ﬁ)fentlflc and Technical Computing in C
Part 3 Class Templates & STL

Luca Ferraro  Stefano Tagliaventi
CINECA Roma - SCAI Department

Rome, 13-15 April 2015



Outline




Object Oriented Design

e OO languages allow for definition of new, very rich,
powerful, domain specific types and operations

Particularly C++, with all its features

This is not as easy as it may seem from the first examples
one meets

Object Oriented programming is all about design

A design choice in one class may have annoying
consequences elsewhere
Fundamental OOP principle:

The sins of the fathers are to be laid upon the

children
W. Shakespeare, "The Merchant of Venice", act. lll, sc. V



Positions in Space

¢ We want a type that represents positions in a 3D space
¢ And we want all arithmetic operations that make sense:
e unary + and -
e binary + and -
e multiplication times a scalar and division by a scalar
e dot product
e and combined operator-assignment like +=




Design and Implementation
Choices

The three components of a position are well defined:
let’s have them public

Let’s use double precision

Let’s define two constructors:

@ a default constructor, doing nothing
@® a constructor that initializes the three components

For arithmetic operators, let’s use a traditional approach:

@ define unary ones as methods (they are so simple!)

@® define combined operator-assignment as methods (they
modify the object!)

@® define all other binary operators in terms of the previous ones

And let's make them inline, as they are small and used
very often

e |t's automatic on methods defined inside the class



position.h: Fundamentals

#ifndef POSITION_H
#define POSITION_H

struct position {
double x, y, z;

position() {}
position(double a, double b, double c) : x(a), y(b), z(c) {

-~

position operator+() const { return xthis; }
position operator-() const { return position(-x, -y, -z); }

position& operator+= (position r) { x += r.x; y += r.y; z += r.z; return xthis; }
position& operator-= (position r) { x -= r.x; y -= r.y; z —-= r.z; return xthis; }
position& operator (double s) { x *= s; y *= s; z *= s; return xthis; }
position& operator/= (double s) { x /= s; y /=s; z /= s; return *this; }

Yi

#endif




Arithmetic Operators Alternatives

Implemented as position client functions

+ read and write access are separated
— were data members private, dot product would not work
— looking at the class definition is not enough

Implemented as position member functions

+ all supported operations listed in class definition
+ all operations have complete access and work
— left operand passed by reference!

Implemented as position friend functions

+ all supported operations listed in class definition
+ all operations have complete access and work
+ both operands passed by value

Remember:

e member functions are inherited on derivation
e client and friend functions are not



position.h: Operators as Clients

struct position {
double x, y, z;

position() {}
position(double a, double b, double c) : x(a), y(b), z(c) {}

position operator+() const { return xthis; }
position operator-() const { return position(-x, -y, -z); }

position& operator+= (position r) { x += r.x; y += r.y; z += r.z; return xthis; }
position& operator-= (position r) { x -= r.x; y -= r.y; z —-= r.z; return xthis; }
position& operator*= (double s) { x *= s; y *= s; z *= s; return xthis; }
position& operator/= (double s) { x /=s; y /=s; z /= s; return xthis; }

}i

inline position operator+ (position rl, position r2) {
rl += r2;
return rl;

}

inline double operatorx (position rl, position r2) {
return rl.x*r2.x + rl.y*r2.y + rl.zxr2.z;

}




position.h: Operators as
Methods

struct position {
double x, y, z;

position() {}
position(double a, double b, double c) : x(a), y(b), z(c) {

-~

position operator+() const { return *this; }
position operator-() const { return position(-x, -y, -z); }

position& operator+= (position r) { x += r.x; y += r.y; z += r.z; return xthis; }
position& operator-= (position r) { x -= r.x; y -= r.y; z -= r.z; return xthis; }
position& operator (double s) { x *=s; y *= s; z *= s; return xthis; }
position& operator/= (double s) { x /=s; y /=s; z /= s; return *this; }

position operator+ (position r) const;
double operatorx (position r) const;

Yi

inline position position::operator+ (position r) const {
position temp (*this);
temp += r;
return temp;

}

inline double position::operatorx (position r) const {
return X*r.x + y*r.y + zxr.z;

}




position.h: Operators as
Friends

struct position {

};

double x, y, z;

position() {}

position(double a, double b, double

position operator+()
position operator-()

position& operator+=
position& operator-=
position& operatorx=
position& operator/=

const { return
const { return

(position r) {
(position r) {
(double s) { x
(double s) { x

c)

: x(a), y(), z(e)

*this; }
position(-x, -y, -z);

X += r.x; y +t=r.y; z
X -=r.Xx; y -=r.y; z

*=

/=

S; Y *= 8; z *= §;
s; y/=s; z /=s;

friend position operator+ (position rl, position r2);
friend double operatorx (position rl, position r2);

inline position operator+ (position rl, position r2) {

}

rl += r2;
return rl;

inline double operatorx (position rl, position r2) {
return rl.x*r2.x + rl.y*r2.y + rl.z*r2.z;

}

18]

}

+= r.z; return xthis; }
—-= r.z; return xthis; }
return *this; }
return *this; }



Hands-on Session #1

o Write the operator functions for:
e binary position subtraction
e multiplication times a scalar and division by a scalar
e equality and inequality

e Write a program that exercises the position class:
¢ testing all methods and operators
¢ verifying operator associativity and precedence in
complicated expressions
¢ verifying illegal expressions are rejected by the compiler



Operator Arguments

Operator arguments ar almost always defined as:

¢ references, when content is changed by the operator
e const references, when itisn’t

This is not a matter of style

¢ Indispensable, in the first case
e Wise, in the second

Expression evaluation involves intermediate values

e Which have to be properly constructed and destructed

e |.e. suitable constructors and destructors are called
Here, we dispensed with const references

o For the sake of simplicity

e Because constructors are so simple that the compiler can

easily optimize the code

This is not true for more complicated types: use const
references in real codes!



Consistency

OO Programming amounts to extending the base language
into a domain specific language

Consistency is key to facilitate use of new data types and
code reuse

Consistency must be ensured on two sides:

@ the application domain
@® the base language

Let’'s analyze the issue by adding cross product and
modulus to position class



Methods as Messages

e Let’'s add in the class definition two methods:

position cross(position r) const {
return position(y*r.z - z*r.y,
Z*Xr.X — X*r.zZ,

X*L.y — Y*Ir.X);

}

double abs() const {
return sqrt (xthisxxthis);

}
e So that:
e rl.cross (r2) returns the cross product
e and rl.abs () returns the modulus

e This style is typical of programmers overexposed to other
OO0 languages, like Smalltalk, that think of methods as
messages sent to an object

e Unfortunately:
— it's inconsistent with the application domain
— it's inconsistent with C++ style of arithmetic
— may be confusing and ambiguous to users



Functions Can be Our Friends

e Let's add to position.h the two functions:

inline position cross(position rl, position r2) {
return position(rl.y*r2.z - rl.zxr2.y,
rl.zxr2.x — rl.x*r2.z,
rl.xxr2.y — rl.y*r2.x);
}

inline double abs(position r) {

return sqrt (r*r);

}

and make the former (or possibly both) a friend of
position class

e This is:
+ quite consistent with the application domain
+ definitely consistent with C++ style of arithmetic
+ and if both are friends, you’ll spot them all at a glance in the
class definition



A Tempting Alternative

o Let’'s add in position class:

position& operator%= (position r) {
X = yxr.z — zxr.y,
Y = ZXIr.X — X*r.z,
Z = X*r.y — Y*Ir.X);
return xthis;

}
friend position operator% (position rl, position r2);

and to position.h the function:

inline position operator% (position rl, position r2) {
rl %= r2;
return rl;

e Thisis:
+ very consistent with the application domain, even if the
operator symbol differs
+/— slightly inconsistent with C++ style of arithmetic, as the %
operator is the integer modulo




Hands-on Session #2

In a 3D space, velocities have the same components and
arithmetics of positions

Let’s try the following:

#include "position.h"

struct velocity : public position {

velocity ()
velocity (double a, double b, double c) : position(a,b,c)

Of course, friend functions will not be inherited
Nonetheless:

¢ try to exercise the velocity class

¢ verify that a velocity value cannot be assigned to a
position object or viceversa

e check which position methods can be succesfully used
with velocity values and objects



The Code Reuse Problem

Inheriting velocity from position class has some
drawbacks:

e velocity values can be assigned to position variables

e Base class methods that return an object of the base class
can’t be immediately used on the derived class

e As we said, we got a bonus conversion from velocity to
its base class, and this cannot be hidden

e Adding two velocities to get a position is not physically
sound



Using a Common Base Clase

The obvious solution: have both position and velocity
inherit from a common base class vect and delegate actual
computations to it

position and velocity will be two separate branches of
the inheritance tree, so no conversion between them will be
possible

To avoid using vect as the base class and convert it on its

derived:

e declare protected all its methods, so that no operations can
be performed outside its derived classes

e declare protected its constructors, so that no object can be
created outside its derived classes



vect .h: Part 1 of 3

#ifndef VECT_H
#define VECT_H

#include <cmath>

struct vect {

double x, y, z;

protected:

vect () {}
vect (double a, double b, double c) : x(a), y(b), z(c) {}

vect operator+() const { return *this; }
vect operator-() const { return vect(-x, -y, -z); }

vect& operator+= (vect v) { x += v.x; y += v.y; z += v.z; return *this;
vect& operator-= (vect v) { x == v.X; y -= v.y; z —-= v.z; return *this;
vect& operatorx= (double s) { x *=s; y *= s; z *= s; return xthis; }
vect& operator/= (double s) { x /= s; y /= s; z /= s; return xthis; }

vect operator+ (vect v) const;

vect operator- (vect v) const;

double operatorx (vect v) const;

vect operatorx (double s) const;

friend vect operator* (double s, vect v);
vect operator/ (double s) const;

bool operator== (vect v) const;

bool operator!= (vect v) const;

friend double abs(vect v);



vect .h: Part 2 of 3

inline vect vect::operator+ (vect v) const {
vect temp (*this);
temp += v;
return temp;

}

inline vect vect::operator- (vect v) const {
vect temp (*this);
temp -= v;
return temp;

}

inline double vect::operatorx (vect v) const {
return X*v.x + y*v.y + z*v.z;

}

inline vect vect::operatorx (double s) const {
vect temp (*this);
temp *= s;
return temp;

}

inline vect operatorx (double s, vect v) {
v *= s;
return v;

}

inline vect vect::operator/ (double s) const {

vect temp (*this);
temp /= s;
return temp;




vect .h: Part 3 of 3

inline bool vect::operator== (vect v) const {
return x==v.x && y==v.y && z==Vv.z;

}

inline bool vect::operator!= (vect v) const {
return ! (xthis==v);

}
inline double abs(vect v) {
return sqrt (viv);

}

#endif




position: Deriving from vect

struct position : public vect {
protected:
position(vect r) : vect(r) {}
public:
position() {}
position(double a, double b, double c) : vect(a,b,c) {}

position operator+() const { return xthis; }
position operator-() const { return this->vect::operator-(); }

position& operator+= (position r) { this->vect::operator+=(r); return xthis; }
position& operator-= (position r) { this->vect::operator-=(r); return xthis; }
position& operatorx= (double s) { this—>vect::operator*=(s); return xthis; }
position& operator/= (double s) { this->vect::operator/=(s); return xthis; }

position operator+ (position r) const { return this->vect::operator+(r); }
position operator- (position r) const { return this->vect::operator-(r); }
double operatorx (position r) const { return this->vect::operatorx(r); }
position operatorx (double s) const { return this->vect::operatorx*(s); }
friend position operator* (double s, position r);

position operator/ (double s) const { return this->vect::operator/(s); }
bool operato (position r) const { return this->vect perato: r); }
bool operator! (position r) const { return this->vect::operator!=(r); }
friend double abs(position r);

}i

inline position operatorx (double s, position r) {
r *= s;
return r;

}

inline double abs(position r) {
e vy L




velocity: Deriving from vect

struct velocity : public vect {
protected:
velocity(vect r) : vect(r) {}
public:
velocity () {}
velocity(double a, double b, double c) : vect(a,b,c) {}

velocity operator+() const { return xthis; }
velocity operator-() const { return this->vect::operator-(); }

velocity& operator+= (velocity v) { this->vect::operator+=(v); return xthis; }
velocity& operator-= (velocity v) { this->vect::operator-=(v); return xthis; }
velocity& operatorx= (double s) { this->vect::operator*=(s); return xthis; }
velocity& operator/= (double s) { this->vect::operator/=(s); return xthis; }

velocity operator+ (velocity v) const { return this->vect::operator+(v); }
velocity operator- (velocity v) const { return this->vect::operator-(v); }
double operatorx (velocity v) const { return this->vect::operatorx(v); }
velocity operatorx (double s) const { return this->vect::operatorx*(s); }
friend velocity operator* (double s, velocity v);
velocity operator/ (double s) const { return this->vect::operator/(s); }
bool operator== (velocity v) const { return this->vect::operator==(v); }
bool operator!= (velocity v) const { return this->vect::operator!=(v); }
friend double abs(velocity v);

b

inline velocity operatorx (double s, velocity v) {
v *= s;
return v;

}

inline double abs(velocity v) {

e el e oo ke feoy A o




The Power of Syntax Checking

¢ We could derive from vect more classes:

e acceleration
momentum

force

angular velocity
angular momentum
torque

electric field
magnetic field

o Compiler will perform syntax checking, and ensure no
misuses are made

e But we can do more... let’s define a time class




A Class to Represent Physical Time

class time {
double val;
public :
time () {}
time (double t) : val(t) {}
time operator+() const { return *this; }
time operator-() const { return time(-val); }

// <op>= member operators

// member arithmetic operators (sum, difference,
// multiplication and division by a scalar)
// all comparison member operators

// friend << and >> operators for iostreams

friend position operatorx (velocity v, time t);

friend position operatorx (time t, velocity v);

friend velocity operator/ (position r, time t);
Y

position operatorx (velocity v, time t) {
return vxt.val;

}

position operatorx (time t, velocity v) {
return vxt.val;

}

velocity operator/ (position r, time t) {
return r/t.val;

}



Dimensionally Consistent
Arithmetic

Let’s also enroll the three mixed type operators in
position and velocity friends

Note: depending on include file structure this will involve
forward declarations like:

class time;

struct velocity;

or other pairs from the three classes, to be added in suitable
places

And we’ll get a physical quantities arithmetic whose
dimensional consistency is checked by the compiler
e Have a look at Units or MPL in the Boost library (for braves
only)



Consistent Extension and Code
Reuse

e Better yet, we could:

¢ define a base class for a generic physical scalar
implementing the basic arithmetic and 1/0

¢ protecting all its members, including constructors, like we did
with vect

¢ derive time, mass, charge, pressure, temperature, ... classes
from it, like we did with position and velocity from vect

¢ define suitable mixed-type operations according to the rule of
physics

e And we’d get all the benefits of code reuse and syntax
checking



Outline




Class Templates

Like functions, classes can be parameterized

Class templates generate multiple specific classes from a
single definition

Templates are a form of overloading
e And can be themselves overloaded
Templates can be combined together

¢ A template class can inherit from another template class
¢ A template class method can be a template in itself

Templates are one of the most powerful features of C++

¢ They are the foundation of generic programming
e They can be an alternative to inheritance



float vS. double

We based our vectors on doubles, but we could need a
float version to use less memory

We could duplicate the code for £1loats, but this is bad for
code management

Let’s make vect and its descendants parametric in the
coordinate type

And let’s make it safely, and consistently with C++ rules for
arithmetic

We’ll have to proceed in steps



vect .h: Template Version Part 1
of 3

#ifndef VECT_H
#define VECT_H

#include <cmath>

template<class T> struct vect {

T x, vy, z;
protected:
vect () {}

vect(T a, Tb, Tc) : x(a), y(b), z(c) {}

vect operator+() const { return *this; }
vect operator-() const { return vect(-x, -y, -z); }

vect& operator+= (vect v) { x += v.x; y += v.y; z += v.z; return *this;
vect& operator-= (vect v) { x == v.X; y —-= v.y; z —-= v.z; return *this;
vect& operatorx= (T s) { x *= s; y *= s; z *= s; return xthis; }
vect& operator/= (T s) { x /=s; y /= s; z /= s; return xthis; }

vect operator+ (vect v) const;

vect operator- (vect v) const;

T operatorx (vect v) const;

vect operator* (T s) const;

template<class F> friend vect<F> operator* (F s, vect<F> v);
vect operator/ (T s) const;

bool operator== (vect v) const;

bool operator!= (vect v) const;

template<class F> friend F abs(vect<F> v);




vect .h: Template Version Part 2
of 3

template<class T> inline vect<T> vect<T>::operator+ (vect<T> v) const {
vect<T> temp (*this);
temp += v;
return temp;

}

template<class T> inline vect<T> vect<T>::operator- (vect<T> v) const {
vect<T> temp (*xthis);
temp -= v;
return temp;

}

template<class T> inline T vect<T>::operatorx (vect<T> v) const {
return x*v.x + y*v.y + z*v.z;

}

template<class T> inline vect<T> vect<T>::operatorx (T s) const {
vect<T> temp (*this);
temp *= s;
return temp;

}

template<class F> inline vect<F> operatorx (F s, vect<F> v) {
v *= §;
return v;




vect .h: Template Version Part 3
of 3

template<class T> inline vect<T> vect<T>::operator/ (T s) const {
vect<T> temp (*this);
temp /= s;
return temp;

}

template<class T> inline bool vect<T>::operator== (vect<T> v) const {
return x==v.x && y==vV.y && z==v.z;

}

template<class T> inline bool vect<T>::operator!= (vect<T> v) const {
return ! (xthis==v);

}

template<class F> inline F abs(vect<F> v) {
return std::sqrt(vxv);

}

#endif




vect Template: Remarks

class T is atemplate type parameter
e |t doesn’t need to be a class
e |t can be any type

Method declarations do not need to be in template form, it’s
automatic

Method definitions inside the class definition do not need to
be in template form, it's automatic

Method definitions outside the class definition must be in
template form

Friend function templates must be declared in template form
inside the class

Of course, we have to ‘templatize’ position and
velocity 100

And we’ll make double the default, using a default template
argument



position: Template Version

template<class T=double> struct position : public vect<T> {

protected:

position (vect<T> r)

public:

position() {}

position(double a,

vect<T>(r) {}

double b, double c) : vect<T>(a,b,c) {}

position operator+() const { return xthis; }

position operator-() const { return

positioné&
positioné&
positioné&
positioné&

operator+= (position v) {
operator-= (position v) {

operator*= (T s)
operator/= (T s)

{ this->vect<T>::operator*=(s);
{ this->vect<T>::operator/=(s);

this->vect<T>: :operator—-(); }

this->vect<T>: :operator+=(v);
this->vect<T>: :operator-=(v);

return
return

return
return
*this;
*this;

*this;
*this;
}
}

position operator+ (position v) const { return this->vect<T>::operator+(v); }

position operator-

T operatorx (position v) const { return this->vect<T>::operatorx(v); 1}
position operator* (T s) const { return this->vect<T>::operatorx(s); }

template<class F> friend position<F> operator* (F s,

position<F> v);

position operator/ (T s) const { return this->vect<T>::operator/(s); }

bool operato
bool operator!

template<class F> friend F abs(position<F> v);

}i

(position v) const { return this->vect<T>::operator:
(position v) const { return this->vect<T>::operator!=(v);

template<class F> inline position<F> operator* (F s, position<F> v) {

v x= s;
return v;

}

template<class F> inline F abs(position<F> v) {

o T foch N o

(v);

(position v) const { return this->vect<T>::operator-(v); }

}
}

}
}



velocity: Template Version

template<class T=double> struct velocity : public vect<T> {

protected:

velocity (vect<T> r) : vect<T>(r) {}
public:

velocity () {}

velocity(double a, double b, double c) : vect<T>(a,b,c) {}

velocity operator+() const { return xthis; }

velocity operator—() const { return this->vect<T>::operator-();

}

velocity& operator+= (velocity v) { this->vect<T>::operator+=(v);
velocity& operator-= (velocity v) { this->vect<T>::operator-=(v);

velocity& operatorx= (T s) { this—>vect<T>::operatorx=(s);
velocity& operator/= (T s) { this—->vect<T>::operator/=(s); return

return

return
return
*this;
*this;

*this;
*this;
}
}

velocity operator+ (velocity v) const { return this->vect<T>::operator+(v); }
velocity operator- (velocity v) const { return this->vect<T>::operator-(v); }
T operatorx (velocity v) const { return this->vect<T>::operatorx(v); }
velocity operator* (T s) const { return this->vect<T>::operatorx(s); }

template<class F> friend velocity<F> operator* (F s,

velocity<F> v);

velocity operator/ (T s) const { return this->vect<T>::operator/(s); }

bool operato
bool operator!
template<class F> friend F abs(velocity<F> v);

}i

template<class F> inline velocity<F> operatorx (F s,
v *= s;
return v;

}

template<class F> inline F abs(velocity<F> v) {
e e feon h L

velocity<F> v)

(velocity v) const { return this->vect<T>::operator:
(velocity v) const { return this->vect<T>::operator!=(v);

{

(v);

}
}

}
}



Hands-on Session #4

Write a program to exercise the position class template

Then try to mix in the same expression:

e floats with position<double>s

e doubles with position<float>s

e position<float>s with position<double>s
Verify that position<> is equivalent to
position<double>
And try combinations like position<unsigned int> or
position<char>



The Perils of Class Templates

Now we can represent coordinates in single and double
precision

And, if we are not careful enough, we could represent
unsigned and char coordinates

Or, for that matter, we could happen to represent

coordinates with velocitys, or whatever abstract type that
supports some sort of exotic arithmetic

e very subtle bugs are possible
e particularly if a template is not explicitly instantiated, and
members are instantiated on demand

To make our classes more robust, let’s allow only
position<float> and position<double> objects

To this purpose, we need to exploit:

e one more feature: template specialization
e a common C++ idiom: traits classes



Template Specialization

It's a form of overloading

A specialized template is a specific implementation for
specific values of template arguments

Very useful to complete the generic template with specific
ones optimized for particular cases

Specialized template and functions prevail on less
specialized ones in overload resolution

More on this later, let’s use it now to avoid position
template abuses

Brute force solution:

¢ defining only two specialized templates, vect<float> and
vect<double>
¢ but this is code replication, bad for source code management

Clever solution: traits classes



vect . h: using Traits

#ifndef VECT_H
#define VECT_H

#include <cmath>
template<class T> struct vectComponentTrait {};

template<> struct vectComponentTrait<double> {
typedef double component;
Yi

template<> struct vectComponentTrait<float> {
typedef float component;
};

template<class T> struct vect {
typ vectComp Trait<T>::
Ty, z;

protected:

/7. ..

...everything else unchanged




vect Component Traits

vectComponentTrait<> template defines a suitable type
for a vect component

e But it does so only for argument types we allow
e And doesn’t define anything in the general case

vectComponentTrait<>: : component is used to define
vect <> first member

e typename tells the compiler that it is a type indeed
Thus, an instantiation of the vect <> template will:

e succeed, if the argument type is £loat or double
o fail at compile time otherwise

Please, notice:

e no code duplication

¢ no other changes to vect <> or its descendants

¢ to add support for one more type, just add one more
specialization of vectComponentTrait<>



More on Traits Classes

Traits classes are widely used in Standard C++ Library and
in many other libraries
They usually don’t have data members, only:

¢ type members

e static methods
Traits classes static methods are useful to abstract a unified
interface from a bunch of heterogeneous classes

Traits classes with more than one type member help to
manage mixed precision computations
Do you remember the issues we had with ged () and
lem () on mixed precision types?

¢ To avoid troubles, we had to hide the template

e And use it explicitly in (too) many wrapper functions

Now we know more, let’s write an elegant solution



numbertheory.h 3.0 - Part 1 of 2

#ifndef NUMBERTHEORY_H
#define NUMBERTHEORY_H

template<class T, class F> struct numth_traits {};

template<> struct numth_traits<int, int> {
typedef int narrow_t;
typedef int wide_t;

Yi

template<> struct numth traits<int, long> {
typedef int narrow_t;
typedef long wide_t;

}i

template<> struct numth traits<long, int> {
typedef int narrow_t;
typedef long wide_t;

Yi

template<> struct numth_traits<long, long> {
typedef long narrow_t;
typedef long wide_t;

Yi




numbertheory.h 3.0 - Part 2 of 2

// Greatest Common Divisor
template <class T, class F>
typename numth_traits<T,F>::narrow_t gcd(T aa, F bb) {

abs (aa) ;
abs (bb) ;

typename numth_traits<T,F>::wide_t a =
typename numth_traits<T,F>::wide t b =
if (a == 0)

return b;
if (b == 0)

return a;

do {
typename numth_traits<T,F>::wide t t = a % b;
a = b;
b =t;

} while (b !'= 0);

return a;

// Least Common Multiple
template <class T, class F>
typename numth traits<T,F>::wide_t lcm(T a, F b) {
if (a == Il b ==0)
return O;
return ax(b/ged(a,b));
}

#endif




Mixed Precision Arithmetic and
Consistency

e Excluding mixed precision computations is very annoying
e We have three options

@ Defining implicit conversions and rely on them

¢ Inconsistent with C++ rules!

¢ Arithmetic operations on a £loat and a double shall be

performed in double

¢ Automatic down-conversion shall only happen on assignment
® Do as in C++ does with complex<> values

¢ Mixed precision only allowed on =, +=, —=, *=, /=

e Explicit conversions needed otherwise

@® Implement mixed precision arithmetic for all binary operators

e Let’'s go for option #2



vect: Mixed Precision Arithmetic

template<class T> struct vect {
typename vectComponentTrait<T>::component x;
Ty, z;
protected:
vect () {}
vect(T a, Tb, T c) : x(a), y(b), z(c) {}
template<class F> vect (const vect<F> &v) : x(v.x), y(v.y), z(v.z) {}

vect operator+() const { return xthis; }
vect operator-() const { return vect(-x, -y, -z); }

template<class F>
vect& operator= (vect<F> v) { x = V.X; y = V.y; z = v.z; return xthis; }

template <class F>
vect& operator+= (vect<F> v) { X += Vv.X; y += V.y; z += v.z; return xthis; }
template <class F>

vect& operator-= (vect<F> v) { x -= V.X; y -= V.y; z —-= Vv.z; return xthis; }
template <class F>
vect& operatorx= (F s) { x *= s; y *= s; z *x= s; return xthis; }

template <class F>
vect& operator/= (F s) { x /=s; y /= s; z /= s; return xthis; }

vect operator+ (vect v) const;

vect operator- (vect v) const;

T operatorx (vect v) const;

vect operatorx (T s) const;

template<class F> friend vect<F> operatorx (F s, vect<F> v);
vect operator/ (T s) const;

bool operator: (vect v) const;

bool operator!= (vect v) const;

e T ot L el oot .

e T e TV £




Remarks

A template copy constructor has been added

Thus, instantiating vect <double> would automatically
generate, as needed:

vect<double> vect<double> (const vect<float> &v);
vect<double> vect<double> (const vect<double> &v);

And instantiating vect<float> would automatically
generate, as needed:

vect<float> vect<float> (const vect<float> &v);
vect<float> vect<float> (const vect<double> &v);

Ditto for =, +=, —=, *=, /=
Now we need to change position and velocity
definitions accordingly

And make their copy constructor explicit to avoid
unintended ‘automagic’ behavior



position: Mixed Precision
Arithmetic

template<class T=double> struct position : public vect<T> {
protected:
position(vect<T> r) : vect<T>(r) {}
public:
position() {}
position(double a, double b, double c) : vect<T>(a,b,c) {}
template<class F> explicit position(const position<F> &v) : vect<T>(v) {}

position operator+() const { return xthis; }
position operator—() const { return this->vect<T>::operator-(); }

template<class F> position& operator= (position<F> v)
{ this->vect<T>::operator=(v); return xthis; }

template <class F> position& operator+= (position<F> v)
{ this->vect<T>::operator+=(v); return xthis; }
template <class F> position& operator-= (position<F> v)
{ this->vect<T>::operator-=(v); return xthis; }
template <class F>
position& operatorx= (F s) { this->vect<T>::operator*=(s); return xthis; }
template <class F>
position& operator/= (F s) { this->vect<T>::operator/=(s); return xthis; }

position operator+ (position v) const { return this->vect<T: operator+(v); }
position operator- (position v) const { return this->vect<T>::operator-(v); }
T operatorx (position v) const { return this->vect<T>::operatorx(v); 1}
position operator* (T s) const { return this->vect<T>::operatorx(s); }
template<class F> friend position<F> operatorx (F s, position<F> v);

position operator/ (T s) const { return this->vect<T>::operator/(s); }

bool operator: (position v) const { return this->vect<T>::operator==(v); }
bool operator!= (position v) const { return this->vect<T>::operator!=(v); }
template<class F> friend F abs(position<F> v);




velocity: Mixed Precision
Arithmetic

template<class T=double> struct velocity : public vect<T> {
protected:
velocity (vect<T> r) : vect<T>(r) {}
public:
velocity () {}
velocity(double a, double b, double c) : vect<T>(a,b,c) {}
template<class F> explicit velocity(const velocity<F> &v) : vect<T>(v) {}

velocity operator+() const { return xthis; }
velocity operator-() const { return this->vect<T>::operator-(); }

template<class F> velocityé& operator= (velocity<F> v)
{ this->vect<T>::operator=(v); return xthis; }

template <class F> velocity& operator+= (velocity<F> v)
{ this->vect<T>::operator+=(v); return xthis; }
template <class F> velocity& operator-= (velocity<F> v)
{ this->vect<T>::operator-=(v); return xthis; }
template <class F>
velocityé& operatorx= (F s) { this->vect<T>::operator*=(s); return xthis; }
template <class F>
velocity& operator/= (F s) { this->vect<T>::operator/=(s); return xthis; }

velocity operator+ (velocity v) const { return this->vect<T: operator+(v); }
velocity operator- (velocity v) const { return this->vect<T>::operator-(v); }
T operatorx (velocity v) const { return this->vect<T>::operator*(v); 1}
velocity operator* (T s) const { return this->vect<T>::operatorx(s); }
template<class F> friend velocity<F> operatorx (F s, velocity<F> v);

velocity operator/ (T s) const { return this->vect<T>::operator/(s); }

bool operator: (velocity v) const { return this->vect<T>::operator==(v); }
bool operator!= (velocity v) const { return this->vect<T>::operator!=(v); }
template<class F> friend F abs(velocity<F> v);




Enough for Now

Implementing full mixed precision arithmetic is the next
logical step

Quite similar to ged () and 1em () mixed precision
arguments issue

Unsurprisingly, traits classes come to rescue

Homework assignment:
o test that the traits based templates we implemented work as
intended
o test that the simplified mixed precision arithmetic version we
implemented works as intended
e implement full mixed precision aritmetic using traits classe as
we did in ged () and 1lcm()



Template Parameters

template<int N, class T> class vertex : public position<T> {
protected:
position<T> xedge[N];
public:
vertex () : position<T>() {
for(int i=0; i<N; ++i)
edge[i] = NULL;
}

int edgesno() { return N; }

// more methods, friends...

}

Templates are not restricted to a single parameter

And template parameters do not need to be types
They can also be constant expressions of int type, to:
e size internal data structures
e bound a constant into methods of an object at creation

Or constant expressions of pointer or reference type
Actually, non-type template parameters turn templates into a
powerful, Turing complete, declarative language



Non-Type Parameters and
Specialization

Non-type parameters too support overloading and
specialization

Let’s imagine we want to write a generic code to do plasma
physics simulations in 2D and 3D spaces

In two dimensions, we only have the x and y coordinates
We could:

e add an int D parameter to vect and its descendants

¢ write two specialized versions with 2 or 3 components
respectively

e adapt all operators and functions accordingly (the cross
product is now a scalar!)

¢ and create objects of position<2, double> or
position<3, float> type

But now for something completely different...



polynomial.h: Part 1 of 2

#ifndef POLYNOMIAL H
#define POLYNOMIAL H

#include <cstring>
#include <stdexcept>

template<class T=double> class polynomial {
int order;
T xcoeff;

T horner (T x) const;
public:
polynomial() : order(-1), coeff(NULL) { }
polynomial (int n) : order(n), coeff(new T[n+l]) {
for (int i = 0; i<n+l; ++i)
coeff[i] = 0.0;
}
polynomial (int n, const T c[]) : order(n), coeff(new T[n+l]) {
memcpy (coeff, ¢, (n+l)*sizeof(T));
}

~polynomial() { delete[] coeff; }

polynomial (const polynomialé& p);
polynomial& operator= (const polynomial& p);

int degree() const { return order; }
T& operator[] (int i) { return coeff[i]; }

T operator() (T x) const { return horner(x); }




polynomial.h: Part 2 of 2

// deep copy constructor

template<class T> polynomial<T>::polynomial (const polynomial<T>& p)
: order (p.order), coeff (NULL) ({
if (order >= 0) {
coeff = new T[order+l];
memcpy (coeff, p.coeff, (order+l)=xsizeof(T));

}
// deep assignment

template<class T> polynomial<T>& polynomial<T>::operator= (const polynomial<T>& p) {
if (this == &p) return xthis;
order = p.order;
delete[] coeff; coeff = NULL;
if (order >= 0) {
coeff = new T[order+l];
memcpy (coeff, p.coeff, (order+l)xsizeof(T));
}
return xthis;

}
// polynomial evaluation with horner algorithm
template<class T> T polynomial<T>::horner (T x) const {

if (!coeff) throw std::domain_error("uninitialized polynomial");
T p = coeff[order];

for (int i=order-1; i>=0; --i)
P = p*x + coeff[i];
return p;




polynomial: Miscellaneous
Remarks

All constructors put the pointer to coefficients storage in a
consistent state

Copy constructor and assignment must be explicitly defined
because of deep copy

delete on a null pointer does not cause errors

The [1 operator is overloaded to allow accessing
coefficients like it were an array
Yes, all operators can be overloaded

e arithmetic (+, -, *, /, %, ~, |, &, *, <<, >>)
increment and decrement (++, —=)
assignment (=, +=, —=, *=, /=, %=, &=, | =, A=, <<=, >>=)
comparison (==, !'=, <, >, <=, >=)
logical (!, | I, &&, ~*)
address of, dereferencing, and access (&, *, =>, [1)
function call ( () ) and more



Let's Get Real

We’ll never evaluate a 10 thousands degree polynomial with
this class

Most polynomials in use are of low degree
And high degree ones require special numeric care

Or have so many zero coefficients to make this approach
inefficient

Moreover, when iteration count is known at compile time,
compilers generate better code for loops

Let’s add an integer parameter to the template, to fix the
degree at compile time

We’ll loose some runtime flexibility, but the class will become
very simple



polynomials of Fixed Degree

#ifndef POLYNOMIAL H
#define POLYNOMIAL H

#include <cstring>

template<int N, class T=double> class polynomial {
T coeff[N+1];

T horner (T x) const {
T p = coeff[N];
for (int i=N-1; i>=0; --i)
P = p*x + coeff[i];
return p;

}

public:
polynomial () {
for (int i = 0; i<N+1; ++i)
coeff[i] = 0.0;
}

polynomial (const T c[]) {
memcpy (coeff, c, (N+1)*sizeof(T));
}

T& operator[] (int i) { return coeff[i]; }

T operator() (T x) const { return horner(x); }
}i

#endif




Remarks and New Ideas

Coefficients are now stored inside the object: no need for
deep copies
No dynamic memory allocation:

o default destructor is OK

¢ no need to throw exceptions

Too simple? Wait...

Most polynomial approximations are of very low degree

And we could suspect that the function call and the loop
cost more than the calculations

Should we build specialized template of the class for low
degrees to make them more efficient?

e NO! duplicating code is bad
o Let’s use template metaprogramming



Template Metaprogramming

We said templates are a declarative language
In declarative languages, loops are performed by recursion
o A final step is defined, for the first or the last iteration

e All other iterations are defined in terms of the next or
previous one

The basic idea is:

@ Define a function template with an integer parameter

® Having it perform one iteration and invoke itself recursively
incrementing or decrementing the parameter

@ Making a specialized version for the ending interations

@ Make all these templates expand inline

Unfortunately, we need a special kind of template
specialization not allowed in function templates

We'll have to use a helper class template



polynomial.h: Expanding the
Loop

#ifndef POLYNOMIAL H
#define POLYNOMIAL H

#include <cstring>

template<int N, class T=double> class polynomial {
T coeff[N+1];

// U is the polinomial type, M is max degree, C is current iteration
template<class U, int M, int C> struct horner { // private template struct
static U eval(const U *c, U x) { // with a static method

return horner<U,M,C-1>::eval(c, x)*x + c[M-C]; // using recursion
}
Y

template<class U, int M> struct horner<U,M,0> { // partial specialization
static U eval(const U *c, U x) { return c[M]; }

Yi

public:
polynomial() {
for (int i = 0; i<N+1; ++i)
coeff[i] = 0.0;
}
polynomial (const T c[]) {
memcpy (coeff, c, (N+1)+*sizeof(T));
}

T& operator[] (int i) { return coeff[i]; }

T operator() (T x) const { return horner<T,N,N>::eval(coeff, x); }



A Few Details

The helper class templates are private members of the class
to avoid namespace pollution

coef £ must be passed in because its address is unknown
at compile time and eval () is a static method

As methods are defined inside a class, they will be
expanded inline

A template specializing only part of its parameters has a
special syntax

And is termed a partial specialization



Hands-on Session #5

Write a program to exercise the polynomial class
template

Test that all functionalities work as desired

Test that template metaprogramming works
e By compiling with —c option
¢ And looking at symbols in the object file (using nm command)
e Then compiling with -¢ -02 or —-¢ -03
¢ And looking again at symbols in the object file
Beware: if you don’t invoke the functor, no template will be
instantiated
e And no symbols of interest will show up in the object

Then test what happens if out of bounds indexes are passed
to the [] operator



Want to Know More?

e Template metaprogramming is incredibly powerful
o Likewise, you can define if/then/else, switch-like structures,

¢ Gives way much more flexibility than the macro preprocessor
¢ It's abundantly used in libraries (notably, the STL)
e You may encounter it in very complex codes

e Template metaprogramming is at least as difficult as
powerful
e |t stresses compilers and programmers
e C++ standard and bibles are silent or very obscure
e Search for info and help on the web



Outline




Standard Template Library

Research effort started in 1979, to explore generic
implementations abstracting widely used data organizations
and manipulations

Developed in different languages, in the same decade C++
was developed

Until both efforts joined in 1993

STL revolutionized OO programming
It sports:
e container data structures hosting other objects
e jterators to access their contents
e generic algorithms operating on data in a container
e functors to be applied by the latter



Containers

A panoply of options:

vector<>
list<>
deque<>
set<>
map<>

#include <container> and start using it

STL containers shine at managing objects whose number
changes dynamically
Far easier to use and flexible than C++ built-in arrays:

manage memory for you
keep track of how many objects they hold
and more...

May appear slower than C++ built-in arrays

But they are not, if wisely used
Their methods implement code you should anyway write



Containers Memory Organization

e contiguous-memory containers like vector<>, string<>,
deque<>:

¢ store all N elements consecutively in one or more chunks of
memory

e on insertion/deletion of an element, only elements in the
same chunk have to be shifted

e thus sequential access is very fast (O(1)), while insertions
and deletions can be slow (O(N))

e node-based containers like 1ist<> or map<>:
¢ store each element in an independent chunk of memory
¢ on insertion/deletion of an element, only pointers in
neighboring ones are affected
e they trade sequential access speed (O(N)) for fast insertions
and deletions (O(1))



Choosing the Proper Container

e Do you need to insert or delete elements in arbitrary
positions?
e Containers such as lists, queues or deques will perform
better

Do you only add elements at the end?
e A vector could be ok

Do you need constant time, fast access?
¢ A vector, no doubts

Has internal data to be layout-compatible with C?
e Only vectors will do

Is it crucial that on insertion or deletion other elements do
not move in memory?

¢ Vectors and contiguous-memory containers will not do



Collecting Atoms

We want to collect in a container representations of atoms in
a box we are simulating

e An Atom class is used to represent each atom
We want direct access to any atom, using an index
Number of atoms in our box is constant during the simulation
But only known after reading a complex input file

Our (quite obvious) choice: a vector<Atom>



A Sketch to Read Atoms

// prepare an empty vector container for atoms
vector<Atom> system;

// read atomic positions and properties
// and store them in system vector
while (!in.eof() || in.good()) {

Atom current_atom();

in >> current_ atom;

system.push_back (current_atom) ;

}

// print out a report for DEBUGGING
cerr << "System has " << system.size() << "atoms" << endl;



Automatic Incremental Growth

STL containers automatically grow to accommodate
additional items

push_back () method inserts an element at the end
This operation might involve a preliminary resize, i.e.:
@ allocation of a new, bigger memory block
® copy of all elements from old to new block
@® destruction of objects in old block
@ deallocation of old memory block

Beware!
e Steps 1 to 3 can be very expensive
¢ Any pointer/reference to a container’s element might be
invalidated!



reserve () in Advance

// prepare an empty vector container for atoms
vector<Atom> system;
system.reserve (educated_guess) ;

// read atomic positions and properties
// and store them in system vector
while (!in.eof() || in.good()) {

Atom current_atom();

in >> current_ atom;

system.push_back (current_atom) ;

}

// print out a report for DEBUGGING
cerr << "System has " << system.size() << "atoms" <<

endl;



Reserving Space in Advance

e reserve (size_t n) method reserves space in advance
for n items of element type

e If we reserve enough space:
e no reallocation will be needed on push_back () calls
¢ alot of memory reallocations and data copies will be spared
¢ alot of constructor and destructor calls will be spared too

¢ Related methods:
e capacity () returns how many elements fit in memory
presently allocated by the container
e size () tells how many elements are in the container
e empty () ... guess it



An Experiment

vector<Atom> system;

cerr << "Size: " << system.size() << "Capacity: " << system.capacity() << endl;
system.reserve (n_atoms) ; // run, then comment this out and run again
while ('!in.eof() || in.good()) {

Atom current_atom();
in >> current_ atom;
atom.id = system.size(); // vectors indexes are zero-based

// beware: the following horribly slows down the code
cerr << "Size: " << system.size() << "Capacity: " << system.capacity() << endl;
}

cerr << "Size: " << system.size() << "Capacity: " << system.capacity() << endl;



Trimming Memory Usage

e Many STL implementations will double a vector<>
memory on automatic resize
¢ No problem going from 100KB to 200KB
e Anissue if going from 1GB to 2GB

e You can free unused space with:
vector<Atom> (system) . swap (system) ;

e vector<Atom> (system) creates an unamed temporary
copy of system

e Copy constructor allocates just enough memory for existing
elements

e swap (system) method call swaps memory blocks between
the two

e At ; the temporary is destructed and memory freed

e Beware: next push_back () will result in a resize



Hands-on Session #1

pop_back () method removes last element from a vector

Take the bingo class inheriting from rng

Use a vector for the list of numbers to draw

Use another vector for the list of already drawn numbers
Dispense with m field and rewrite the class relying on vectors

What do you think of the new code?



Inter-Atomic Interactions

atom; interacts with atomy; if their distance is less than R

Atomic positions evolve in time

e Some atoms will depart, some will come closer
e Interacting pairs will change

For each atom, at each simulation time step, we need to list
all atoms it interacts with

This is a costly process
e Comparing distances for each pair has O(N?) complexity
¢ R might depend on interacting atomic species and force field
e Unbearable for medium to large systems
e Newton’s Third Law can halve it, but is not enough



Linked-Cells

A widely used technique

Simulation domain is split into regular cells
Interaction lists for each atom are computed considering:

@ atoms belonging to the same cell
@® atoms belonging to 26 (in 3D) neighboring cells

Using lists of atoms located in each cell, complexity reduces
to O(N)

Still, atom moves, diffusing from cell to cell

We need suitable data structures to represent:

e atoms in a cell

o the cell itself

e the collection of cells composing our domain
e interaction lists



Our Choices

The cell itself
e A very simple class

Collection of cells

¢ Direct access to neighbouring cells is needed
e Let’'s use vectors

Atoms in a cell
e We’'ll scan them sequentially for interactions
e At each time step, some of them will change cell
e Let’s use a list

Interaction lists
e Rebuilt from scratch at each time step
e Lists or vectors?
e Let’s opt for vectors, more cache friendly and quick to access



Linked-Cells

vector< vector<Atom x> > interactions(system.size());

struct cell {
unsigned n_atoms;
list<Atom *> atom_list; // atoms belonging to current cell

cell() : n_atoms(0) {}

unsigned size() const { return n_atoms; }

Yi

// compute cell size and n_x, n_y, n_z from R and box size
vector< vector< vector<cell> > > linkedCells(n_z); // resize() at construction

// linkedCells build up
for (int k=0; k < n_z; ++k) {
linkedCells[k].resize(n_y);
for (int j=0; j < n_y; ++3j) {
linkedCells[k][j].resize (n_x)
for (int i=0; i < n_x; ++i)
linkedCells[k][j][i] = cell(); // invokes member constructors




Containers are Composable

¢ We got:
e 3 vector<>
e of vector<>s
e of vector<>s
e of structs

e Beware!

e This looks like a built-in array:
cell linkedCells[n_z][n_y][n_z]

e Butis very different!

e Each vector<>in avector< vector <> > may have
different size

e |f you forget, you might insert bugs in your code




Copies or Pointers?

Containers store copies of the template parameter type

Easy answer: use less memory
e Use pointers to system elements for atoms in cells and
interaction lists
e Use values for container of cells

Object-smart answer: copies of objects might be costly
e Copy constructor or copy assignment must be called

Inheritance-smart answer: copy leads to ‘slicing’
e If you put a derived class object in a container for its base
class and try to copy it back
¢ Unless you make copy assignments and constructors virtual,
which adds to costs
e Pointers are safer in this respect

Beware: destruction of pointer containers does not destruct
pointees
e Which is what we need, with atoms



Lists

e Lists are better for frequent insertions and deletions
e Each element is an independent chunk of memory
e No O(N) resize costs, insertion/deletion is O(1)
e Pointers to unaffected elements still valid afterwards

e They provide many insertion and deletion methods

e push_front () /push_back () insert a new item at
beginning/end of list (O(1))

e pop_front () / pop_back () delete an item at
beginning/end of list (O(1))

e insert (pos) / erase (pos) insert/delete the item at
position pos of list (O(N)!)

e remove (val) deletes all items with value val

e Beware of size () in node-based containers!
e It's (O(N))
e That's why we cache size in n_atoms member of cell
e Always use O(1) my_list.empty () instead of
(my_list.size() == 0)



Putting Atoms in Cells

n_x/BoxSide_x;
n_y/BoxSide_y;
n_z/BoxSide_z;

const double invDimCell x
const double invDimCell y
const double invDimCell z

for (int idx=0; idx<system.size(); idx++) {
Atom& atom = system[idx];

int i = invDimCell x * atom.pos.x;
int j = invDimCell y * atom.pos.y;
int k = invDimCell z * atom.pos.z;

linkedCells[i] [j] [k].atom list.push back (&atom);
linkedCells[i] [j] [k] .n_atoms++;




lists Aren’t vectors

Lists don’t provide capacity () method
e They don’t need it!

Ditto for reserwve () method

Lists provide special member functions for moving elements
¢ Generally faster since they only change pointers

Lists don’t support subscript operator [1] nor at (i)
¢ To avoid performance noxious abuses

So, how to run through a list or list portion?



lterators

e Elements of a list are accessed through iterators
¢ A generic technique
e Usable with any container kind (also for vectors)
e They mimic pointers
¢ In fact, pointers are good iterators for contiguous-memory
containers
o Trickier ones are needed for node-based containers

e Basic syntax

e begin () method returns iterator ‘pointing’ to first container
element

e end () method returns iterator ‘pointing’ right ‘after’ last
container element

e use end () for comparisons only

e j++/-—3j advances/steps back the iterator

e *7j returns the element it ‘points’ to

e #include <iterator> for more iterator flavors



Building Interaction Lists

for(int i=0; i < system.size(); i++) {
Atom& atom i = system[i];

int iC = invDimCell x * atom_i.pos.x;
int jC = invDimCell y * atom i.pos.y;
int kC = invDimCell_z * atom i.pos.z;
cells here = linkedCells[kC][jC][iC];

interactions[i] .clear() // destroy all element from the vector, capacity not affec
// cell side slightly larger than maxInteractionRadius
interactions[i] .reserve (ceil (here.n_atoms*acos(-1)/6.0)*8);

// define an iterator to explore the interaction lists
list<Atom *>::iterator j;

for (j = here.atoms.begin(); j != here.atoms.end(); j++)
if ( *j != satom i && myShortRangeField.interact (atom_ i, *j) )

interactions[i] .push_back (*j);

// loops on neighboring cells atoms ...




More STL Containers

We already met valarray<>s
deque<>
e Double ended queue

e Similar to vector<>, can easily add/remove elements on
both ends

map<> and multimap<>

e Associative containers good for (key,value) pairs
o Keep elements sorted according to some criterion

set<> and multiset<>

¢ Associative containers mimicking logical sets
o Elements search has O(log(N)) complexity

And more...



valarray<> VS. vector<>

Do not mistake one for the other

Both are composable
¢ Different elements may be containers of different size

valarray<> supports elementwise arithmetic
e vector<> does not

vector<> supports automatic resize
e valarray<> does not

Both support manual resize using resize () method

e But a valarray<> loses its contents!
e While a vectoxr<> does not



The lllusion of
Container-Independent Code

Sequence containers provide push_£ront () and/or
push_back ()

e Associative containers do not

Contiguous-memory containers offer random-access
iterators and subscripting

e Node-based containers do not
Many methods are defined for one category of containers
only
Even basics as insert or erase have different signatures and
semantics

And apparently identical methods have wildly different
performances

Different containers are different:

¢ they have strengths and weaknesses
e and were not designed to be interchangeable



Some Container-Independent Code

e However, if:

e you only use methods supported by all containers
e and do not modify the container content

e Then you can write some container-independent template
function, like this:

template<class T> void putto(ostream& s, const T& v) {
if (v.empty())
s << "Empty container!";

else {
typename T::const_iterator ij;
for (i=v.begin(); i != v.end(); ++i)

s << *xi << " '

}

s << endl;

e But you'll have to use the typename keyword to instance
container-specific iterators or nested types



STL Algorithms

Containers by themselves aren’t that much appealing
Real STL power lies in generic algorithms that serve most
fundamental programmer’s needs

e fraversal, sorting, searching, inserting, removing, etc

Commonalities:
e implemented as template functions
e operating through iterators
e element types inferred from iterator types

Able to operate on containers portions
¢ Beginning iterator ‘points’ to first element to operate upon
e End iterator ‘points’ right ‘after’ the last one

To exploit them #include:
e algorithm for general ones
e numeric for the few numerically specialized ones
e functional for function objects (a.k.a. functors)



Initializing Containers

e A common task consist in assigning values to the
container’s elements

¢ Elements can be set to a constant value using £111 ()
e Or using a more specialized functor passed to generate ()
e Both relay on operator= of container’s elements

¢ A natural task for POD, mind for user defined types
¢ Container’s elements must be already initialized

e Another common task is to print the values of elements to
stdout
e A standard for () loop can do the job
e Or you can combine copy with ostream_iterator



Assignment and Print

#include <iostream>
#include <vector>
#include <limits>
#include <cmath>
#include <algorithm>
#include <iterator>

vector<double> pi(100);
£ill(pi.begin(), pi.end(), acos(-1.0) );

template<class T>
class RandClass {
T maxv;
public:
explicit RandClass(const T &maxvalue = numeric limits<T>::max() ) : maxv(maxvalue)
T operator() (void) const { return (maxv/(RAND_MAX + 1.0))=*rand(); }
Yi

vector<int> v (90);
const int max value = 90;
generate(v.begin(), v.end(), RandClass (max_value) );

copy (pi.begin(), pi.end(), ostream iterator<double>(cout," ")); cout « endl;
copy (v.begin(), v.end(), ostream iterator<int>(cout," ")); cout « endl;




Sort Algorithm

Sort is among most known and frequently used algorithms

¢ Requires random-access iterators (works best for vectors)
e For lists, don’t use the algorithm, use sort () method

sort () reorders container elements:

e using comparison operators for the element type
e or an optional comparison function argument
e or an optional compare functor object

sort () has Nlog(N) complexity on average
e But its worst case is O(N?)

stable_sort () variantis 2Nlog(N)
Partial sorts also available



Sorting

vector<int> v (90);
. // initialize v with different numbers
sort (v.begin(), v.end()) // after sort, v is modified with its elements sorted

int builtin[90];
... // initialize builtin with different numbers
sort (&builtin[0], &builtin[90]) // good also for built-in arrays

vector<Atom> momenta (system); // Note: costly copy for illustration purposes only

class compareAtomMomenta { // order by decreasing momentum
public:
bool operator() (const Atom &a, const Atom &b) const
{ return a.massx*abs(a.vel) > b.massx*abs(b.vel); }
}i

sort (momenta.begin(), momenta.end(), compareAtomMomenta());



Search Algorithms

e Searches among elements are also very common

e find () returns first occurrence of an element matching the
search

e Match performed using (==) operator
¢ Returns container end () if no match

e find_if () accepts a predicate functor to specify complex
matching criteria

e A predicate must return a bool



Searching

int match = 90; // la paura!
vector<int>::iterator matchIterator =
find (bingoExtractions.begin(), bingoExtractions.end(), match);

class less_than_4_ neighbors {
public:
bool operator() (const vector<Atom *> &v) const
{ return v.size() < 4;}

}

vector<vector<Atom x> >::iterator firstUnder4 =
find_if (interactions.begin(), interactions.end(), less_than_4 neighbors());

class atomIsCarbon {

public:
bool operator() (const Atom &a) const
{ return a.symbol == "C";}

}

vector<Atom>::iterator firstCarbonAtom =
find if (system.begin(), system.end(), atomIsCarbon());



Specializing and Extending
Predicates

less_than_4_neighbors is ugly code

¢ And we’d probably need to compare against a different
number of neighbours

atomIsCarbon is not generic

e And we'd like to pass the species to be searched for as
argument

STL provides some helpers
e Functional template predicates: equal to, greater,
greater_equal, less, less_equal, etc
e Binders and template predicates: bind2nd(y), bind1st(x),
unary_function, binary _function
Can be combined to extend predicates and define new
operations

To access them, #include <functional>



Specializing Predicates

vector<int> v (90);
generate (v.begin(), v.end(), Rand<int> (maxv) );
sort (v.begin(), v.end()); // after sort, v is modified with its elements sorted
copy(v.begin(), v.end(), ostream_ iterator<double>(cout," ")); cout « endl;

1135567 911 12 12 14 14 17 17 19 20 21 21 23 24 25 25 26 26 29 30
31 31 31 31 32 33 35 36 36 39 39 41 42 44 46 46 46 47 47 47 47 48 49 54
56 57 57 57 59 60 61 61 64 64 66 68 69 69 69 70 71 72 72 74 75 75 76 79
80 80 80 81 82 82 82 83 83 85 85 87 87 89

counts = count_if(vl.begin(), vl.end(), bind2nd(equal_to<int>(), 5) );
// result counts = 2

// 10 <= x
counts = count_if (v.begin(), v.end(), bindlst(less_equal<int>(), 10) );
// result counts = 82

// x <= 10
counts = count_if(v.begin(), v.end(), bind2nd(less_equal<int>(), 10) );
// result counts = 8

vector<double> v2;
// build a signal in v2
double clamp = 0.5;
replace_if(vl.begin(), vl.end, clamp, bindlst( less_equal<double>(), clamp));




Extending Predicates with User
Defined Types

e Specializing predicates on PODs is easy
e We need more control when dealing with user-defined types

e STL provides common base classes to help users build their
own predicates

template <class Arg, class Res> struct unary_ function {
typedef Arg argument_type;

typedef Res result_type;

bi

template <class Arg, class Arg2, class Res> struct binary function ({
typedef Arg first_argument_type;

typedef Arg2 second_argument_type;

typedef Res result_type;

b



Extending Predicates to
User Defined Types

class less_neighbors_than : public unary function< vector<Atom*>, bool> {
int arg2;
public:
explicit less_neighbors_than (const int &x) : arg2(x) { }
bool operator() (const vector<Atom x> &v) const
{ return v.size() < arg2;}

}

vector<vector<Atom x> >::iterator firstUnder4d =
find if (c.begin(), c.end(), less_neighbors_than(4));

class atomSpeciels : public unary function<Atom,bool> {
string specie;
public:
explicit atomSpeciels (const string &x) : specie(x) { }
bool operator() (const Atom &a) const
{ return a.chemsymbol == specie;}

}

vector<Atom>::iterator firstCarbonAtom =
find if (system.begin(), system.end(), atomSpecieIs("C"));




Member Function and Pointer
Function Adapters

Most algorithms invoke built-in or user-defined operators

We may want to invoke a method or any other function on
each element in a sequence

STL provides function adapters
e mem_fun () call a method on each element pointer
e mem_fun_ref () call a method on each element reference
e ptr_fun () takes a pointer to a non-member function

A set of algorithms map function objects or adapters on
sequences
e for_ each () applies an adapter on each element
e same for transform (), that can modify elements or
generate a sequence of results
e arithmetic function objects plus, minus, multiplies, etc...

Again, #include <functional>



Applying Operations to Elements

// call method with no argument
for_each(system.begin(), system.end(), mem fun ref (&Atom::reset) );

// call method with argument timestep
for_each(system.begin(), system.end(),
bind2nd (mem_fun_ref (&Atom: :evolve), timestep) );

// compute the center of mass of the system
class centerOfMass {

position c;

double tot_m;

public:
centerOfMass() : ¢(0.0,0.0,0.0), tot_m(0.0) { } // initialize
void operator () (Atom &a) { c += a.mass * a.pos;
tot_m += a.mass; } // accumulate
position result() const { return c/tot_m; } // return sum

}

centerOfMass CoM;
for_each(system.begin(), system.end(), CoM);
cout << "Center of mass is " << CoM.result() << endl;



Composing and Transforming
Elements

// transform A based on operand, result in B
transform(A.begin(), A.end(), B.begin(), bindlst(plus(), 100) );

// combine A and B with operand, result in C
transform(A.begin(), A.end(), B.begin(), C.begin(), plus() );

// C = A + B with insertion (each result is pushed_back)
transform(A.begin(), A.end(), B.begin(), back inserter(C.begin()), plus() );

// runs through a container of pointers deleting pointees
template<class T> struct Delete ptr {
Tx operator() (T *p) {
delete p; return NULL;
}i
}
void purgePointerContainer (vector<myClass *> &somePointerContainer) {
transform(somePointerContainer.begin(), somePointerContainer.end(),
somePointerContainer.begin(), Delete_ptr<myClass>());




remove () VS. erase ()

Want to remove all elements with value val?

For lists, the best way is using remove () method

mylist.remove (88);

For associative containers, use erase () method

associative.erase(88);

For contiguous-memory containers, you must combine
erase () methods with remove () algorithm

v.erase( remove (v.begin(), v.end(), 88) , v.end());

remove () algorithm doesn't really removes elements

Shifts back (by copy!) following elements

And returns an iterator ‘pointing’ to new logical end
This behavior makes it compatible with built-in arrays
Erase will do the rest



Predicated Removal

Want to remove all elements satisfying predicate?

template<class T>
bool predicate(T x); // returns wheter x is "bad" for us

For lists, the best way is using remove_if () method

mylist.remove_if (predicate);

For contiguous-memory containers, you must combine
erase () method with remove_if () algorithm

v.erase(v.remove_if (v.begin(), v.end(), predicate), v.end());

Again, remove_if () doesn’t really remove elements

e Simply shifts back (by copy!) following elements
¢ And returns an iterator ‘pointing’ to new logical end



And More Algorithms

e Too many to cover
¢ Please find them in books and reference manuals




Outline




What We Left Out

e Much more C++ practice
e That’s your job

e Much more C++

e Much more of new and delete

Much more of streams

e Much more of STL

e Run-Time Type Information (RTTI) support
e Much more of everything

e Much more OO Programming

e Much more on design

e Much more on implementation

e Much more on structured exception handling
e Much more on template metaprogramming



The Present of C++

e C++11 is the official name of next C++ Standard (not
covered in this course)
e The overall aims for the C++11 effort were:

e make C++ a better language for systems programming and
library building

e make cncurrent systems programming type-safe and
portable

¢ make C++ a easier to teach and learn language

e C++ new features includes:

¢ several additions to the core language
o extensions to the C++ standard library (STL)



C++ 11 Core Language
Improvements

Type long long int

Changes to plain old data definitions
Generalized constant expressions
User defined literals

Rvalue references and move semantic
Range based for loops

Lambda functions

Explicit conversion operators

Extern templates

Template aliases and variadic
Memory model for multithreading



C++ 11 Standard Library
Improvements

o Type traits for metaprogramming
Smart pointers

Tuples

Hashes

Regular expressions

Extensible random number facilities
Multithreading facilities




C++ Scientific Libraries

Boost
¢ Heterogeneous collection covering scientific and
programming problems
e http://www.boost.org
Blitz++
e Array arithmetic with Fortran performance (thanks to
template metaprogramming)
e http://www.oonumerics.org/blitz/
Lapack++
e Lapack C++ wrapper
e http://lapackpp.sourceforge.net/
Trilinos
e Many packages for large-scale, complex multiphysics
problems
e http://trilinos.sandia.gov/
Many more on http://www.oonumerics.org/oon/
¢ Pick up those actively maintained and with live users’ forums



C++

¥V ANSI WG21
The C++ Standard Committee
http://www.open-std.org/jtcl/sc22/wg2l/

‘ comp.lang.c++
comp.lang.c++ Frequently Asked Questions
http://www.faqgs.org/faqs/by-newsgroup/comp/comp.lang.c++.htm

‘ B. Stroustrup
Stroustrup’s Home Page
http://www2.research.att.com/ bs/

‘ B. Stroustrup
The C++ Programming Language
Addison-Wesley, 3rd ed., 1997
Addison-Wesley, 4th ed., 2013 (C++11)

‘ cplusplus.com
The C++ Resources Network
http://www.cplusplus.com

N. Josuttis
The C++ Standard Library: A Tutorial and Reference
Addison-Wesley, 1999

‘ R. Lischner
STL Pocket Reference

4




>

>

L 4

C++ Programming

B. Eckel
Thinking in C++
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

S. Meyers

Effective C++: 55 Specific Ways to Improve Your Programs and Designs
Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library

More Effective C++: 35 New Ways to Improve Your Programs and Designs
Addison-Wesley

E. Gamma, R. Helm, R. Johnson, J. Vlissides
Design Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1994

Y. Shapira
Solving PDEs in C++ - SIAM, 2006
Mathematical Objects in C++ - CRC Press, 2009

J. Lakos
Large-Scale C++ Software Design
Addison-Wesley, 1996



Rights & Credits

These slides are ©)CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written

permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
Michela Botti

Federico Massaioli

Luca Ferraro

Stefano Tagliaventi



