

I/O Errors and Mishaps

I You may happen to:
I Try to open a new file, when one with same name already exists
I Look for an existing file, which is missing
I Encounter an unexpected end of record in a read
I Encounter an unexpected end of file while reading
I Run out of disk space while writing
I Try writing to a read-only file
I ...

I And get an unfriendly runtime error

I Or you may need to open a file in a library you are writing

I And use a unit already opened in a calling program
I The previously opened unit is automatically closed
I With surprising consequences on program behavior

I/O Errors and Mishaps

I You may happen to:
I Try to open a new file, when one with same name already exists
I Look for an existing file, which is missing
I Encounter an unexpected end of record in a read
I Encounter an unexpected end of file while reading
I Run out of disk space while writing
I Try writing to a read-only file
I ...

I And get an unfriendly runtime error

I Or you may need to open a file in a library you are writing

I And use a unit already opened in a calling program
I The previously opened unit is automatically closed
I With surprising consequences on program behavior

I/O Errors and Mishaps

I You may happen to:
I Try to open a new file, when one with same name already exists
I Look for an existing file, which is missing
I Encounter an unexpected end of record in a read
I Encounter an unexpected end of file while reading
I Run out of disk space while writing
I Try writing to a read-only file
I ...

I And get an unfriendly runtime error

I Or you may need to open a file in a library you are writing
I And use a unit already opened in a calling program
I The previously opened unit is automatically closed
I With surprising consequences on program behavior

Managing I/O Errors

I All I/O statements accept an IOSTAT=ios option
I ios must be an integer variable of default kind
I Set to zero on success
I Set to negative values on end of file or record

(in Fortran 2003, iostat_end and iostat_eor respectively,
from iso_fortran_env module)

I Set to positive values on error
I Execution will not stop

I Use it to identify the issue, and recover or fail gracefully

I All I/O statements accept an ERR=err-label option

I err-label is a statement label in the same program unit
I Flow control jumps to err-label in case of error

I Use it to centralize error management and recovery
I Together with iostat, of course

Managing I/O Errors

I All I/O statements accept an IOSTAT=ios option
I ios must be an integer variable of default kind
I Set to zero on success
I Set to negative values on end of file or record

(in Fortran 2003, iostat_end and iostat_eor respectively,
from iso_fortran_env module)

I Set to positive values on error
I Execution will not stop

I Use it to identify the issue, and recover or fail gracefully

I All I/O statements accept an ERR=err-label option
I err-label is a statement label in the same program unit
I Flow control jumps to err-label in case of error

I Use it to centralize error management and recovery
I Together with iostat, of course

In Doubt? inquire!

I Let’s assume ans is a logical variable, k is an integer variable,
and s is a character variable of suitable length

I inquire(FILE=’input.dat’,EXIST=ans) will set ans to
.true. if file input.dat exists

I inquire(FILE=’input.dat’,OPENED=ans) will set ans
to .true. if file input.dat is already opened

I inquire(15,OPENED=ans) will set ans to .true. if a file is
already opened on unit 15

I inquire(FILE=’input.dat’,NUMBER=k) will set k to -1 if
file input.dat is not opened, to connected unit otherwise

In Doubt? inquire!

I Let’s assume ans is a logical variable, k is an integer variable,
and s is a character variable of suitable length

I inquire(FILE=’input.dat’,EXIST=ans) will set ans to
.true. if file input.dat exists

I inquire(FILE=’input.dat’,OPENED=ans) will set ans
to .true. if file input.dat is already opened

I inquire(15,OPENED=ans) will set ans to .true. if a file is
already opened on unit 15

I inquire(FILE=’input.dat’,NUMBER=k) will set k to -1 if
file input.dat is not opened, to connected unit otherwise

In Doubt? inquire!

I Let’s assume ans is a logical variable, k is an integer variable,
and s is a character variable of suitable length

I inquire(FILE=’input.dat’,EXIST=ans) will set ans to
.true. if file input.dat exists

I inquire(FILE=’input.dat’,OPENED=ans) will set ans
to .true. if file input.dat is already opened

I inquire(15,OPENED=ans) will set ans to .true. if a file is
already opened on unit 15

I inquire(FILE=’input.dat’,NUMBER=k) will set k to -1 if
file input.dat is not opened, to connected unit otherwise

In Doubt? inquire!

I Let’s assume ans is a logical variable, k is an integer variable,
and s is a character variable of suitable length

I inquire(FILE=’input.dat’,EXIST=ans) will set ans to
.true. if file input.dat exists

I inquire(FILE=’input.dat’,OPENED=ans) will set ans
to .true. if file input.dat is already opened

I inquire(15,OPENED=ans) will set ans to .true. if a file is
already opened on unit 15

I inquire(FILE=’input.dat’,NUMBER=k) will set k to -1 if
file input.dat is not opened, to connected unit otherwise

In Doubt? inquire!

I Let’s assume ans is a logical variable, k is an integer variable,
and s is a character variable of suitable length

I inquire(FILE=’input.dat’,EXIST=ans) will set ans to
.true. if file input.dat exists

I inquire(FILE=’input.dat’,OPENED=ans) will set ans
to .true. if file input.dat is already opened

I inquire(15,OPENED=ans) will set ans to .true. if a file is
already opened on unit 15

I inquire(FILE=’input.dat’,NUMBER=k) will set k to -1 if
file input.dat is not opened, to connected unit otherwise

More Doubts? inquire More!

I inquire(15,FORM=s) will set s to ’FORMATTED’ or
’UNFORMATTED’ if unit 15 is connected for formatted or
unformatted I/O respectively, to ’UNDEFINED’ otherwise

I inquire(15,ACTION=s) will set s to ’READ’ or ’WRITE’ or
’READWRITE’, depending on what actions are allowed on unit
15, to ’UNDEFINED’ if unconnected

I inquire(IOLENGTH=k) output-list will set k to the
number of processor dependent units (bytes, in practice)
occupied by an unformatted write of output-list

I And many more variations, look to manuals

I Of course, IOSTAT and ERR can be useful on inquire too

More Doubts? inquire More!

I inquire(15,FORM=s) will set s to ’FORMATTED’ or
’UNFORMATTED’ if unit 15 is connected for formatted or
unformatted I/O respectively, to ’UNDEFINED’ otherwise

I inquire(15,ACTION=s) will set s to ’READ’ or ’WRITE’ or
’READWRITE’, depending on what actions are allowed on unit
15, to ’UNDEFINED’ if unconnected

I inquire(IOLENGTH=k) output-list will set k to the
number of processor dependent units (bytes, in practice)
occupied by an unformatted write of output-list

I And many more variations, look to manuals

I Of course, IOSTAT and ERR can be useful on inquire too

More Doubts? inquire More!

I inquire(15,FORM=s) will set s to ’FORMATTED’ or
’UNFORMATTED’ if unit 15 is connected for formatted or
unformatted I/O respectively, to ’UNDEFINED’ otherwise

I inquire(15,ACTION=s) will set s to ’READ’ or ’WRITE’ or
’READWRITE’, depending on what actions are allowed on unit
15, to ’UNDEFINED’ if unconnected

I inquire(IOLENGTH=k) output-list will set k to the
number of processor dependent units (bytes, in practice)
occupied by an unformatted write of output-list

I And many more variations, look to manuals

I Of course, IOSTAT and ERR can be useful on inquire too

More Doubts? inquire More!

I inquire(15,FORM=s) will set s to ’FORMATTED’ or
’UNFORMATTED’ if unit 15 is connected for formatted or
unformatted I/O respectively, to ’UNDEFINED’ otherwise

I inquire(15,ACTION=s) will set s to ’READ’ or ’WRITE’ or
’READWRITE’, depending on what actions are allowed on unit
15, to ’UNDEFINED’ if unconnected

I inquire(IOLENGTH=k) output-list will set k to the
number of processor dependent units (bytes, in practice)
occupied by an unformatted write of output-list

I And many more variations, look to manuals

I Of course, IOSTAT and ERR can be useful on inquire too

More Doubts? inquire More!

I inquire(15,FORM=s) will set s to ’FORMATTED’ or
’UNFORMATTED’ if unit 15 is connected for formatted or
unformatted I/O respectively, to ’UNDEFINED’ otherwise

I inquire(15,ACTION=s) will set s to ’READ’ or ’WRITE’ or
’READWRITE’, depending on what actions are allowed on unit
15, to ’UNDEFINED’ if unconnected

I inquire(IOLENGTH=k) output-list will set k to the
number of processor dependent units (bytes, in practice)
occupied by an unformatted write of output-list

I And many more variations, look to manuals

I Of course, IOSTAT and ERR can be useful on inquire too

Hands-on Session #5

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I prints maximum, minimum, average of the numbers
I and prints the bn/2c-th row where n is the length of the column

Part IV

Derived Types and Memory
Management

Derived types, operators overloading, parametric types and
inheritance. Memory management, dynamic allocation and
memory heap. Pointers. C and Fortran interoperability.

Outline

Extending the Language
Derived Types
Operators Overloading
Parameterized Types
Extending Types, and Objects

Managing Memory

Conclusions

Outline

Extending the Language
Derived Types
Operators Overloading
Parameterized Types
Extending Types, and Objects

Managing Memory

Conclusions

User Defined Types

I Fortran allows programmers to add new types, built as
assemblies of existing ones
type position
real :: x, y, z

end type position

type velocity
real :: x, y, z

end type velocity

I Components in different derived types may have the same
name (not a surprise!)

I type(position) :: r declares a variable of type
position

I Components of a derived type can be accessed like this:
r%y = 0.0

Growing Types from Types
I Derived types are not second class citizens
I Thus derived types (also termed structures) can be assembled

from other derived types too
type particle
type(position) :: r
type(velocity) :: v
real :: mass

end type particle

type atom
type(position) :: r
type(velocity) :: v
real :: mass ! In atomic units
integer :: an ! Atomic number

end type atom

I type(particle) :: p declares a variable of type
particle

I Components of a component of a variable can be accessed
like this: p%v%z = 0.0

Structures In Action

type(atom) :: h1, h2, he

h1%r = position(0.0, 0.0, 0.0)
h1%v = velocity(1.0, -1.0, 0.0)
h1%mass = 1.00794
h1%an = 1 ! Assigns atomic number

h2 = h1 ! Intrinsic assignment

he = atom(position(1.0, 0.0, -1.0), h2%v, 4.002602, 2)

I Derived type name can be used to construct values of the type
I Unsurprisingly, velocity() is termed a constructor
I Values passed as argument to constructors must be ordered

as in type definition
I Assignment is intrinsically available

Formatted I/O of Derived Types

I Derived types boil down (possibly recursively) to collections of
intrinsic types

I And behavior is coherent with I/O of complex values and arrays
I All single intrinsic type (sub)components will be processed in

sequence

I If you want control of the conversion:
I a proper edit descriptor must be provided for each component
I in same order as components are declared in type declaration

I Fortran 2003 introduces the DT edit descriptor to give users
total control

Outline

Extending the Language
Derived Types
Operators Overloading
Parameterized Types
Extending Types, and Objects

Managing Memory

Conclusions

Same Name, Different Personality

I Binary operator + can be used to add:

I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values

I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values

I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values

I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds

I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds

I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds

I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value

I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value

I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’

I Different machine code is generated depending on operand
types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’
I Different machine code is generated depending on operand

types

I And ditto for -, *, /, >, >=, ...

Same Name, Different Personality

I Binary operator + can be used to add:
I a pair of integer values
I a pair of real values
I a pair of complex values
I two integer values of different kinds
I two real values of different kinds
I two complex values of different kinds
I an integer and a real value
I an integer and a complex value
I a real and a complex value

I It’s like the meaning of + is ‘overloaded’
I Different machine code is generated depending on operand

types
I And ditto for -, *, /, >, >=, ...

Bringing Abstractions Further
Wouldn’t it be nice to have arithmetic operators work on
structures?
interface operator(-)

function subvel(p1, p2)
type(velocity), intent(in) :: p1, p2
type(velocity) :: subvel

end function
end interface operator(-)

interface operator(-)
function chsvel(p)

type(velocity), intent(in) :: p
type(velocity) :: chsvel

end function
end interface operator(-)

function subvel(p1, p2)
implicit none
type(velocity), intent(in) :: p1, p2
type(velocity) :: subvel
subvel%x = p1%x-p2%x; subvel%y = p1%y-p2%y; subvel%z = p1%z-p2%z

end function subvel

function chsvel(p)
implicit none
type(velocity), intent(in) :: p
type(velocity) :: chsvel
chsvel%x = -p%x; chsvel%y = -p%y; chsvel%z = -p%z

end function chsvel

Changing Rules as We Need

I We are fitting an infinite space into a finite box with periodic
boundary conditions

I Wouldn’t it be nice to define our operators with custom
functionality?

interface operator(+)
function addpos(p1, p2)

type(position), intent(in) :: p1, p2
type(position) :: addpos

end function
end interface operator(+)

function addpos(p1, p2) ! Adds positions with periodic boundary conditions
implicit none
type(position), intent(in) :: p1, p2
type(position) :: addpos
real,parameter :: boxwidth = 128.0

addpos%x = modulo(p1%x+p2%x, boxwidth)
addpos%y = modulo(p1%y+p2%y, boxwidth)
addpos%z = modulo(p1%z+p2%z, boxwidth)

end function addpos

Operator Overloading

I interface operator(op-name) lets you overload
op-name with a generic procedure

I Arguments must be intent(in) and can be either one or two
I op-name may be an intrinsic operator, or a .new_name.

I Precedence:

I same for existing operators
I highest for new unary operators
I lowest for new binary operators

I Now velocities may be added as intrinsic arithmetic types
I And defining subtraction is an easy job
I Positions may be added as usual intrinsic variables and

boundary conditions are automatically imposed

I Time for a module

Operator Overloading

I interface operator(op-name) lets you overload
op-name with a generic procedure

I Arguments must be intent(in) and can be either one or two
I op-name may be an intrinsic operator, or a .new_name.

I Precedence:
I same for existing operators
I highest for new unary operators
I lowest for new binary operators

I Now velocities may be added as intrinsic arithmetic types
I And defining subtraction is an easy job
I Positions may be added as usual intrinsic variables and

boundary conditions are automatically imposed

I Time for a module

Operator Overloading

I interface operator(op-name) lets you overload
op-name with a generic procedure

I Arguments must be intent(in) and can be either one or two
I op-name may be an intrinsic operator, or a .new_name.

I Precedence:
I same for existing operators
I highest for new unary operators
I lowest for new binary operators

I Now velocities may be added as intrinsic arithmetic types
I And defining subtraction is an easy job
I Positions may be added as usual intrinsic variables and

boundary conditions are automatically imposed

I Time for a module

Operator Overloading

I interface operator(op-name) lets you overload
op-name with a generic procedure

I Arguments must be intent(in) and can be either one or two
I op-name may be an intrinsic operator, or a .new_name.

I Precedence:
I same for existing operators
I highest for new unary operators
I lowest for new binary operators

I Now velocities may be added as intrinsic arithmetic types
I And defining subtraction is an easy job
I Positions may be added as usual intrinsic variables and

boundary conditions are automatically imposed

I Time for a module

A Module Centered on Derived Types
module periodic_box

implicit none
real, private, parameter :: boxwidth = 128.0
private addpos, addvel, chsvel, subvel, subpos

type position
real :: x, y, z

end type position

type velocity
real :: x, y, z

end type velocity

interface operator(+)
module procedure addpos
module procedure addvel

end interface operator(+)
! ...
contains

function addpos(p1, p2) ! Adds positions with periodic boundary conditions on x
type(position), intent(in) :: p1, p2
type(position) :: addpos
addpos%x = modulo(p1%x+p2%x, boxwidth)
addpos%y = modulo(p1%y+p2%y, boxwidth)
addpos%z = modulo(p1%z+p2%z, boxwidth)

end function addpos

function addvel
!...

end function addvel
! ...
end module periodic_box

Structuring Structures

I Again, modules are the best way of grouping related stuff
I Again, with modules and module procedures we don’t need to

write interface blocks

I Modules let us hide implementation details

I Best practice: put structure definitions and related functions
and operators in modules

I Anyway, they will be used together
I When dealing with nested types with many related functions, a

hierarchy of modules would probably help
I Because, of course, you can use modules in a module

Hands-on Session #1
I Write a module that defines:

I A new type vector made up of three real components
I Operator .cross. for cross product
I Operator + to sum two vectors

I Write a program to test your module
program test_class_vector

use class_vector

implicit none

type(vector) :: v, w, z

v=vector(1.d0,0.d0,0.d0)
w=vector(0.d0,1.d0,0.d0)
z=vector(0.d0,0.d0,1.d0)

write(*,*) v+w.cross.z

end program test_class_vector

I Definition of cross product:

a× b = (a2b3 − a3b2)̂i + (a3b1 − a1b3)̂j + (a1b2 − a2b1)k̂

I Then extend operators to have them work with array of
vectors: it’s elementary!

A Possible Solution
module class_vector

implicit none
type vector
real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum

end module class_vector

A Possible Solution
module class_vector

implicit none

type vector
real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum

end module class_vector

A Possible Solution
module class_vector

implicit none
type vector

real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum

end module class_vector

A Possible Solution
module class_vector

implicit none
type vector

real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum

end module class_vector

A Possible Solution
module class_vector

implicit none
type vector

real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum
end module class_vector

A Possible Solution
module class_vector

implicit none
type vector

real(kind(1.d0)) :: x
real(kind(1.d0)) :: y
real(kind(1.d0)) :: z

end type vector

interface operator(.cross.)
module procedure cross_prod

end interface

interface operator(+)
module procedure vec_sum

end interface

contains

elemental function cross_prod(a,b)
type(vector) :: cross_prod
type(vector), intent(in) :: a, b
cross_prod%x = a%y * b%z - a%z * b%y
cross_prod%y = a%z * b%x - a%x * b%z
cross_prod%z = a%x * b%y - a%y * b%x

end function cross_prod

elemental function vec_sum(a,b)
type(vector) :: vec_sum
type(vector), intent(in) :: a, b
vec_sum%x = a%x + b%x
vec_sum%y = a%y + b%y
vec_sum%z = a%z + b%z

end function vec_sum
end module class_vector

Outline

Extending the Language
Derived Types
Operators Overloading
Parameterized Types
Extending Types, and Objects

Managing Memory

Conclusions

Making It wider

I What if we wanted different kinds of points?

I This is a possibility:
type point

real(selected_real_kind(5)) :: x, y, z
end type point

type widepoint
real(selected_real_kind(12)) :: x, y, z

end type widepoint

I But not very elegant, nor easy to manage

Fortran 2003 Adds Parameterized Types

I In Fortran 2003, types may have kind type parameters:
type point(point_kind)

integer, kind :: point_kind = kind(0.0)
real(point_kind) :: x, y, z

end type point

type(point(point_kind=kind(0.0))) :: apoint
type(point) :: anotherpoint
type(point(selected_real_kind(12))) :: awiderpoint

I kind states that this type parameter behaves as a kind
I And it works as kind does for intrinsic types

More Derived Type Parameters

I Structures may have array components
type segments(point_kind)
integer, kind :: point_kind = kind(0.0)
type(point(point_kind)), dimension(100) :: start_point
type(point(point_kind)), dimension(100) :: end_point

end type segments

I Our segments type looks a bit rigid, doesn’t it?

I Derived type parameters come to rescue:
type segments(point_kind, n)
integer, kind :: point_kind = kind(0.0)
integer, len :: n
type(point(point_kind)), dimension(n) :: start_point
type(point(point_kind)), dimension(n) :: end_point

end type segments

type(segments(n=100)) :: ahundredsegments
type(segments(n=1000)) :: athousandsegments

Outline

Extending the Language
Derived Types
Operators Overloading
Parameterized Types
Extending Types, and Objects

Managing Memory

Conclusions

Objects

I So, we are able to define new types, and specialized
procedures and operators to use them

I This is what Computer Science priests term Object-Based
programming

I But point, position, and velocity have the same
components

I And that’s always true, whatever the space dimensions
I But they are conceptually (and dimensionally!) different things

I And particle, and atom share identical components

I And a ion would simply add a charge component

I Wouldn’t it be nice to ‘inherit’ from one type to another?

I Yeah, and easier to manage, too!
I And this is what CS priests call Object-Oriented programming,

and is so trendy!

Objects

I So, we are able to define new types, and specialized
procedures and operators to use them

I This is what Computer Science priests term Object-Based
programming

I But point, position, and velocity have the same
components

I And that’s always true, whatever the space dimensions
I But they are conceptually (and dimensionally!) different things

I And particle, and atom share identical components

I And a ion would simply add a charge component

I Wouldn’t it be nice to ‘inherit’ from one type to another?

I Yeah, and easier to manage, too!
I And this is what CS priests call Object-Oriented programming,

and is so trendy!

Objects

I So, we are able to define new types, and specialized
procedures and operators to use them

I This is what Computer Science priests term Object-Based
programming

I But point, position, and velocity have the same
components

I And that’s always true, whatever the space dimensions
I But they are conceptually (and dimensionally!) different things

I And particle, and atom share identical components

I And a ion would simply add a charge component

I Wouldn’t it be nice to ‘inherit’ from one type to another?

I Yeah, and easier to manage, too!
I And this is what CS priests call Object-Oriented programming,

and is so trendy!

Objects

I So, we are able to define new types, and specialized
procedures and operators to use them

I This is what Computer Science priests term Object-Based
programming

I But point, position, and velocity have the same
components

I And that’s always true, whatever the space dimensions
I But they are conceptually (and dimensionally!) different things

I And particle, and atom share identical components
I And a ion would simply add a charge component

I Wouldn’t it be nice to ‘inherit’ from one type to another?

I Yeah, and easier to manage, too!
I And this is what CS priests call Object-Oriented programming,

and is so trendy!

Objects

I So, we are able to define new types, and specialized
procedures and operators to use them

I This is what Computer Science priests term Object-Based
programming

I But point, position, and velocity have the same
components

I And that’s always true, whatever the space dimensions
I But they are conceptually (and dimensionally!) different things

I And particle, and atom share identical components
I And a ion would simply add a charge component

I Wouldn’t it be nice to ‘inherit’ from one type to another?
I Yeah, and easier to manage, too!
I And this is what CS priests call Object-Oriented programming,

and is so trendy!

Fortran 2003 extends Derived Types

type point
real :: x, y, z

end type point

type, extends(point) :: position
end type position

type, extends(point) :: velocity
end type velocity

type particle
type(position) :: r
type(velocity) :: v
real :: mass

end type particle

type, extends(particle) :: atom
integer :: an ! atomic number

end type atom

type, extends(atom) :: ion
integer :: charge ! in units of elementary charge

end type ion

I extends means that the new type has the same components,
and possibly more

I Now we still have to write procedures and operators, don’t we?

Handling inheritance

I A type extension includes an implicit component with the same
name and type as its parent type

I this can come in handy when the programmer wants to operate
on components specific to a parent type

type(ion) :: p ! declare p as a ion object

p%mass ! access mass component for p
p%atom%mass ! another way
p%atom%particle%mass ! ...

I We often say the child and parent types have a “is a”
relationship

I an atom “is” a particle
I but a particle is not an atom because the atomic component

may be found in atom but not in particle

Polymorphism in Fortran 2003

I Consider the case you have to evolve the position of a particle
according to a given velocity field

I atoms or ions may behave in the (nearly) same way wrt this
evolution

I and you do not want to write two (nearly) identical procedures
for the two types

I Polymorphic procedures are the right way
I i.e., procedures which can take one or more polymorphic

variables as arguments
I “polymorphic variable” = variable whose data type is dynamic at

runtime
I the class keyword allows F2003 programmers to create

polymorphic variables
I use it for dummy arguments (the simplest usage, not the only

one)

Procedure Polymorphism

subroutine setMass(p, m)
class(particle) :: p
real, intent(in) :: m
p%mass = m
end subroutine setMass

I The p dummy argument is polymorphic, based on the usage of
class(particle)

I The subroutine can operate on objects that satisfy the "is a"
particle relationship

I setMass can be called passing a particle, atom, ion, or any
future type extension of particle

type(particle) :: pa ! declare an instance of particle
type(atom) :: at ! declare an instance of atom
type(ion) :: io ! declare an instance of ion

call setMass(pa, mm) ! set the mass for a particle
call setMass(at, mm) ! set the mass for an atom
call setMass(io, mm) ! set the mass for a ion

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy

I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy

I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy

I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type
subroutine initialize(p, mm, rr, vv, aan, ccharge)
class(particle) :: p
real :: mm
type(position) :: rr
type(velocity) :: vv
integer, optional :: aan, ccharge
p%mass = mm
p%r = rr
p%v = vv
select type (p)
type is (particle)

! no further initialization required
class is (atom) ! atom or extensions (except ion)

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
class is (ion) ! ion or extensions

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
if (present(ccharge)) then

p%charge = ccharge
else

p%charge = 0
endif

class default ! give error for unexpected/unsupported type
stop ’initialize: unexpected type for p object!’

end select
end subroutine initialize

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type
subroutine initialize(p, mm, rr, vv, aan, ccharge)
class(particle) :: p
real :: mm
type(position) :: rr
type(velocity) :: vv
integer, optional :: aan, ccharge
p%mass = mm
p%r = rr
p%v = vv
select type (p)
type is (particle)

! no further initialization required
class is (atom) ! atom or extensions (except ion)

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
class is (ion) ! ion or extensions

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
if (present(ccharge)) then

p%charge = ccharge
else

p%charge = 0
endif

class default ! give error for unexpected/unsupported type
stop ’initialize: unexpected type for p object!’

end select
end subroutine initialize

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type

I By default, only those components found in the declared
type of an object are accessible

I e.g., only mass, r, v are accessible for p declared as
class(particle)

I To access the components of the dynamic type, the select
type construct is required

I and optional arguments come in handy
I There are two styles of type checks that we can perform

I type is: satisfied if the dynamic type of the object is the same
as the type specified in parentheses

I class is: satisfied if the dynamic type of the object is the
same or an extension of the specified type in parentheses

I Best practice: add a class default branch and print error
when p is not an extension of particle type

I an empty type is (particle) branch may be required to
avoid getting error when p is only a particle

Selecting type
subroutine initialize(p, mm, rr, vv, aan, ccharge)
class(particle) :: p
real :: mm
type(position) :: rr
type(velocity) :: vv
integer, optional :: aan, ccharge
p%mass = mm
p%r = rr
p%v = vv
select type (p)
type is (particle)

! no further initialization required
class is (atom) ! atom or extensions (except ion)

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
class is (ion) ! ion or extensions

if (present(aan)) then
p%an = aan

else
p%an = 1

endif
if (present(ccharge)) then

p%charge = ccharge
else

p%charge = 0
endif

class default ! give error for unexpected/unsupported type
stop ’initialize: unexpected type for p object!’

end select
end subroutine initialize

Type-bound procedures
I Objects in Fortran 2003

I A Fortran 90/95 module can be viewed as an object because it
can encapsulate both data and procedures

I But, derived types in F2003 are considered objects because
they now can encapsulate data as well as procedures

I Modules and types work together...
I Procedures encapsulated in a derived type are called

type-bound procedures (“methods” in OO jargon)

type particle
type(position) :: r
type(velocity) :: v
real :: mass
contains

procedure :: initialize => initialize_particle
end type particle

I initialize_particle is the name of the underlying
procedure to be implemented

I Explicit interface is required: wrap in a module!

Modules, Types and Objects

I Employing modules and types to design objects

module particle_mod
type particle

type(position) :: r
type(velocity) :: v
real :: mass

contains
procedure :: initialize => initialize_particle

end type particle
type, extends(particle) :: atom

...
end type atom
type, extends(atom) :: ion

...
end type ion

contains
! insert the implementation or at least the interface of initialize_particle
subroutine initialize_particle(p, mm, rr, vv, aan, ccharge)
class(particle) :: p
...
end subroutine initialize_particle

end module particle_mod

Using class
I initialize is the name to be used to invoke the

type bound procedure
use particle_mod
type(particle) :: p ! declare an instance of particle
call p%initialize(mas, pos, vel) ! initialize particle

I What about the first dummy argument of initialize?
I it is known as the passed-object dummy argument
I must be declared class and of the same type as the derived

type that defined the type-bound procedure
I by default, it is the first dummy argument in the type-bound

procedure: it receives the object that invoked the type-bound
procedure

I It is possible to pass another argument in place of the first one

procedure, pass(p) :: initialize

I ...or to avoid passing it at all

procedure, nopass :: initialize

Inheritance and TBP

I A child type inherits or reuses components from their parent or
ancestor types: this applies to both data and procedures

type(particle) :: pa ! declare an instance of particle
type(atom) :: at ! declare an instance of atom
type(ion) :: io ! declare an instance of ion
call pa%initialize(mas, pos, vel) ! initialize a particle
call at%initialize(mas, pos, vel, anu) ! initialize an atom
call io%initialize(mas, pos, vel, anu, cha) ! initialize a ion

I initialize behaves accordingly to the passed arguments,
i.e. using optional and select type features

I Sometimes, another approach may be more appropriate:
overriding!

Overriding TBP

module particle_mod
type particle

type(position) :: r
type(velocity) :: v
real :: mass
contains

procedure :: initialize => initialize_particle
end type particle
type, extends(particle) :: atom

...
contains

procedure :: initialize => initialize_atom
end type atom
type, extends(atom) :: ion

...
end type ion
contains
! insert the implementation or at least the interface of initialize
subroutine initialize_particle(p, mm, rr, vv, aan, cch)
class(particle) :: p
...
end subroutine initialize_particle
subroutine initialize_atom(p, mm, rr, vv, aan, cch)
class(atom) :: p
...
end subroutine initialize_atom
end module particle_mod

Override with care
type(particle) :: pa ! declare an instance of particle
type(atom) :: at ! declare an instance of atom
type(ion) :: io ! declare an instance of ion
call pa%initialize(mas, pos, vel) ! calls initialize_particle
call at%initialize(mas, pos, vel, anu) ! calls initialize_atom
call io%initialize(mas, pos, vel, anu, cha) ! calls initialize_atom

I Beware: an overriding type-bound procedure must have
exactly the same interface as the overridden procedure except
for the passed-object dummy argument which must be
class(new-type)

I optional arguments may hide useless arguments

I Of course, it is still possible to explicitly invoke the version
defined by a parent type instead of the overrided one

I And it is possible to prevent any type extensions from
overriding a particular type-bound procedure

procedure, non_overridable :: initialize

Overriding TBP

module particle_mod
type particle

type(position) :: r
type(velocity) :: v
real :: mass
contains

procedure :: initialize => initialize_particle
end type particle
type, extends(particle) :: atom

...
contains

procedure :: initialize => initialize_atom
end type atom
type, extends(atom) :: ion

...
end type ion
contains
! insert the implementation or at least the interface of initialize
subroutine initialize_particle(p, mm, rr, vv, aan, cch)
class(particle) :: p
...
end subroutine initialize_particle
subroutine initialize_atom(p, mm, rr, vv, aan, cch)
class(atom) :: p
...
end subroutine initialize_atom
end module particle_mod

Override with care
type(particle) :: pa ! declare an instance of particle
type(atom) :: at ! declare an instance of atom
type(ion) :: io ! declare an instance of ion
call pa%initialize(mas, pos, vel) ! calls initialize_particle
call at%initialize(mas, pos, vel, anu) ! calls initialize_atom
call io%initialize(mas, pos, vel, anu, cha) ! calls initialize_atom

I Beware: an overriding type-bound procedure must have
exactly the same interface as the overridden procedure except
for the passed-object dummy argument which must be
class(new-type)

I optional arguments may hide useless arguments
I Of course, it is still possible to explicitly invoke the version

defined by a parent type instead of the overrided one

I And it is possible to prevent any type extensions from
overriding a particular type-bound procedure

procedure, non_overridable :: initialize

Override with care
type(particle) :: pa ! declare an instance of particle
type(atom) :: at ! declare an instance of atom
type(ion) :: io ! declare an instance of ion
call pa%initialize(mas, pos, vel) ! calls initialize_particle
call at%initialize(mas, pos, vel, anu) ! calls initialize_atom
call io%initialize(mas, pos, vel, anu, cha) ! calls initialize_atom

I Beware: an overriding type-bound procedure must have
exactly the same interface as the overridden procedure except
for the passed-object dummy argument which must be
class(new-type)

I optional arguments may hide useless arguments
I Of course, it is still possible to explicitly invoke the version

defined by a parent type instead of the overrided one
I And it is possible to prevent any type extensions from

overriding a particular type-bound procedure

procedure, non_overridable :: initialize

Hide it!

I Information hiding allows the programmer to view an object
and its procedures as a “black box”

I procedure overriding is a first example of information hiding,
initialize has different “hidden” implementations depending
on the calling object

I Hiding data:

I safer against data corruption: the user may modify data only
trough adequate procedures

I changes to the data structure will not affect codes using our
class provided that we don’t change interfaces

I Hiding procedures: e.g., prevent users from calling low-level
procedures

Hide it!

I Information hiding allows the programmer to view an object
and its procedures as a “black box”

I procedure overriding is a first example of information hiding,
initialize has different “hidden” implementations depending
on the calling object

I Hiding data:
I safer against data corruption: the user may modify data only

trough adequate procedures
I changes to the data structure will not affect codes using our

class provided that we don’t change interfaces

I Hiding procedures: e.g., prevent users from calling low-level
procedures

Hide it!

I Information hiding allows the programmer to view an object
and its procedures as a “black box”

I procedure overriding is a first example of information hiding,
initialize has different “hidden” implementations depending
on the calling object

I Hiding data:
I safer against data corruption: the user may modify data only

trough adequate procedures
I changes to the data structure will not affect codes using our

class provided that we don’t change interfaces
I Hiding procedures: e.g., prevent users from calling low-level

procedures

public and private
I Fortran 2003 adds “private” and “public” keywords for

derived types
I beware of the placement of the keywords, in modules and/or in

types: confused?
module particle_mod
private ! hide the implementation of type-bound procedures
public :: average_position_particle ! allow access to particle averaging position
type, public :: particle

private ! hide the data underlying details
type(position) :: r
type(velocity) :: v
real :: mass

contains
private ! hide the type bound procedures by default

procedure :: check_init => check_init_particle ! private type-bound procedure
procedure, public :: initialize => initialize_particle ! allow access to TBP

end type particle
contains
! implementation of type-bound procedures
subroutine initialize_particle(p, mm, rr, vv, aan, cch)
...

subroutine check_init_particle(p)
...

subroutine average_position_particle(p1,p2)
class(particle) :: p1, p2
...
end subroutine average_position_particle
end module particle_mod

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism

I Typed allocation
I Unlimited Polymorphic Objects

I you may encounter class(*)

I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures

I Abstract types and deferred bindings
I Finalization

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism
I Typed allocation

I Unlimited Polymorphic Objects

I you may encounter class(*)

I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures

I Abstract types and deferred bindings
I Finalization

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism
I Typed allocation
I Unlimited Polymorphic Objects

I you may encounter class(*)

I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures

I Abstract types and deferred bindings
I Finalization

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism
I Typed allocation
I Unlimited Polymorphic Objects

I you may encounter class(*)
I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures

I Abstract types and deferred bindings
I Finalization

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism
I Typed allocation
I Unlimited Polymorphic Objects

I you may encounter class(*)
I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures
I Abstract types and deferred bindings

I Finalization

Fortran 2003 Object Oriented Full Glory

I Data Polymorphism:
I as how polymorphic dummy arguments form the basis to

procedure polymorphism...
I ...polymorphic non-dummy variables form the basis to data

polymorphism
I Typed allocation
I Unlimited Polymorphic Objects

I you may encounter class(*)
I Generic-type bound procedures

I like generic interfaces, but for type-bound procedures
I Abstract types and deferred bindings
I Finalization

Outline

Extending the Language

Managing Memory
Dynamic Memory Allocation
Fortran Pointers
Sketchy Ideas on Data Structures
Bridging the Gap with C

Conclusions

A PDE Problem

I Let’s imagine we have to solve a PDE

I On a dense, Cartesian, uniform grid

I Mesh axes are parallel to coordinate ones
I Steps along each direction have the same size
I And we have some discretization schemes in time and space to

solve for variables at each point

A PDE Problem

I Let’s imagine we have to solve a PDE
I On a dense, Cartesian, uniform grid

I Mesh axes are parallel to coordinate ones
I Steps along each direction have the same size
I And we have some discretization schemes in time and space to

solve for variables at each point

A Rigid Solution
integer, parameter :: NX = 200
integer, parameter :: NY = 450
integer, parameter :: NZ = 320

integer, parameter :: rk = selected_real_kind(12)

real(rk) :: deltax ! Grid steps
real(rk) :: deltay
real(rk) :: deltaz

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

I We could write something like that in a module, and use it
everywhere

I But it has annoying consequences

I Recompile each time grid resolution changes
I A slow process, for big programs
I And error prone, as we may forget about

I Couldn’t we size data structures according to user input?

A Rigid Solution
integer, parameter :: NX = 200
integer, parameter :: NY = 450
integer, parameter :: NZ = 320

integer, parameter :: rk = selected_real_kind(12)

real(rk) :: deltax ! Grid steps
real(rk) :: deltay
real(rk) :: deltaz

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

I We could write something like that in a module, and use it
everywhere

I But it has annoying consequences
I Recompile each time grid resolution changes
I A slow process, for big programs
I And error prone, as we may forget about

I Couldn’t we size data structures according to user input?

A Rigid Solution
integer, parameter :: NX = 200
integer, parameter :: NY = 450
integer, parameter :: NZ = 320

integer, parameter :: rk = selected_real_kind(12)

real(rk) :: deltax ! Grid steps
real(rk) :: deltay
real(rk) :: deltaz

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

I We could write something like that in a module, and use it
everywhere

I But it has annoying consequences
I Recompile each time grid resolution changes
I A slow process, for big programs
I And error prone, as we may forget about

I Couldn’t we size data structures according to user input?

A Recurrent Issue: SoA or AoS
I type flow

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

end type

type(flow) :: f

or
type flow
real(rk) :: u,v,w,p

end type

type(flow) :: f(NX,NY,NZ)

Which one is best?

I Both have merits
I The choice strongly depends on the computer architecture

I for cache-based CPUs the choice is difficult (it depends on the
order of the accesses of your numerical scheme)

I but using GPUs or MICs the first one is usually better!

A Recurrent Issue: SoA or AoS
I type flow

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

end type

type(flow) :: f

or
type flow
real(rk) :: u,v,w,p

end type

type(flow) :: f(NX,NY,NZ)

Which one is best?
I Both have merits

I The choice strongly depends on the computer architecture

I for cache-based CPUs the choice is difficult (it depends on the
order of the accesses of your numerical scheme)

I but using GPUs or MICs the first one is usually better!

A Recurrent Issue: SoA or AoS
I type flow

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

end type

type(flow) :: f

or
type flow
real(rk) :: u,v,w,p

end type

type(flow) :: f(NX,NY,NZ)

Which one is best?
I Both have merits
I The choice strongly depends on the computer architecture

I for cache-based CPUs the choice is difficult (it depends on the
order of the accesses of your numerical scheme)

I but using GPUs or MICs the first one is usually better!

A Recurrent Issue: SoA or AoS
I type flow

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

end type

type(flow) :: f

or
type flow
real(rk) :: u,v,w,p

end type

type(flow) :: f(NX,NY,NZ)

Which one is best?
I Both have merits
I The choice strongly depends on the computer architecture

I for cache-based CPUs the choice is difficult (it depends on the
order of the accesses of your numerical scheme)

I but using GPUs or MICs the first one is usually better!

A Recurrent Issue: SoA or AoS
I type flow

real(rk) :: u(NX,NY,NZ)
real(rk) :: v(NX,NY,NZ)
real(rk) :: w(NX,NY,NZ)
real(rk) :: p(NX,NY,NZ)

end type

type(flow) :: f

or
type flow
real(rk) :: u,v,w,p

end type

type(flow) :: f(NX,NY,NZ)

Which one is best?
I Both have merits
I The choice strongly depends on the computer architecture

I for cache-based CPUs the choice is difficult (it depends on the
order of the accesses of your numerical scheme)

I but using GPUs or MICs the first one is usually better!

Looking for Flexibility

subroutine my_pde_solver(nx, ny, nz)
integer, intent(in) :: nx, ny, nz

integer, parameter :: rk = selected_real_kind(12)
real(rk):: deltax, deltay, deltaz ! Grid steps

real(rk) :: u(nx,ny,nz)
real(rk) :: v(nx,ny,nz)
real(rk) :: w(nx,ny,nz)
real(rk) :: p(nx,ny,nz)

I We could think of declaring automatic arrays inside a
subroutine

I This is unwise

I Automatic arrays are usually allocated on the process stack
I Which is a precious resource
I And limited in most system configurations

Looking for Flexibility

subroutine my_pde_solver(nx, ny, nz)
integer, intent(in) :: nx, ny, nz

integer, parameter :: rk = selected_real_kind(12)
real(rk):: deltax, deltay, deltaz ! Grid steps

real(rk) :: u(nx,ny,nz)
real(rk) :: v(nx,ny,nz)
real(rk) :: w(nx,ny,nz)
real(rk) :: p(nx,ny,nz)

I We could think of declaring automatic arrays inside a
subroutine

I This is unwise
I Automatic arrays are usually allocated on the process stack
I Which is a precious resource
I And limited in most system configurations

A Bad, Old, Common approach
program pde_solve

parameter (MAXNX=400, MAXNY=400, MAXNZ=400)
parameter (MAXSIZE=MAXNX*MAXNX*MAXNZ)

real*8 u(MAXSIZE),v(MAXSIZE),w(MAXSIZE),p(MAXSIZE)

common u,v,w,p
! ...

call my_pde_solver(nx,ny,nz,u,v,w,p)
! ...
end

subroutine my_pde_solver(nx,ny,nz,u,v,w,p)
real*8 u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz)

!...

I We could give a different shape to dummy arguments

I But this only works if interface is implicit

I Which is dangerous

I Maximum problem size still program limited: nx*ny*nz must
be less than MAXSIZE

A Bad, Old, Common approach
program pde_solve

parameter (MAXNX=400, MAXNY=400, MAXNZ=400)
parameter (MAXSIZE=MAXNX*MAXNX*MAXNZ)

real*8 u(MAXSIZE),v(MAXSIZE),w(MAXSIZE),p(MAXSIZE)

common u,v,w,p
! ...

call my_pde_solver(nx,ny,nz,u,v,w,p)
! ...
end

subroutine my_pde_solver(nx,ny,nz,u,v,w,p)
real*8 u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz)

!...

I We could give a different shape to dummy arguments
I But this only works if interface is implicit

I Which is dangerous

I Maximum problem size still program limited: nx*ny*nz must
be less than MAXSIZE

A Bad, Old, Common approach
program pde_solve

parameter (MAXNX=400, MAXNY=400, MAXNZ=400)
parameter (MAXSIZE=MAXNX*MAXNX*MAXNZ)

real*8 u(MAXSIZE),v(MAXSIZE),w(MAXSIZE),p(MAXSIZE)

common u,v,w,p
! ...

call my_pde_solver(nx,ny,nz,u,v,w,p)
! ...
end

subroutine my_pde_solver(nx,ny,nz,u,v,w,p)
real*8 u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz)

!...

I We could give a different shape to dummy arguments
I But this only works if interface is implicit

I Which is dangerous
I Maximum problem size still program limited: nx*ny*nz must

be less than MAXSIZE

Removing Limitations

I Being program limited is annoying

I It’s much better to accommodate to any user specified problem
size

I Right, as long as there is enough memory
I But if memory is not enough, not our fault
I It’s computer or user’s fault

I And there are many complex kinds of computations
I Those in which memory need cannot be foreseen in advance
I Those in which arrays do not fit
I Those in which very complex data structures are needed

Outline

Extending the Language

Managing Memory
Dynamic Memory Allocation
Fortran Pointers
Sketchy Ideas on Data Structures
Bridging the Gap with C

Conclusions

Enter Allocatable Arrays

integer, parameter :: rk = selected_real_kind(12)

real(rk), dimension(:,:,:), allocatable :: u,v,w,p

allocate(u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz))

I When allocatable arrays are declared, only their rank is
specified (dimension(:,:,:))

I allocate statement performs actual memory allocation and
defines extents

I On failure, program stops
I But if STAT=integer_var is specified, integer_var is set to

zero on success and to a positive value on failure, and execution
doesn’t stop

I Best practice: use STAT= and, on failure, provide information
to users before terminating execution

Enter Allocatable Arrays

integer, parameter :: rk = selected_real_kind(12)

real(rk), dimension(:,:,:), allocatable :: u,v,w,p

allocate(u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz))

I When allocatable arrays are declared, only their rank is
specified (dimension(:,:,:))

I allocate statement performs actual memory allocation and
defines extents

I On failure, program stops
I But if STAT=integer_var is specified, integer_var is set to

zero on success and to a positive value on failure, and execution
doesn’t stop

I Best practice: use STAT= and, on failure, provide information
to users before terminating execution

Enter Allocatable Arrays

integer, parameter :: rk = selected_real_kind(12)

real(rk), dimension(:,:,:), allocatable :: u,v,w,p

allocate(u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz))

I When allocatable arrays are declared, only their rank is
specified (dimension(:,:,:))

I allocate statement performs actual memory allocation and
defines extents

I On failure, program stops

I But if STAT=integer_var is specified, integer_var is set to
zero on success and to a positive value on failure, and execution
doesn’t stop

I Best practice: use STAT= and, on failure, provide information
to users before terminating execution

Enter Allocatable Arrays

integer, parameter :: rk = selected_real_kind(12)

real(rk), dimension(:,:,:), allocatable :: u,v,w,p

allocate(u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz))

I When allocatable arrays are declared, only their rank is
specified (dimension(:,:,:))

I allocate statement performs actual memory allocation and
defines extents

I On failure, program stops
I But if STAT=integer_var is specified, integer_var is set to

zero on success and to a positive value on failure, and execution
doesn’t stop

I Best practice: use STAT= and, on failure, provide information
to users before terminating execution

Enter Allocatable Arrays

integer, parameter :: rk = selected_real_kind(12)

real(rk), dimension(:,:,:), allocatable :: u,v,w,p

allocate(u(nx,ny,nz),v(nx,ny,nz),w(nx,ny,nz),p(nx,ny,nz))

I When allocatable arrays are declared, only their rank is
specified (dimension(:,:,:))

I allocate statement performs actual memory allocation and
defines extents

I On failure, program stops
I But if STAT=integer_var is specified, integer_var is set to

zero on success and to a positive value on failure, and execution
doesn’t stop

I Best practice: use STAT= and, on failure, provide information
to users before terminating execution

Freeing Memory

I Where all these ‘dynamic allocated memory’ comes from?
I From an internal area, often termed “memory heap”
I When that is exhausted, OS is asked to give the process more

memory
I And if OS is short of memory, or some configuration limit is

exhausted...

I When you are done with an allocatable, use deallocate to
claim memory back

I Allocatable which are local to a procedure are automatically
deallocated on return

I But it’s implementation defined what happens to allocatable
private to a module

I Best practice: always deallocate when you are done with an
allocatable array

Freeing Memory

I Where all these ‘dynamic allocated memory’ comes from?
I From an internal area, often termed “memory heap”
I When that is exhausted, OS is asked to give the process more

memory
I And if OS is short of memory, or some configuration limit is

exhausted...
I When you are done with an allocatable, use deallocate to

claim memory back
I Allocatable which are local to a procedure are automatically

deallocated on return
I But it’s implementation defined what happens to allocatable

private to a module

I Best practice: always deallocate when you are done with an
allocatable array

Freeing Memory

I Where all these ‘dynamic allocated memory’ comes from?
I From an internal area, often termed “memory heap”
I When that is exhausted, OS is asked to give the process more

memory
I And if OS is short of memory, or some configuration limit is

exhausted...
I When you are done with an allocatable, use deallocate to

claim memory back
I Allocatable which are local to a procedure are automatically

deallocated on return
I But it’s implementation defined what happens to allocatable

private to a module
I Best practice: always deallocate when you are done with an

allocatable array

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error

I In some cases (error recovery) use logical allocated()
function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs

I Only worth for big arrays that would not fit program stack

Three Common Mistakes

I Trying to allocate or deallocate an array that was not
allocatable

I Compiler will catch it

I Trying to allocate or deallocate an array that was not
deallocated or allocated respectively

I Compiler can’t catch it, runtime error
I In some cases (error recovery) use logical allocated()

function to check

I Mistaking allocatables for a substitute to procedure automatic
arrays

I Dynamic allocation incurs costs
I Only worth for big arrays that would not fit program stack

Automatic allocation (F2003)

I When assigning an array value to a not allocated allocatable
array, the allocatable array gets automatically allocated

I This simplifies the use of array functions which return a
variable-sized result

real, dimension(100) :: x
real, allocatable, dimension(:) :: all_values, nonzero_values

! size is 100, small benefit wrt explicit allocation
all_values = x

! size depends on x values, AA is a great benefit now
nonzero_values = pack(x,x/=0)

I Also useful when dealing with allocatable components in a
derived type

I avoids separate coding for each allocatable component

Automatic allocation (F2003)

I When assigning an array value to a not allocated allocatable
array, the allocatable array gets automatically allocated

I This simplifies the use of array functions which return a
variable-sized result

real, dimension(100) :: x
real, allocatable, dimension(:) :: all_values, nonzero_values

! size is 100, small benefit wrt explicit allocation
all_values = x

! size depends on x values, AA is a great benefit now
nonzero_values = pack(x,x/=0)

I Also useful when dealing with allocatable components in a
derived type

I avoids separate coding for each allocatable component

Automatic allocation (F2003) / 2
I Automatic re-allocation is performed when the shape of the

assignment does not fit, e.g.
a = (/ a , 5 , 6 /)

I Beware: it may dramatically affect performances!
I if you don’t need it, disable it using compiler options

I AA naturally extends to characters strongly increasing their
adaptability

I when declaring characters, the len value declaration may be
postponed (deferred type parameter)

I during assignment the Right Hand Side passes its len on the
deferred-length string (under the hood, automatic re-allocation
may occur)

I explicit allocation is possible but often worthless, required when
reading from input, though

character(len=:), allocatable :: str
character(len=50) :: fixed_str
allocate(character(80) :: str) ! allocates str using len=80
str = fixed_str ! re-allocates str using len=50

Outline

Extending the Language

Managing Memory
Dynamic Memory Allocation
Fortran Pointers
Sketchy Ideas on Data Structures
Bridging the Gap with C

Conclusions

Enter Fortran Pointers
I Fortran pointers are aliases to other objects
I Declared like regular variables, with attribute pointer
I Associated to actual objects with pointer assignment =>
I To be associated with a pointer, variables must have the
target attribute

I But compilers are often liberal (sloppy?) on this
I Disassociated by actual objects with nullify statement or by

pointer assignment of null()

real, dimension(:,:,:), pointer :: r

real, target :: a(5,15,6), b(3,22,7)

r => a ! pointer assignment
! now r is an alias of a

r(1,1,1) = 2. ! usual assignment
! now both r(1,1,1) and a(1,1,1) values are 2.

nullify(r) ! a is still alive

r => b ! now r is an alias of b
r => null()

More Fortran Pointers

I Pointers may also alias subobjects
real, dimension(:,:,:), pointer :: r
type(velocity), pointer :: v
real, target :: a(5,15,6)
type(atom), target :: oneatom

r => a(2:4,1:10,3:6) ! r(1,1,1) aliases a(2,1,3)
! r(3,10,4) aliases a(4,10,6)

v => oneatom%velocity

I The reverse in not true: it is not possible to explicitly associate
sections of pointers

I But lower bounds may be specified (from F2003)
s(2:,:,:) => a(2:4,1:10,3:6) ! s(2,1,1) aliases a(2,1,3)

I A target of a multidimensional array pointer may be
one-dimensional
a(1:n,1:n) => a_linear(1:n*n)

More Fortran Pointers

I Pointers may also alias subobjects
real, dimension(:,:,:), pointer :: r
type(velocity), pointer :: v
real, target :: a(5,15,6)
type(atom), target :: oneatom

r => a(2:4,1:10,3:6) ! r(1,1,1) aliases a(2,1,3)
! r(3,10,4) aliases a(4,10,6)

v => oneatom%velocity

I The reverse in not true: it is not possible to explicitly associate
sections of pointers

I But lower bounds may be specified (from F2003)
s(2:,:,:) => a(2:4,1:10,3:6) ! s(2,1,1) aliases a(2,1,3)

I A target of a multidimensional array pointer may be
one-dimensional
a(1:n,1:n) => a_linear(1:n*n)

More Fortran Pointers

I Pointers may also alias subobjects
real, dimension(:,:,:), pointer :: r
type(velocity), pointer :: v
real, target :: a(5,15,6)
type(atom), target :: oneatom

r => a(2:4,1:10,3:6) ! r(1,1,1) aliases a(2,1,3)
! r(3,10,4) aliases a(4,10,6)

v => oneatom%velocity

I The reverse in not true: it is not possible to explicitly associate
sections of pointers

I But lower bounds may be specified (from F2003)
s(2:,:,:) => a(2:4,1:10,3:6) ! s(2,1,1) aliases a(2,1,3)

I A target of a multidimensional array pointer may be
one-dimensional
a(1:n,1:n) => a_linear(1:n*n)

More Fortran Pointers

I Pointers may also alias subobjects
real, dimension(:,:,:), pointer :: r
type(velocity), pointer :: v
real, target :: a(5,15,6)
type(atom), target :: oneatom

r => a(2:4,1:10,3:6) ! r(1,1,1) aliases a(2,1,3)
! r(3,10,4) aliases a(4,10,6)

v => oneatom%velocity

I The reverse in not true: it is not possible to explicitly associate
sections of pointers

I But lower bounds may be specified (from F2003)
s(2:,:,:) => a(2:4,1:10,3:6) ! s(2,1,1) aliases a(2,1,3)

I A target of a multidimensional array pointer may be
one-dimensional
a(1:n,1:n) => a_linear(1:n*n)

Different targets

I A pointer may be scalar, too
real, target :: s
real, pointer :: p
...
p => s

I The target in a pointer assignment may be a pointer itself
I In that case, the new association is with that pointer’s target

and is not affected by any subsequent changes to its pointer
association status

I the following code will leave a still pointing to c
b => c ! c has the target attribute
a => b
nullify(b)

Different targets

I A pointer may be scalar, too
real, target :: s
real, pointer :: p
...
p => s

I The target in a pointer assignment may be a pointer itself

I In that case, the new association is with that pointer’s target
and is not affected by any subsequent changes to its pointer
association status

I the following code will leave a still pointing to c
b => c ! c has the target attribute
a => b
nullify(b)

Different targets

I A pointer may be scalar, too
real, target :: s
real, pointer :: p
...
p => s

I The target in a pointer assignment may be a pointer itself
I In that case, the new association is with that pointer’s target

and is not affected by any subsequent changes to its pointer
association status

I the following code will leave a still pointing to c
b => c ! c has the target attribute
a => b
nullify(b)

Different targets

I A pointer may be scalar, too
real, target :: s
real, pointer :: p
...
p => s

I The target in a pointer assignment may be a pointer itself
I In that case, the new association is with that pointer’s target

and is not affected by any subsequent changes to its pointer
association status

I the following code will leave a still pointing to c
b => c ! c has the target attribute
a => b
nullify(b)

Allocating Pointers
I If you allocate a pointer, an unnamed object of the pointee

type is created, and associated with the pointer itself
real, dimension(:,:,:), pointer :: r
type(atom_list), pointer :: first

allocate(r(5,15,6))
! now r refers an unnamed array allocated on the heap

allocate(first)
! now first refers to an unnamed type(atom_list) variable,
! allocated on the heap

I Unlike allocatables, once allocated the pointers may be
migrated to other targets

I The unnamed objects created when allocating a pointer are
possible targets for other pointers

I You can use pointers in place of allocatables, but, unless
necessary, prefer allocatable: the compiler usually
optimizes better

I You can deallocate the pointee by specifying the pointer in a
deallocate statement

Allocating Pointers
I If you allocate a pointer, an unnamed object of the pointee

type is created, and associated with the pointer itself
real, dimension(:,:,:), pointer :: r
type(atom_list), pointer :: first

allocate(r(5,15,6))
! now r refers an unnamed array allocated on the heap

allocate(first)
! now first refers to an unnamed type(atom_list) variable,
! allocated on the heap

I Unlike allocatables, once allocated the pointers may be
migrated to other targets

I The unnamed objects created when allocating a pointer are
possible targets for other pointers

I You can use pointers in place of allocatables, but, unless
necessary, prefer allocatable: the compiler usually
optimizes better

I You can deallocate the pointee by specifying the pointer in a
deallocate statement

Allocating Pointers
I If you allocate a pointer, an unnamed object of the pointee

type is created, and associated with the pointer itself
real, dimension(:,:,:), pointer :: r
type(atom_list), pointer :: first

allocate(r(5,15,6))
! now r refers an unnamed array allocated on the heap

allocate(first)
! now first refers to an unnamed type(atom_list) variable,
! allocated on the heap

I Unlike allocatables, once allocated the pointers may be
migrated to other targets

I The unnamed objects created when allocating a pointer are
possible targets for other pointers

I You can use pointers in place of allocatables, but, unless
necessary, prefer allocatable: the compiler usually
optimizes better

I You can deallocate the pointee by specifying the pointer in a
deallocate statement

Allocating Pointers
I If you allocate a pointer, an unnamed object of the pointee

type is created, and associated with the pointer itself
real, dimension(:,:,:), pointer :: r
type(atom_list), pointer :: first

allocate(r(5,15,6))
! now r refers an unnamed array allocated on the heap

allocate(first)
! now first refers to an unnamed type(atom_list) variable,
! allocated on the heap

I Unlike allocatables, once allocated the pointers may be
migrated to other targets

I The unnamed objects created when allocating a pointer are
possible targets for other pointers

I You can use pointers in place of allocatables, but, unless
necessary, prefer allocatable: the compiler usually
optimizes better

I You can deallocate the pointee by specifying the pointer in a
deallocate statement

Allocating Pointers
I If you allocate a pointer, an unnamed object of the pointee

type is created, and associated with the pointer itself
real, dimension(:,:,:), pointer :: r
type(atom_list), pointer :: first

allocate(r(5,15,6))
! now r refers an unnamed array allocated on the heap

allocate(first)
! now first refers to an unnamed type(atom_list) variable,
! allocated on the heap

I Unlike allocatables, once allocated the pointers may be
migrated to other targets

I The unnamed objects created when allocating a pointer are
possible targets for other pointers

I You can use pointers in place of allocatables, but, unless
necessary, prefer allocatable: the compiler usually
optimizes better

I You can deallocate the pointee by specifying the pointer in a
deallocate statement

Array of pointers

I Let us clarify
real, dimension(:), pointer :: p

does not declare an array of pointers, but a pointer capable of
aliasing an array

I What about array of pointers?

I as such are not allowed in Fortran, but the equivalent effect can
be achieved by creating a type containing a pointer component
and building an array of this type

I For example, a lower-triangular matrix may be held using a
pointer for each row

type row
real, dimension(:), pointer :: r

end type row
type(row), dimension(n) :: t
do i=1,n
allocate(t(i)%r(1:i)) ! Allocate row i of length i

enddo

Array of pointers

I Let us clarify
real, dimension(:), pointer :: p

does not declare an array of pointers, but a pointer capable of
aliasing an array

I What about array of pointers?

I as such are not allowed in Fortran, but the equivalent effect can
be achieved by creating a type containing a pointer component
and building an array of this type

I For example, a lower-triangular matrix may be held using a
pointer for each row

type row
real, dimension(:), pointer :: r

end type row
type(row), dimension(n) :: t
do i=1,n
allocate(t(i)%r(1:i)) ! Allocate row i of length i

enddo

Array of pointers

I Let us clarify
real, dimension(:), pointer :: p

does not declare an array of pointers, but a pointer capable of
aliasing an array

I What about array of pointers?
I as such are not allowed in Fortran, but the equivalent effect can

be achieved by creating a type containing a pointer component
and building an array of this type

I For example, a lower-triangular matrix may be held using a
pointer for each row

type row
real, dimension(:), pointer :: r

end type row
type(row), dimension(n) :: t
do i=1,n
allocate(t(i)%r(1:i)) ! Allocate row i of length i

enddo

Array of pointers

I Let us clarify
real, dimension(:), pointer :: p

does not declare an array of pointers, but a pointer capable of
aliasing an array

I What about array of pointers?
I as such are not allowed in Fortran, but the equivalent effect can

be achieved by creating a type containing a pointer component
and building an array of this type

I For example, a lower-triangular matrix may be held using a
pointer for each row

type row
real, dimension(:), pointer :: r

end type row
type(row), dimension(n) :: t
do i=1,n
allocate(t(i)%r(1:i)) ! Allocate row i of length i

enddo

Lists!

I Structure components can be pointers

I And a pointer in a structure can point to a structure of the same
type:
type atom_list
type(atom) :: a
type(atom_list), pointer :: next

end type

which comes in handy to define complex data structures, like
lists

Lists!

I Structure components can be pointers
I And a pointer in a structure can point to a structure of the same

type:
type atom_list
type(atom) :: a
type(atom_list), pointer :: next

end type

which comes in handy to define complex data structures, like
lists

Very basic lists
I Declare two pointers to list elements (typically head and

current elements)
I Allocate the head and let the current pointer alias the head, too
I Fill the inner content of the list element
I To add an element to the end allocate the next component
I Let the current pointer be associated to this new element

type(atom_list), pointer :: first, current
allocate(first) ; first%next => null()
current => first ; current%a = 2
allocate(current%next)
current => current%next ; current%next => null() ; current%a = 3

I And if you want to access to an existing list, use associated
current => first
do while (associated(current))

print*,’List Element: ’,current%a
current => current%next

end do

BIG Mistakes with Pointers

I Referencing an undefined pointer (strange things may
happen, it may also seem to work)

I Good practice: initialize pointers to null()

I Referencing a nullified pointer

I Your program will fail
I Which is better than messing up with memory

I Changing association of an allocated pointer

I This is a memory leak, and programmers causing memory leaks
have really bad reputation

I real, dimension(:,:), pointer :: r, p
!...
allocate(r(n,m))
p => r
! ...
deallocate(r)
p(k,l) = p(k,l)+1

Now you’ll be in troubles with p, with really strange behavior

BIG Mistakes with Pointers

I Referencing an undefined pointer (strange things may
happen, it may also seem to work)

I Good practice: initialize pointers to null()
I Referencing a nullified pointer

I Your program will fail
I Which is better than messing up with memory

I Changing association of an allocated pointer

I This is a memory leak, and programmers causing memory leaks
have really bad reputation

I real, dimension(:,:), pointer :: r, p
!...
allocate(r(n,m))
p => r
! ...
deallocate(r)
p(k,l) = p(k,l)+1

Now you’ll be in troubles with p, with really strange behavior

BIG Mistakes with Pointers

I Referencing an undefined pointer (strange things may
happen, it may also seem to work)

I Good practice: initialize pointers to null()
I Referencing a nullified pointer

I Your program will fail
I Which is better than messing up with memory

I Changing association of an allocated pointer
I This is a memory leak, and programmers causing memory leaks

have really bad reputation

I real, dimension(:,:), pointer :: r, p
!...
allocate(r(n,m))
p => r
! ...
deallocate(r)
p(k,l) = p(k,l)+1

Now you’ll be in troubles with p, with really strange behavior

BIG Mistakes with Pointers

I Referencing an undefined pointer (strange things may
happen, it may also seem to work)

I Good practice: initialize pointers to null()
I Referencing a nullified pointer

I Your program will fail
I Which is better than messing up with memory

I Changing association of an allocated pointer
I This is a memory leak, and programmers causing memory leaks

have really bad reputation
I real, dimension(:,:), pointer :: r, p

!...
allocate(r(n,m))
p => r
! ...
deallocate(r)
p(k,l) = p(k,l)+1

Now you’ll be in troubles with p, with really strange behavior

Laplace Equation

I Discretization on Cartesian 2D grid with Dirichelet Boundary
Conditions

f (xi+1,j) + f (xi−1,j)− 2f (xi,j)+
f (xi,j+1) + f (xi,j−1)− 2f (xi,j) = 0 ∀xi,j ∈ (a,b)2

f (xi,j) = α(xi,j) ∀xi,j ∈ ∂[a,b]2

I Iterative advancement using Jacobi method
fn+1(xi,j) =

1
4 [fn(xi+1,j) + fn(xi−1,j)+

fn(xi,j+1) + fn(xi,j−1)] ∀n > 0
f0(xi,j) = 0 ∀xi,j ∈ (a,b)2

fn(xi,j) = α(xi,j) ∀xi,j ∈ ∂[a,b]2, ∀n > 0

Laplace: static implementation
program laplace

implicit none
integer, parameter :: dp=kind(1.d0), n = 100
integer :: maxIter = 100000, i, j, iter = 0
real(dp), dimension(0:n+1,0:n+1) :: T, Tnew
real(dp) :: tol = 1.d-4, var = 1.d0, top = 100.d0
T(0:n,0:n) = 0.d0
T(n+1,1:n) = (/ (i, i=1,n) /) * (top / (n+1))
T(1:n,n+1) = (/ (i, i=1,n) /) * (top / (n+1))
do while (var > tol .and. iter <= maxIter)

iter = iter + 1; var = 0.d0
do j = 1, n

do i = 1, n
Tnew(i,j) = 0.25d0*(T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))
var = max(var, abs(Tnew(i,j) - T(i,j)))

end do
end do
if (mod(iter,100)==0) &

write(*,"(a,i8,e12.4)") ’ iter, variation:’, iter, var
T(1:n,1:n) = Tnew(1:n,1:n)

end do
end program laplace

Laplace: static implementation
program laplace

implicit none
integer, parameter :: dp=kind(1.d0), n = 100
integer :: maxIter = 100000, i, j, iter = 0
real(dp), dimension(0:n+1,0:n+1) :: T, Tnew
real(dp) :: tol = 1.d-4, var = 1.d0, top = 100.d0
T(0:n,0:n) = 0.d0
T(n+1,1:n) = (/ (i, i=1,n) /) * (top / (n+1))
T(1:n,n+1) = (/ (i, i=1,n) /) * (top / (n+1))
do while (var > tol .and. iter <= maxIter)

iter = iter + 1; var = 0.d0
do j = 1, n

do i = 1, n
Tnew(i,j) = 0.25d0*(T(i-1,j) + T(i+1,j) + &

T(i,j-1) + T(i,j+1))
var = max(var, abs(Tnew(i,j) - T(i,j)))

end do
end do
if (mod(iter,100)==0) &

write(*,"(a,i8,e12.4)") ’ iter, variation:’, iter, var
T(1:n,1:n) = Tnew(1:n,1:n)

end do
end program laplace

Hands-on Session #2

I Modify the code using advanced Fortran features:
I array syntax
I allocatable arrays
I pointer arrays

I Try to list pros and cons of each approach

Laplace in Array-syntax

program laplace
implicit none
integer, parameter :: dp=kind(1.d0), n = 100
integer :: maxIter = 100000, i, j, iter = 0
real(dp), dimension(0:n+1,0:n+1) :: T, Tnew
real(dp) :: tol = 1.d-4, var = 1.d0, top = 100.d0
T(0:n,0:n) = 0.d0
T(n+1,1:n) = (/ (i, i=1,n) /) * (top / (n+1))
T(1:n,n+1) = (/ (i, i=1,n) /) * (top / (n+1))
do while (var > tol .and. iter <= maxIter)

iter = iter + 1
Tnew(1:n,1:n) = 0.25d0*(T(0:n-1,1:n) + T(2:n+1,1:n) + &

T(1:n,0:n-1) + T(1:n,2:n+1))
var = maxval(abs(Tnew(1:n,1:n) - T(1:n,1:n)))
T(1:n,1:n) = Tnew(1:n,1:n)
if (mod(iter,100)==0) write(*,"(a,i8,e12.4)") &

’ iter, variation:’, iter, var
end do

end program laplace

Laplace: dynamic allocation

program laplace
implicit none
integer, parameter :: dp=kind(1.d0)
integer :: n, maxIter, i, j, iter = 0
real (dp), dimension(:,:), allocatable :: T, Tnew
real (dp) :: tol, var = 1.d0, top = 100.d0
write(*,*) ’Enter mesh size, max iterations and tollerance:’
read(*,*) n, maxIter, tol
allocate (T(0:n+1,0:n+1), Tnew(0:n+1,0:n+1))
call init_and_set_bc(T, top, ’linear’)
do while (var > tol .and. iter <= maxIter)

iter = iter + 1
Tnew(1:n,1:n) = 0.25d0 * (T(0:n-1,1:n) + &

T(2:n+1,1:n) + T(1:n,0:n-1) + T(1:n,2:n+1))
var = maxval(abs(Tnew(1:n,1:n) - T(1:n,1:n)))
T(1:n,1:n) = Tnew(1:n,1:n)
if(mod(iter,100) == 0) write(*,"(a,i8,e12.4)") &

’ iter, variation:’, iter, var
end do
deallocate(T,Tnew)

end program laplace

Laplace: pointer implementation
program laplace

implicit none
integer, parameter :: dp=kind(1.d0)
integer :: n, maxIter, i, j, iter = 0
real (dp), dimension(:,:), pointer :: T, Tnew, Tmp=>null()
real (dp) :: tol, var = 1.d0, top = 100.d0
write(*,*) ’Enter mesh size, max iterations and tollerance:’
read(*,*) n, maxIter, tol
allocate (T(0:n+1,0:n+1), Tnew(0:n+1,0:n+1))
call init_and_set_bc(T, top, ’linear’)
Tnew = T
do while (var > tol .and. iter <= maxIter)

iter = iter + 1
Tnew(1:n,1:n) = 0.25d0 * (T(0:n-1,1:n) + &

T(2:n+1,1:n) + T(1:n,0:n-1) + T(1:n,2:n+1))
var = maxval(abs(Tnew(1:n,1:n) - T(1:n,1:n)))
Tmp =>T; T =>Tnew; Tnew => Tmp;
if(mod(iter,100) == 0) write(*,"(a,i8,e12.4)") &

’ iter, variation:’, iter, var
end do
deallocate (T, Tnew)
nullify(Tmp)

end program laplace

Hands-on Session #3

I Write a program that:

I reads an ‘arbitrarily’ long column of real numbers from an ASCII
file

I store the values in a double-linked list
type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file

I store the values in a double-linked list
type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I store the values in a double-linked list

type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I store the values in a double-linked list

type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I store the values in a double-linked list

type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I store the values in a double-linked list

type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs

I For each valid read, add an element to the list and advance...

Hands-on Session #3

I Write a program that:
I reads an ‘arbitrarily’ long column of real numbers from an ASCII

file
I store the values in a double-linked list

type line_list
real :: a
type(line_list), pointer :: next
type(line_list), pointer :: previous

endtype line_list

I Start by declaring the first and current pointers
type(line_list), pointer :: first=>null(), current=>null()

I Next, allocate and initialize the first pointer
allocate(first) ; first%next => null(); first%previous => null()
current => first

I Then loop over the lines of the file until a invalid read occurs
I For each valid read, add an element to the list and advance...

File read using a list

I For each valid read, allocate the next element, set its previous
link and update the current pointer
...
line_loop: do while(ios == 0)

i = i+1
read(25,*, iostat=ios) current%a
if(ios == 0) then

print*,’Read value: ’,current%a,’ from line: ’,i
allocate(current%next) ! Allocate the new element
current%next%previous => current ! Set the previous link
current => current%next ! Move the current pointer

endif
end do line_loop

I There is one element more than expected at the end of the list.
Why?

I Fix it removing the last element
if(associated(current%previous)) current%previous%next => null()
deallocate(current)

File read using a list

I For each valid read, allocate the next element, set its previous
link and update the current pointer
...
line_loop: do while(ios == 0)

i = i+1
read(25,*, iostat=ios) current%a
if(ios == 0) then

print*,’Read value: ’,current%a,’ from line: ’,i
allocate(current%next) ! Allocate the new element
current%next%previous => current ! Set the previous link
current => current%next ! Move the current pointer

endif
end do line_loop

I There is one element more than expected at the end of the list.
Why?

I Fix it removing the last element
if(associated(current%previous)) current%previous%next => null()
deallocate(current)

File read using a list

I For each valid read, allocate the next element, set its previous
link and update the current pointer
...
line_loop: do while(ios == 0)

i = i+1
read(25,*, iostat=ios) current%a
if(ios == 0) then

print*,’Read value: ’,current%a,’ from line: ’,i
allocate(current%next) ! Allocate the new element
current%next%previous => current ! Set the previous link
current => current%next ! Move the current pointer

endif
end do line_loop

I There is one element more than expected at the end of the list.
Why?

I Fix it removing the last element
if(associated(current%previous)) current%previous%next => null()
deallocate(current)

Outline

Extending the Language

Managing Memory
Dynamic Memory Allocation
Fortran Pointers
Sketchy Ideas on Data Structures
Bridging the Gap with C

Conclusions

Nonuniform Grids

I Let’s imagine we have to solve a PDE

I On a dense, Cartesian, non uniform grid

I Mesh axes are parallel to coordinate ones
I Steps along each direction differ in size from point to point

Nonuniform Grids

I Let’s imagine we have to solve a PDE
I On a dense, Cartesian, non uniform grid

I Mesh axes are parallel to coordinate ones
I Steps along each direction differ in size from point to point

Keeping Information Together

type nonuniform_grid
integer :: nx, ny, nz

! Grid steps
real(rk), dimension(:), allocatable :: deltax
real(rk), dimension(:), allocatable :: deltay
real(rk), dimension(:), allocatable :: deltaz

end type
!...
type(nonuniform_grid) :: my_grid
integer :: alloc_stat
!...
allocate(my_grid%deltax(nx),my_grid%deltay(ny), &

my_grid%deltaz(nz), STAT=alloc_stat)
if (alloc_stat > 0) then
! graceful failure
end if

I Related information is best kept together

I Grid size and grid steps are related information

Keeping Information Together

type nonuniform_grid
integer :: nx, ny, nz

! Grid steps
real(rk), dimension(:), allocatable :: deltax
real(rk), dimension(:), allocatable :: deltay
real(rk), dimension(:), allocatable :: deltaz

end type
!...
type(nonuniform_grid) :: my_grid
integer :: alloc_stat
!...
allocate(my_grid%deltax(nx),my_grid%deltay(ny), &

my_grid%deltaz(nz), STAT=alloc_stat)
if (alloc_stat > 0) then
! graceful failure
end if

I Related information is best kept together
I Grid size and grid steps are related information

Structured Grids in General Form

I Let’s imagine we have to solve a PDE

I On a dense structured mesh

I Could be continuously morphed to a Cartesian grid
I Need to know coordinates of each mesh point

Structured Grids in General Form

I Let’s imagine we have to solve a PDE
I On a dense structured mesh

I Could be continuously morphed to a Cartesian grid
I Need to know coordinates of each mesh point

Sketching a Mesh Description

type meshpoint
real(rk) :: x, y, z

end type

type, extends(meshpoint) :: normal
end type

type mesh
integer :: nx, ny, nz

type(meshpoint), dimension(:,:,:), allocatable :: coords

type(normal), dimension(:,:,:), allocatable :: xnormals
type(normal), dimension(:,:,:), allocatable :: ynormals
type(normal), dimension(:,:,:), allocatable :: znormals

real(rk), dimension(:,:,:), allocatable :: volumes
end type
!...
type(mesh) :: my_mesh

! allocate my_mesh components with extents nx, ny, nz
! immediately checking for failures!

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?

I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter

I As in most numerical schemes, x , y , and z components of the
same mesh point are accessed together

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?
I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter

I As in most numerical schemes, x , y , and z components of the
same mesh point are accessed together

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?
I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter

I As in most numerical schemes, x , y , and z components of the
same mesh point are accessed together

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?
I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter

I As in most numerical schemes, x , y , and z components of the
same mesh point are accessed together

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?
I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter

I As in most numerical schemes, x , y , and z components of the
same mesh point are accessed together

A Recurrent Issue, Again
I real(rk) :: x(NX,NY,NZ)

real(rk) :: y(NX,NY,NZ)
real(rk) :: z(NX,NY,NZ)

or
type meshpoint
real(rk) :: x, y, z

end type

type(meshpoint), dimension(NX,NY,NZ) :: coords

Which one is best?
I Again, both have merits

I The former (if done properly) allows hardware to play efficient
tricks in memory accesses

I The latter brings in cache all values related to a grid point as
soon as one component is accessed

I Here, we lean to the latter
I As in most numerical schemes, x , y , and z components of the

same mesh point are accessed together

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement

I You want your blocks resolution to adapt to dynamical behavior
of PDE solution

I Which means splitting blocks to substitute part of them with
more resolved meshes

I Eventually, you’ll need more advanced data structures

I Like lists
I Like binary trees, oct-trees, n-ary trees

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement

I You want your blocks resolution to adapt to dynamical behavior
of PDE solution

I Which means splitting blocks to substitute part of them with
more resolved meshes

I Eventually, you’ll need more advanced data structures

I Like lists
I Like binary trees, oct-trees, n-ary trees

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement

I You want your blocks resolution to adapt to dynamical behavior
of PDE solution

I Which means splitting blocks to substitute part of them with
more resolved meshes

I Eventually, you’ll need more advanced data structures

I Like lists
I Like binary trees, oct-trees, n-ary trees

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement
I You want your blocks resolution to adapt to dynamical behavior

of PDE solution
I Which means splitting blocks to substitute part of them with

more resolved meshes

I Eventually, you’ll need more advanced data structures

I Like lists
I Like binary trees, oct-trees, n-ary trees

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement
I You want your blocks resolution to adapt to dynamical behavior

of PDE solution
I Which means splitting blocks to substitute part of them with

more resolved meshes

I Eventually, you’ll need more advanced data structures

I Like lists
I Like binary trees, oct-trees, n-ary trees

Multiblock Meshes and More

I A multiblock mesh is an assembly of connected structured
meshes

I You could dynamically allocate a mesh array
I Or build a block type including a mesh and connectivity

information

I Adaptive Mesh Refinement
I You want your blocks resolution to adapt to dynamical behavior

of PDE solution
I Which means splitting blocks to substitute part of them with

more resolved meshes

I Eventually, you’ll need more advanced data structures
I Like lists
I Like binary trees, oct-trees, n-ary trees

If You Read Code Like This...

type block_item
type(block), pointer :: this_block

type(block_item), pointer :: next
end type

!...
do while (associated(p))
call advance_block_in_time(p%this_block)
p => p%next

end do

I It is processing a singly-linked list of mesh blocks
I You know how to handle it, now

If You Read Code Like This...

type block_item
type(block), pointer :: this_block

type(block_item), pointer :: next
end type

!...
do while (associated(p))
call advance_block_in_time(p%this_block)
p => p%next

end do

I It is processing a singly-linked list of mesh blocks
I You know how to handle it, now

And If You Read Code Like This...
type block_tree_node

type(block), pointer :: this_block

integer :: children_no
type(block_tree_node), pointer :: childrens

type(block_tree_node), pointer :: next_sibling
end type

!...
recursive subroutine tree_advance_in_time(n)

type(block_tree_node) :: n
type(block_tree_node), pointer :: p
integer :: i

p => n%childrens
do i=0,n%children_no

call tree_advance_in_time(p)
p => p%next_sibling

end do

call advance_block_in_time(n%this_block)
end subroutine tree_advance_in_time

I It is processing a tree of mesh blocks (AMR, probably)
I You need to learn more on abstract data structures
I Don’t be afraid, it’s not that difficult

And If You Read Code Like This...
type block_tree_node

type(block), pointer :: this_block

integer :: children_no
type(block_tree_node), pointer :: childrens

type(block_tree_node), pointer :: next_sibling
end type

!...
recursive subroutine tree_advance_in_time(n)

type(block_tree_node) :: n
type(block_tree_node), pointer :: p
integer :: i

p => n%childrens
do i=0,n%children_no

call tree_advance_in_time(p)
p => p%next_sibling

end do

call advance_block_in_time(n%this_block)
end subroutine tree_advance_in_time

I It is processing a tree of mesh blocks (AMR, probably)
I You need to learn more on abstract data structures
I Don’t be afraid, it’s not that difficult

Outline

Extending the Language

Managing Memory
Dynamic Memory Allocation
Fortran Pointers
Sketchy Ideas on Data Structures
Bridging the Gap with C

Conclusions

Mixing C and Fortran

I You may want to call a C function from a Fortran program
I Or call a Fortran procedure from a C program
I And you don’t want to translate and re-debug
I Or you can’t, as you don’t have sources

I You may also want to share global data among C and Fortran
program units

I This has been done in the past with non-standard tricks

I Fortran 2003 offers a better, standard way
I Let’s look at it in steps

Two Naive Examples
I Imagine you have this C function:

double avg_var(int n, const double a[], double *var) {
double avg = 0.0;
double avg2 = 0.0;
for(int i=0;i<n;i++) {

avg += a[i];
avg2 += a[i]*a[i];

}
avg = avg/n;
*var = avg2/n - avg*avg;
return avg;

}

and you want to call it from your Fortran code like:
avg = avg_var(m,b,var)

I Or you have your favorite, thoroughly tested Poisson solver:
interface

subroutine myPoissonSolver(l, m, n, f)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and you want to call it from your C code like:
myPoissonSolver(nx, ny, nz, field);

Two Naive Examples
I Imagine you have this C function:

double avg_var(int n, const double a[], double *var) {
double avg = 0.0;
double avg2 = 0.0;
for(int i=0;i<n;i++) {

avg += a[i];
avg2 += a[i]*a[i];

}
avg = avg/n;
*var = avg2/n - avg*avg;
return avg;

}

and you want to call it from your Fortran code like:
avg = avg_var(m,b,var)

I Or you have your favorite, thoroughly tested Poisson solver:
interface

subroutine myPoissonSolver(l, m, n, f)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and you want to call it from your C code like:
myPoissonSolver(nx, ny, nz, field);

A Naive Approach
I We could think that Fortran interfaces and C declarations are

enough

I And write, to call C from Fortran:
interface

function avg_var(n, a, var)
integer, intent(in) :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I And to call Fortran from C, add on Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

I This is the right track, but still half way from our destination

Thou Shalt Not Mangle Names
I Fortran compilers mangle procedure names

I All uppercase or all lowercase
I Compilers may append/prepend one or two _ characters
I And for module procedures is even worse
I Used to be sorted out on the C side, in non-portable ways

I Enter Fortran 2003 bind attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, intent(in) :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Not Mangle Names
I Fortran compilers mangle procedure names

I All uppercase or all lowercase
I Compilers may append/prepend one or two _ characters
I And for module procedures is even worse
I Used to be sorted out on the C side, in non-portable ways

I Enter Fortran 2003 bind attribute

I For C to Fortran:
interface

function avg_var(n, a, var) bind(c)
integer, intent(in) :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Not Mangle Names
I Fortran compilers mangle procedure names

I All uppercase or all lowercase
I Compilers may append/prepend one or two _ characters
I And for module procedures is even worse
I Used to be sorted out on the C side, in non-portable ways

I Enter Fortran 2003 bind attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, intent(in) :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Not Mangle Names
I Fortran compilers mangle procedure names

I All uppercase or all lowercase
I Compilers may append/prepend one or two _ characters
I And for module procedures is even worse
I Used to be sorted out on the C side, in non-portable ways

I Enter Fortran 2003 bind attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, intent(in) :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, intent(in) :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Argument Passing
I Fortran passes arguments by reference

I Under the hood, it’s like a C pointer
I Works for C arrays and pointers to scalar variables
I But usually scalars are passed by value in C

I Enter Fortran 2003 value attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, value :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, value :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Argument Passing
I Fortran passes arguments by reference

I Under the hood, it’s like a C pointer
I Works for C arrays and pointers to scalar variables
I But usually scalars are passed by value in C

I Enter Fortran 2003 value attribute

I For C to Fortran:
interface

function avg_var(n, a, var) bind(c)
integer, value :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, value :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Argument Passing
I Fortran passes arguments by reference

I Under the hood, it’s like a C pointer
I Works for C arrays and pointers to scalar variables
I But usually scalars are passed by value in C

I Enter Fortran 2003 value attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, value :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, value :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Argument Passing
I Fortran passes arguments by reference

I Under the hood, it’s like a C pointer
I Works for C arrays and pointers to scalar variables
I But usually scalars are passed by value in C

I Enter Fortran 2003 value attribute
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

integer, value :: n
real(kind(1.0D0)), intent(in) :: a(*)
real(kind(1.0D0)), intent(out) :: var
real(kind(1.0D0)) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
integer, value :: l, m, n
real(kind(1.0D0)), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Data Size and Layout
I Fortran is quite liberal on data sizes

I Implementations have a lot of freedom
I And C is also quite liberal

I Enter Fortran 2003 iso_c_binding module
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

use iso_c_binding
integer(c_int), value :: n
real(c_double), intent(in) :: a(*)
real(c_double), intent(out) :: var
real(c_double) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
use iso_c_binding
integer(c_int), value :: l, m, n
real(c_double), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Data Size and Layout
I Fortran is quite liberal on data sizes

I Implementations have a lot of freedom
I And C is also quite liberal

I Enter Fortran 2003 iso_c_binding module

I For C to Fortran:
interface

function avg_var(n, a, var) bind(c)
use iso_c_binding
integer(c_int), value :: n
real(c_double), intent(in) :: a(*)
real(c_double), intent(out) :: var
real(c_double) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
use iso_c_binding
integer(c_int), value :: l, m, n
real(c_double), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Data Size and Layout
I Fortran is quite liberal on data sizes

I Implementations have a lot of freedom
I And C is also quite liberal

I Enter Fortran 2003 iso_c_binding module
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

use iso_c_binding
integer(c_int), value :: n
real(c_double), intent(in) :: a(*)
real(c_double), intent(out) :: var
real(c_double) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
use iso_c_binding
integer(c_int), value :: l, m, n
real(c_double), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

Thou Shalt Care for Data Size and Layout
I Fortran is quite liberal on data sizes

I Implementations have a lot of freedom
I And C is also quite liberal

I Enter Fortran 2003 iso_c_binding module
I For C to Fortran:

interface
function avg_var(n, a, var) bind(c)

use iso_c_binding
integer(c_int), value :: n
real(c_double), intent(in) :: a(*)
real(c_double), intent(out) :: var
real(c_double) :: avg_var

end function avg_var
end interface

I For Fortran to C, Fortran side:
interface

subroutine myPoissonSolver(l, m, n, f) bind(c)
use iso_c_binding
integer(c_int), value :: l, m, n
real(c_double), intent(inout) :: f(l,m,n)

end subroutine myPoissonSolver
end interface

and on the C side, still the declaration:
void myPoissonSolver(int nx, int ny, int nz, field[nz][ny][nx]);

More from iso_c_binding

I iso_c_binding defines named constants holding kind type
parameter values for intrinsic types for the platform

I integer(c_int) is the kind value corresponding to a C int

I Negative values are used for unsupported C types, so the
compiler will flag the problem

I A few of them:

Type Kind C type

integer
c_int int
c_short short int

real
c_float float
c_double double

complex
c_float_complex float _Complex
c_double_complex double _Complex

logical c_bool _Bool
character c_char char

I Fortran 2008 adds c_sizeof(), check with your compiler!

Mapping Arrays

I Fortran has multidimensional arrays
I C has arrays of arrays (of arrays...)
I Thus the mapping of array indexes to actual data layout in

memory is inverted
I Fortran array a(L,M,N)
I maps to C array a[N][M][L]

I Before C99, the leading dimension of an array function
parameter could not be specified in C

I C array parameter a[]
I maps to Fortran assumed size array parameter a(*)

I In C99, Variable Length Arrays were introduced

I C99 array parameter a[nz][ny][nx]
I maps to Fortran array parameter a(nx,ny,nz)

Mapping Arrays

I Fortran has multidimensional arrays
I C has arrays of arrays (of arrays...)
I Thus the mapping of array indexes to actual data layout in

memory is inverted
I Fortran array a(L,M,N)
I maps to C array a[N][M][L]

I Before C99, the leading dimension of an array function
parameter could not be specified in C

I C array parameter a[]
I maps to Fortran assumed size array parameter a(*)

I In C99, Variable Length Arrays were introduced

I C99 array parameter a[nz][ny][nx]
I maps to Fortran array parameter a(nx,ny,nz)

Mapping Arrays

I Fortran has multidimensional arrays
I C has arrays of arrays (of arrays...)
I Thus the mapping of array indexes to actual data layout in

memory is inverted
I Fortran array a(L,M,N)
I maps to C array a[N][M][L]

I Before C99, the leading dimension of an array function
parameter could not be specified in C

I C array parameter a[]
I maps to Fortran assumed size array parameter a(*)

I In C99, Variable Length Arrays were introduced
I C99 array parameter a[nz][ny][nx]
I maps to Fortran array parameter a(nx,ny,nz)

Derived Types and Global Data
I bind also helps for derived types and global data

I For derived types, each component must be interoperable

Fortran

type, bind(c) :: particle
integer(c_int) :: n
real(c_float) :: x,y,z
real(c_float) :: vx,vy,vz

end type particle

C

typedef struct particle {
int n;
float x,y,z;
float vx,vy,vz;

} particle;

I For module variables or common blocks, use

Fortran

integer(c_long), bind(c) :: n

real(c_double) :: m,k
common /com_mk/ m,k
bind(c) :: /com_mk/

C

extern long n;

extern struct mk {
double m, k;

} com_mk;

I Note: common blocks become C structs

Fortran Pointers vs. C Pointers
I As of argument passing, not a problem
I But Fortran pointers are not interoperable with C
I Fortran pointers sport richer semantics, notably:

I multidimensional arrays
I non-contiguous memory areas

I C functions returning a pointer must have type(c_ptr) type
(from iso_c_binding)

I Ditto for C pointer variables and pointer members of C
structs:

Fortran

type, bind(c) :: block
integer(c_int) :: n_neighbors
type(c_ptr) :: neighbors
type(c_ptr) :: grid

end type block

C

typedef struct {
int n_neighbors;
int *neighbors;
mesh *grid;

} block;

Translating Pointers Back and Forth
I iso_c_binding module provides much needed help

I c_loc(x) returns a valid C pointer to the content of variable x

I c_f_pointer(cptr,fptr[,shape]) performs the opposite
translation, writing the result in the Fortran pointer fptr

I An optional shape argument like (/n/) or (/l,m,n/) gives it
a shape for array pointers

I If f_proc is an interoperable Fortran procedure,
c_funloc(f_proc) returns a valid C pointer
(type(c_funptr)) to it

I c_f_procpointer(cfptr,fpptr) performs the opposite
translation, writing the result in the Fortran procedure pointer
fpptr

Translating Pointers Back and Forth
I iso_c_binding module provides much needed help

I c_loc(x) returns a valid C pointer to the content of variable x

I c_f_pointer(cptr,fptr[,shape]) performs the opposite
translation, writing the result in the Fortran pointer fptr

I An optional shape argument like (/n/) or (/l,m,n/) gives it
a shape for array pointers

I If f_proc is an interoperable Fortran procedure,
c_funloc(f_proc) returns a valid C pointer
(type(c_funptr)) to it

I c_f_procpointer(cfptr,fpptr) performs the opposite
translation, writing the result in the Fortran procedure pointer
fpptr

Translating Pointers Back and Forth
I iso_c_binding module provides much needed help

I c_loc(x) returns a valid C pointer to the content of variable x

I c_f_pointer(cptr,fptr[,shape]) performs the opposite
translation, writing the result in the Fortran pointer fptr

I An optional shape argument like (/n/) or (/l,m,n/) gives it
a shape for array pointers

I If f_proc is an interoperable Fortran procedure,
c_funloc(f_proc) returns a valid C pointer
(type(c_funptr)) to it

I c_f_procpointer(cfptr,fpptr) performs the opposite
translation, writing the result in the Fortran procedure pointer
fpptr

Thou Shalt Compile and Link Properly

I Obviously, C and Fortran sources must be separately compiled
and then linked

user@cineca$> gcc -c fun_cmd.c
user@cineca$> gfortran -c main_cmd.f90
user@cineca$> gfortran fun_cmd.o main_cmd.o -o main_cmd

I Easy, if calling C functions from a Fortran program
I Fortran Runtime Library is usually built on top of C one

I Less so if calling Fortran procedures from a C program

I Fortran compiler might insert calls to its Runtime Library

I Best practice:

user@cineca$> gcc -lgfortran procedures.o main.c

I Your mileage may vary, browse your compiler manuals

Thou Shalt Compile and Link Properly

I Obviously, C and Fortran sources must be separately compiled
and then linked

user@cineca$> gcc -c fun_cmd.c
user@cineca$> gfortran -c main_cmd.f90
user@cineca$> gfortran fun_cmd.o main_cmd.o -o main_cmd

I Easy, if calling C functions from a Fortran program
I Fortran Runtime Library is usually built on top of C one

I Less so if calling Fortran procedures from a C program
I Fortran compiler might insert calls to its Runtime Library

I Best practice:

user@cineca$> gcc -lgfortran procedures.o main.c

I Your mileage may vary, browse your compiler manuals

Hands-on 4: qsort

I Write the Fortran interface to C qsort

module qsort_c_to_fortran
use iso_c_binding
integer, parameter :: sp = kind(1.0)
interface
!Write the Fortran interface to C qsort!
!void qsort(void *base,
! size_t nmemb,
! size_t size,
! int (*compar)(const void *,const void *));
end interface

contains
function compare_reals(a,b) bind(c)
integer(c_int) :: compare_reals
real(c_float) :: a,b
if(a>b) then

compare_reals=1
else if(a<b) then

compare_reals=-1
else

compare_reals=0
endif
end function compare_reals

end module qsort_c_to_fortran

program test_qsort_c

use qsort_c_to_fortran

integer(c_size_t), parameter :: n=7
real(c_float), pointer :: a(:)

allocate(a(n))
call random_number(a)
print*,’Unordered a: ’
print*,a

call qsort(c_loc(a(1)), n, c_sizeof(a(1)), &
c_funloc(compare_reals));

print*,’Ordered a: ’
print*,a

end program test_qsort_c

Fortran Interface to qsort

I Write the Fortran interface to C qsort

module qsort_c_to_fortran
use iso_c_binding
integer, parameter :: sp = kind(1.0)
interface
subroutine qsort(a,n,size_a,com_f) bind(c)
use iso_c_binding
type(c_ptr), value :: a
integer(c_size_t), value :: n
integer(c_size_t), value :: size_a
type(c_funptr), value :: com_f

end subroutine qsort
end interface

contains
function compare_reals(a,b) bind(c)
integer(c_int) :: compare_reals
real(c_float) :: a,b
if(a>b) then

compare_reals=1
else if(a<b) then

compare_reals=-1
else

compare_reals=0
endif
end function compare_reals

end module qsort_c_to_fortran

program test_qsort_c

use qsort_c_to_fortran

integer(c_size_t), parameter :: n=7
real(c_float), pointer :: a(:)

allocate(a(n))
call random_number(a)
print*,’Unordered a: ’
print*,a

call qsort(c_loc(a(1)), n, c_sizeof(a(1)), &
c_funloc(compare_reals));

print*,’Ordered a: ’
print*,a

end program test_qsort_c

Outline

Extending the Language

Managing Memory

Conclusions

What We Left Out

I More Fortran practice
I Time was tight, and that’s your job

I More about programming

I Code development management tools
I Debugging tools
I Look among CINECA HPC courses

I More Fortran

I Full object oriented programming
I Floating point environment
I Direct I/O
I Asynchronous I/O
I Submodules
I Even more format edit descriptors
I A few more statements and quite a few intrinsics
I Coarrays

What We Left Out

I More Fortran practice
I Time was tight, and that’s your job

I More about programming
I Code development management tools
I Debugging tools
I Look among CINECA HPC courses

I More Fortran

I Full object oriented programming
I Floating point environment
I Direct I/O
I Asynchronous I/O
I Submodules
I Even more format edit descriptors
I A few more statements and quite a few intrinsics
I Coarrays

What We Left Out

I More Fortran practice
I Time was tight, and that’s your job

I More about programming
I Code development management tools
I Debugging tools
I Look among CINECA HPC courses

I More Fortran
I Full object oriented programming
I Floating point environment
I Direct I/O
I Asynchronous I/O
I Submodules
I Even more format edit descriptors
I A few more statements and quite a few intrinsics
I Coarrays

Looking for More
J3 US Fortran Standards Committee
http://www.j3-fortran.org/

ISO WG5 Committee
http://www.nag.co.uk/sc22wg5/

Fortran 2003 Standard Final Draft
Search Internet for n3661.pdf

Fortran Wiki
http://fortranwiki.org/

M. Metcalf, J. Reid, M. Cohen
Fortran 95/2003 Explained
Oxford University Press, corrected ed., 2008

M. Metcalf, J. Reid, M. Cohen
Modern Fortran Explained
Oxford University Press, 2011

S. Chapman
Fortran 95/2003 for Scientists & Engineers
McGraw-Hill, 3d ed., 2007

Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith,
B.T.
The Fortran 2003 Handbook
Springer, 2009

Advanced Fortran Coding Examples

Salvatore Filippone’s Home Page
www.ce.uniroma2.it/people/filippone.html

Parallel Sparse Basic Linear Algebra Subroutines
www.ce.uniroma2.it/psblas/index.html

Numerical Engine (for) Multiphysics Operators
www.ce.uniroma2.it/nemo/index.html

Portable Fortran Interfaces to the Trilinos C++ Package
trilinos.sandia.gov/packages/fortrilinos/

Stefano Toninel
Development of a New Parallel Code for Computational Continuum Mechanics
Using Object-Oriented Techniques
PhD Thesis, University of Bologna, 2006.

Rights & Credits

These slides are c©CINECA 2013 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
I Federico Massaioli
I Marco Rorro
I Michela Botti
I Francesco Salvadore

	A Fortran Survey 1
	Introduction
	Fortran Basics
	My First Fortran Program
	Compiling and Linking Your First Program
	Making Choices
	More Types and Choices
	Wrapping it Up 1

	More Fortran Basics
	My First Fortran Functions
	Making it Correct
	Making it Robust
	Copying with Legacy
	Wrapping it Up 2

	Integer Types and Iterating
	Play it Again, Please
	Testing and Fixing it
	Hitting Limits
	Wider Integer Types
	How Bad it Used to Be
	Wrapping it Up 3

	More on Compiling and Linking
	Homeworks

	A Fortran Survey 2
	More Flow Control
	Numerical Integration
	Wrapping it Up 4

	Fortran Intrinsic Types, Variables and Math
	Integer Types
	Floating Types
	Expressions
	Arithmetic Conversions
	More Intrinsic Types

	Arrays
	Smoothing Signals
	A More Compact Notation

	Array Syntax and I/O
	Array Syntax
	More dimensions
	Not a Panacea
	Arrays of Constants
	Elemental Procedures
	More Array Syntax

	Input/Output
	Formatted I/O
	File I/O
	Namelist
	Internal Files
	Unformatted I/O
	Robust I/O

	Derived Types and Memory Management
	Extending the Language
	Derived Types
	Operators Overloading
	Parameterized Types
	Extending Types, and Objects

	Managing Memory
	Dynamic Memory Allocation
	Fortran Pointers
	Sketchy Ideas on Data Structures
	Bridging the Gap with C

	Conclusions

