Introduction to

Scientific Programming
using GPGPU and CUDA

Day 1

Sergio Orlandini Mario Tacconi
s.orlandini@cineca.it m.tacconi@cineca.it

%3¢
§i¥i3

SuperComputing Applications and Innovation

= Hands on:

* Compiling a CUDA program

* Environment and utility:
deviceQuery and nvidia-smi

* Vector Sum
* Matrix Sum

How to compile a CUDA program

= When compiling a CUDA executable, you must specify:
* compute capability: virtual architecture for PTX code

» architecture targets: real GPU architectures where the executable will run
(using the cubin code)

nvcc —arch=compute 20 -code=sm 20,sm 21

| |
virtual architecture real GPU architecture
(PTX code) (cubin)

* nvcc allows many shortcut switches as

nvcc —arch=sm 20 totarget FERMI architecture
which is equivalent to:
nvcc —arch=compute 20 -code=sm 20

= CUDA Fortran: NVIDIA worked with The Portland Group (PGI) to develop a
CUDA Fortran Compiler that provides Fortran language
* PGI CUDA Fortran does not require a new or separate compiler
* CUDA features are supported by the same PGI Fortran compiler
* Use —Mcuda option: pgf90 —-Mcuda=cc20

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

PPédd
CINECA

Hi

Hands On

Login to EURORA front-end:

ssh al8tra??@login.eurora.cineca.it

Get hands-on from repository:
https://hpc-forge.cineca.it/files/CoursesDev/public/2015//Introduction to Scientific Programming using GPGPU and CUDA/Rome

S wget --no-check-certificate

https://hpc-
forge.cineca.it/files/CoursesDev/public/2015/Introduction_to_Scientific_Programming_using_GPGPU_and_CUDA/Rome/Exercises.tar.gz

Unpack hands-on:

S tar zxvf Exercises.tar.gz

Reserve a compute node:
$ get gpu node

NB: get gpu node is an alias to:
gsub -I -1 select=l:ncpus=4:mem=2Gb,walltime=2:00:00 -A train cgpR2015 —-g
R1609301 -W group list=train cgpR2015

Load modules:
e CUDAC/C++:

$ module load gnu cuda

* CUDA FORTRAN: :
$ module load pgi gnu cuda #tocompile on front-end
$ module load profile/advanced autoload cudafor #tocompile on compute node

SCA 3

SuperComputing Applications an d Innovat tion

» deviceQuery (from the CUDA SDK): show information on CUDA devices

" nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(nhvidia-smi -q —-d UTILIZATION -1 1)

" nvcc -V shows current CUDA C compiler version

= Compile a CUDA program:

* cd Exercises/VectorAdd. Try the following compiling commands:

* nvcc vectoradd cuda.cu -o vectoradd cuda

* nvcc —arch=sm 35 vectoradd cuda.cu -o vectoradd cuda
* nvcc —arch=sm 35 -ptx vectoradd cuda.cu

* nvcc —arch=sm 35 —-keep vectoradd cuda.cu -o
vectoradd cuda

* nvcc —arch=sm 35 -keep -clean vectoradd cuda.cu -o
vectoradd cuda

* Run resulting executable with:
./vectoradd cuda

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Hands On

" deviceQuery (from the CUDA SDK): show information on CUDA devices

" nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(hvidia-smi -g -d UTILIZATION -1 1)

= Compile a CUDA program:

» cd Exercises/VectorAdd. Try the following compiling commands:

* pgf90 -Mcuda=ccl0 vectoradd cuda.f90 -o vectoradd cuda
* pgf90 -Mcuda=cc35 vectoradd cuda.f90 -o vectoradd cuda
* pgf90 -Mcuda=cc35, keepptx -ptx vectoradd cuda.f90

* pgf90 -Mcuda=cc 35, keepbin vectoradd cuda.f90 -o
vectoradd cuda

* Run resulting executable with:

* ./vectoradd cuda

= MatrixAdd:

* Write a program that performes square matrix sum:
C=A+8B

* Provide and compare results of CPU and CUDA versions
of the kernel

* Try CUDA version with different thread block sizes
(16,16) (32,32) (64,64)

» Home-works:

* Modify the previous kernel to let in-place sum:
A=A+ c*B

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Control and performances:

* Error Handling
* Measuring Performances

= Hands on:

e Measure data transfer
performances

* Matrix-Matrix product
a simple implementation
a performances

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Checking CUDA Errors

= All CUDA API returns an error code of type cudaError t

» Special value cudaSuccess means that no error occurred

= CUDA runtime has a convenience function that translates a CUDA error

into a readable string with a human understandable description of the
type of error occured

char* cudaGetErrorString(cudaError t code)

cudaError t cerr = cudaMalloc(&d_a,size);

if (cerr '= cudaSuccess)
fprintf (stderr, “%$s\n”, cudaGetErrorString(cerr)) ;

= CUDA Asynchronous API returns an error which refers only on errors
which may occur during the call on host

= CUDA kernels are asynchronous and void type so they don’t return any
error code

Checking Errors for CUDA kernels

= The error status is also held in an internal variable, which is modified by each
CUDA API call or kernel launch.

= CUDA runtime has a function that returns the status of internal error variable.
cudaError t cudaGetLastError (void)

1. Returns the status of internal error variable (cudaSuccess or other)
2. Resets the internal error status to cudaSuccess

* Error code from cudaGetLastError may refers to any other preceeding CUDA API
runtime calls
* To check the error status of a CUDA kernel execution, we have to wait for kernel

completition using the following synchronization API:
cudaDeviceSynchronize ()

// reset internal state

cudaError_ t cerr = cudaGetLastError();
// launch kernel
kernelGPU<<L<LdimGrid,dimBlock>>>(...) ;
cudaDeviceSynchronize() ;

cerr = cudaGetLastError();

if (cerr '= cudaSuccess)

C‘NE“ 5CAI fprintf (stderr, “%s\n”, cudaGetErrorString(cerr)) ; 9

"“Fﬁﬁ‘
S uperComputing Applications and Innovation

Checking CUDA Errors

" Error checking is strongly encouraged during developer phase

= Error checking may introduce overhead and unpleasant
synchronizations during production run
" Error check code can become very verbose and tedious

A common approach is to define a assert style preprocessor macro
which can be turned on/off in a simple manner

#define CUDA CHECK (X) {\
cudaError t m cudaStat = X;\

if (cudaSuccess != m cudaStat) {\
fprintf (stderr, "\nCUDA ERROR: %s in file %s line %d\n",\
cudaGetErrorString(m cudaStat), FILE , LINE);\
exit (1);\

b

CUDA CHECK(cudaMemcpy (d buf, h buf, buffSize, cudaMemcpyHostToDevice));

P4
CINECA
31812
10

SuperComputing Applications and Innovation

CUDA Events

= CUDA Events are special objects which can be used
as mark points in your code

= CUDA events markers can be used to:

* measure the elapsed time between two markers
(providing very high precision measures)

* indentify synchronization point in the code between
CPU and GPU execution flow:

a for example we can prevent CPU to go any further until some
or all preceeding CUDA kernels are really completed

a we will provide further information on synchronization
techniques during the rest of the course

o SC Al 11

SuperComputing Applications and Innovation

Using CUDA Events for Measuring Elapsed Time

cudaEvent t start, stop; integer ierr

cudaEventCreate (&start) ; type (cudaEvent) :: start, stop

cudaEventCreate (&stop) ; real elapsed

cudaEventRecord (start) ; ierr = cudaEventCreate (start)
ierr = cudaEventCreate (stop)

kernel<<<grid, block>>>(...);

ierr = cudaEventRecord(start, 0)
cudaEventRecord (stop) ; .
cudaEventSynchronize (stop) ; call kernel<<<grid,block>>>()
float elapsed; ierr = cudaEventRecord(stop, 0)
// execution time between events ierr = cudaEventSynchronize (stop)
// in milliseconds
cudaEventElapsedTime (&elapsed, ierr = cudaEventElapsedTimeé&

start, stop); (elapsed,start, stop)

cudaEventDestroy (start); ierr = cudaEventDestroy (start)
cudaEventDestroy (stop) ; ierr = cudaEventDestroy (stop)

o SCA 12

SuperComputing Applications an d Innovat tion

Performances

Which metric should we use to measure performances?

Flops: Bandwidth:

Floating point operations per second L Amount of data transfered per second

Size of transfere d data (byte)
Elapsed Time (s)

N FLOATING POINT OPERATIONS (ﬂop)

bandwidth =

flops =
Elapsed Time (s)

* A common metric for measuring * A common metric for kernel that spent the

performances of a computational most of time in executing memory

intensive kernel (compute-buond instructions (memory-bound kernel).

kernel) « Common unit of performance is GB/s.
e Common units are: Mflops, Gflops, ... Reference value depends on peak

bandwidth performances provided by the
bus or network hardware involved in the
data transfer

i SCAI 13

SuperComputing Applications an d Innovat tion

D2H and H2D Data Transfers

= GPU devices are connected to the host with a PCle bus

* PCle bus is characterized by very low latency, but also by a
low bandwidth with respect to other bus

Technology Peak Bandwidth

PClex GEN2 (16x, full duplex) 8 GB/s (peak)
PClex GEN3 (16, full duplex) 16 GB/s (peak)
DDR3 (full duplex) 26 GB/s (single channel)

= Data transfers can easily become a bottleneck in
heterogeneous environment equipped with accelerators

e Best Practice: minimize transfers between host and device or execute
them in overlap with computations

14

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Hands on: measuring bandwidth

= Measure memory bandwidth versus increasing data size, for
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use pandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

1

10
100
1024

15

SuperComputing Applications and Innovation

Hands on: measuring bandwidth

= Measure memory bandwidth versus increasing data size, for
Host to Device, Device to Host and Device to Device transfers

1. Write a simple program using CUDA events

2. Use pandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

2059 2024 69198

10 3493 3076 83274
100 3317 2869 86284
1024 3548 3060 86650

?T4db
ECA
$i%
23

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

16

Matrix-Matrix product: HOST Kernel

void MatrixMulOnHost (float* M, float* N, float* P, int Width)

{

// loop on rows

for (int row = 0; row < Width; ++row) {
// loop on columns P=M*N
for (int col = 0; col < Width; ++col) { M

A k
// accumulate element-wise products -
]

float pval = 0; = =
for (int k = 0; k < Width; ++k) { :

float a = M[row * Width + k];

float b = N[k * Width + col];

pval += a * b; :
} M P

// store final results
P[row * Width + col] = pval; +

WIDTH

WIDTH WIDTH

Matrix-Matrix product: CUDA Kernel

__global void MMKernel (float* dM, float *dN, float *dP,
int width)
{
// row,col from built-in thread indeces (2D block of threads)
int col = threadIdx.x;
int row = threadIdx.y;

// accumulate element-wise products
// NB: pval stores the dP element computed by the thread
float pval = 0;
for (int k=0; k < width; k++) {
float a = dM[row * width + k];
float b = dN[k * width + col];
pval += a * b;
}

// store final results (each thread writes one element)
dP[row * width + col] = Pvalue;

}

i SCAl

SuperComputing Applications and Innovation

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,
int width) {
float *dM, *dN, *dP;
cudaMalloc ((void**) &dM, width*width*sizeof (float)) ;
cudaMalloc ((void**) &dN, width*width*sizeof (float));
cudaMalloc ((void*¥*) &dP, width*width*sizeof (float));

cudaMemcpy (dM, hM, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (AN, hN, size, cudaMemcpyHostToDevice) ;

dim3 gridDim(1,1) ;
dim3 blockDim(width,width) ;

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);
cudaMemcpy (hP, dP, size, cudaMemcpyDeviceToHost) ;

cudaFree (dM) ; cudaFree (dN) ; cudaFree (dP) ;
}

i SCAI

g “F ﬁ‘
SuperComputing Applications and Innovation

Matrix-Matrix product: launch grid

WARNING:

= there’s a limit on the maximum number of allowed threads per block

e depends on the compute capability

How to select an appropriate (or best) thread grid ?

= respect compute capability limits for threads per block
= select the block grid so to cover all elements to be processed

= select block size so that each thread can process one or more data elements
without raise conditions with other threads

* use builtin variables blockldx and blockDim to identify which matrix subblock belong to
current thread block

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

_ //////

/////// //%/% '

-

////// -

gridDim

SuperComputing Applications and Innovation

Matrix-Matrix product: CUDA Kernel

}

global void MMKernel (float* dM, float *dN, float *dP,
int width) {

// row,col from built-in thread indeces (2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders
if (row < width && col < width) {

// accumulate element-wise products
// NB: pval stores the dP element computed by the thread
float pval = O;
for (int k=0; k < width; k++)
pval += dM[row * width + k] * dN[k * width + col];

// store final results (each thread writes one element)
dP[row * width + col] = Pvalue;

PPédd
CINECA

fi3

SuperCom|

SCA

puting Applications and Innovation

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,
int width) {
float *dM, *dN, *dP;
cudaMalloc ((void**) &dM, width*width*sizeof (float)) ;
cudaMalloc ((void**) &dN, width*width*sizeof (float)) ;
cudaMalloc ((void**) &dP, width*width*sizeof (float)) ;

cudaMemcpy (dM, hM, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (dN, hN, size, cudaMemcpyHostToDevice) ;

dim3 blockDim(TILE WIDTH, TILE WIDTH);
dim3 gridDim((width-1)/TILE WIDTH+1, (width-1) /TILE WIDTH+1) ;

MMKernel<<<dimGrid, dimBlock>>>(dM, dN, dP, width);
cudaMemcpy (hP, dP, size, cudaMemcpyDeviceToHost) ;

cudaFree (dM) ; cudaFree (dN); cudaFree (dP) ;

PPedd

A
s 1
23 i

SuperComputin g Applications and Innovation

Matrix-Matrix product: selecting optimum thread block size

Which is the best thread block size to select (i.e. TILE WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total
threads

" TILE WIDTH=38

8x8 = 64 threads >>> 1536/64 = 24 blocks needed to fully load a SM

... yet there is a limit of maximum 8 resident blocks per SM for cc 2.x

so we end up with just 64x8 = 512 threads per SM on a maximum of 1536
(only 33% occupancy)

" TILE WIDTH=16

16x16 = 256 threads >>> 1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM ... reaching full occupancy per SM!
" TILE WIDTH-=32

32x32 = 1024 threads >>> 1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

e C Al | TILE_WIDTH = 16 |

SuperComputing Applications and Innovation

25

Matrix-Matrix product: selecting optimum thread block size

Which is the best thread block size to select (i.e. TILE WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total
threads

" TILE WIDTH=38

8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a SM

... yet there is a limit of maximum 16 resident blocks per SM for cc 3.x

so we end up with just 64x16 = 1024 threads per SM on a maximum of
2048 (only 50% occupancy)

" TILE WIDTH=16

16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM ... reaching full occupancy per SM!
" TILE WIDTH-=32

32x32 = 1024 threads >>> 2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM ... reaching full occupancy per SM!

5C A| TILE WIDTH=16o0r 32 o

Matrix-matrix product: checking error

» Hands on: matrix-matrix product

»Use the proper CUDA API to check error codes

» use cudaGetLastError() to check that kernel has been completed with no errors

mycudaerror=cudaGetLastError () ; mycudaerror=cudaGetLastError ()
<chiamata kernel> <chiamata kernel>
cudaDeviceSynchronize () ; ierr = cudaDeviceSynchronize ()
mycudaerror=cudaGetLastError () ; mycudaerror=cudaGetLastError ()
if (mycudaerror != cudaSuccess) if (mycudaerror .ne. 0) write(*,*) &
fprintf (stderr, ”%$s\n”, ‘Error in kernel: ‘,mycudaerror

cudaGetErrorString (mycudaerror))

.
14

» Try to use block size greater than 32x32. What kind of error is
reported?

i 5CA|

SuperComputing Applications and Innovation 2 7

Matrix-matrix product: performances

» Measure performances of matrix-matrix product, both for CPU and GPU version, using
CUDA Events

» Follow these steps:

» Decleare a start and stop cuda event and initialize them with: cudaEventCreate

» Plase start and stop events at proper place in the code

» Record the start event using: cudaEventRecord

» Launch the CPU or GPU (remember to check for errors)

» Record the stop event using: cudaEventRecord

» Synchronize host code just after the stop event with: cudaEventSynchronize
» Measure the elapsed time between events with: cudaEventElapsedTime

» Destroy events with: cudaEventDestroy

» Express performance metric using Gflops, knowing that the matrix-matrix product
algorithm requres 2N3 operations

C Fortran

Gflops

SCAI 28

SuperCol ing Applications and Innovation

