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Agenda
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Second Day:

• GPU Memory Hierarchy
• Concurrency
• CPU-GPU Interaction
• Woring with multi-GPU
• Hands on

--- lunch---

• CUDA-Toolkit
• CUDA Enabled Libraries
• Hands on

First Day:

• Introduction to GPGPU

• CUDA Model for GPGPU

• CUDA GPU architectures

• Other GPGPU approaches

--- lunch ---

• Error Checking

• Measuring Performances

• Hands on



What is a GPU
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 Graphics  Processor   Unit

• a device equipped with an 
highly parallel 
microprocessor (many-core) 
and a private memory with 
very high bandwidth

 born in response to the 
growing demand for high 
definition 3D rendering 
graphic applications



CPU vs GPU Architectures
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 GPU hardware is specialized for problems which can be 
classified as intense data-parallel computations
• the same set of operation is executed many times in parallel on 

different data
• designed such that more transistors are devoted to data 

processing rather than data caching and flow control

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

“The GPU devotes more transistors to Data Processing”

(NVIDIA CUDA Programming Guide)



GPGPU (General Purpose GPU) and GPU computing
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 many applications that process large data sets can use a 
data-parallel programming model to speed up the 
computations

 many algorithms outside the field of image rendering are 
accelerated by data-parallel processing 

 ... so why not using GPU power for applications out of the 3D 
graphics domain?

 many attemps where made by brave programmers and 
researchers in order to force GPU APIs to threat their 
scientific data as pixel or vertex in order to be computed by 
the GPU. 

 not many survived, still the era of GPGPU computing was 
just begun ...



A General-Purpose Parallel Computing Architecture
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Compute Unified Device Architecture (CUDA)

 a general purpose parallel computing platform and programming model 
that easy GPU programming, which provides:

• a new hierarchical multi-threaded programming paradigm
• a new architecture instruction set called PTX (Parallel Thread eXecution) 

• a small set of syntax extensions to higher level programming languages (C, 
Fortran) to express thread parallelism within a familiar programming
environment

• A complete collection of development tools to compile, debug and profile
CUDA programs.

CUDA Parallel Computing Architecture

GPU Computing Applications

CUDA C OpenCL
CUDA

Fortran
DirectCompute

NVIDIA GPU + Driver



There is more than CUDA to program a GPU
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 OpenCL (Open Computing Language): 
a standard open-source programming model developed by major brands 
of hardware manufacters (Apple, Intel, AMD/ATI, nVIDIA). 

 provides extentions to C/C++ and a developer toolkit
 extensions for specific hardware (GPUs, FPGAs, MICs, etc)
 low level API, verbose programs

 Compiler directives:
• PGI Accelerator
• OpenACC
• new feature of OpenMP v4.x  for accelerators
• you hope your compiler understand what you want, and do a good job

 AMD solution: 
• ATI Stream (dead)
• ArrayFire (array-based open source library for easy programmability)
• OpenCL

 Microsoft DirectCompute
• Included in the DirectX  API (version >= 10)
• support GPU directives and shaders programming



8

 CUDA programming model

• Heterogeneous execution

• Writing a CUDA Kernels

• Thread Hierarchy

 Getting started with CUDA programming:

• the Vector-Vector Add 

• handling data transfers from
CPU to GPU memory and back

• write and launch the CUDA program



CUDA Programming Model
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 GPU is seen as an auxilirary coprocessor with its own memory 
space

 data-parallel, computational-intensive portions of a program can 
be executed on the GPU 
• each data-parallel computational portion can be isolated into a 

function, called CUDA kernel, that is executed on the GPU
• CUDA kernels are executed by many different threads in parallel
• each thread can compute different data elements independently
• the GPU parallelism is very close to the SPMD (Single Program Multiple 

Data) paradigm. Single Instruction Multiple Threads (SIMT) according
to the Nvidia definition. 

 GPU threads are extremely light weight
• no penalty in case of a context-switch (each thread has its own 

registers)
• the more are the threads in flight, the more the GPU hardware is able

to hide memory or computational latencies, i.e better overall
performances at executing the kernel function



CUDA Execution Model
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 serial portions of a program, or those with low level of parallelism, keep running
on the CPU (host)

 Data-parallel , computational intensive portions of the program are isolated into
CUDA kernel function. The CUDA kernel are  executed onto the GPU (device)

Host code (CPU)

Host code (CPU)

Device code (GPU)

. . .

. . .

Device code (GPU)



CUDA syntax extensions to the C language
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CUDA defines a small set of extensions to the high level language as
the C in order to define the kernels and to configure the kernel
execution.  

 A CUDA kernel function is defined using the __global__ 
declaration

 when a CUDA kernel is called, it will be executed N times in 
parallel by N different CUDA threads on the device

 the number of CUDA threads that execute that kernel is specified 
using a new syntax, called kernel execution configuration
• cudaKernelFunction <<<...>>> (arg_1, arg_2, ..., arg_n)

 each thread has a unique thread ID 
• the thread ID is accessible within the CUDA kernel through the built-in 

threadIdx variable 

 the built-in variables threadIdx are a 3-component vector 
• use .x, .y, .z to access its components



A simple CUDA program
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int main(int argc, char *argv[]) {

int i; 

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

__global__

void gpuVectAdd( const double *u, 

const double *v, double *z)

{  // use GPU thread id as index

i = threadIdx.x;

z[i] = u[i] + v[i];

}

int main(int argc, char *argv[]) {

...

// z = u + v

{

// run on GPU using 

// 1 block of N threads in 1D

gpuVectAdd <<<1,N>>> (u, v, z);

}

...

}



CUDA Threads
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 threads are organized into blocks of threads

• blocks can be 1D, 2D, 3D sized in threads

• blocks can be organized into a 1D, 2D, 3D grid of blocks

• each block of threads will be executed independently

• no assumption is made on the blocks execution order

 each block has a unique block ID

• the block ID is accessible within the CUDA kernel through the 
built-in blockIdx variable

 The built-in variable blockIdx is a 3-component vector 

• use .x, .y, .z to access its components

Grid
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Block
(2,1)

Block
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(1,0)
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(2,0)

Thread
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(1,0)

Thread
(2,0)

Thread
(3,0)
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(4,0)

Thread
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blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units



Simple 1D CUDA vector add

14

__global__

void gpuVectAdd( int N, const double *u, const double *v, double *z)

{  

// use GPU thread id as index

index = blockIdx.x * blockDim.x + threadIdx.x;

// check out of border access

if ( index < N ) {

z[index] = u[index] + v[index];

}

}

int main(int argc, char *argv[]) {

...

// use 1D block threads

dim3 blockSize = 512;

// use 1D grid blocks

dim3 gridSize = (N + blockSize-1) / blockSize.x;

gpuVectAdd <<< gridSize,blockSize >>> (N, u, v, z);

...

}



Composing 2D CUDA Thread Indexing

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i;

threadIdx:

thread coordinates inside a block

blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

gridDim.x * blockDim.x

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)
*(index)

i

j



2D array element-wise add (matrix add)
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 As an example, the following code adds two matrices A and 
B of size NxN and stores the result into the matrix C

__global__ void matrixAdd(int N, const float *A,  const float *B, float *C) {

int i = blockIdx * blockDim.x + threadIdx.x;

int j = blockIdx * blockDim.y + threadIdx.y;

// matrix elements are organized in row major order in memory 

int index = i * N + j;

C[index] = A[index] + B[index];

}

int main(int argc, char *argv[]) {

...

// add NxN matrices on GPU using 1 block of NxN threads

matrixAdd <<< 1, N >>> (N, A, B, C);

...

}



Memory allocation on GPU device

 CUDA API provides functions to manage data 
allocation on the device global memory:

 cudaMalloc(void** bufferPtr, size_t n)

• It allocates a buffer into the device global memory 

• The first parameter is the address of a generic pointer 
variable that must point to the allocated buffer 

 it must be cast to (void**)! 

• The second parameter is the size in bytes of the buffer 
to be allocated

 cudaFree(void* bufferPtr)

• It frees the storage space of the object 



Memory Initialization on GPU device

 cudaMemset(void* devPtr, int value, size_t count)

It fills the first count bytes of the memory area pointed 
to by devPtr with the constant byte of the int  value 
converted to unsigned char.

• it’s like the standard library C memset() function

• devPtr - Pointer to device memory 

• value - Value to set for each byte of specified memory 

• count - Size in bytes to set

 REM: to initialize an array of double (float, int, …) to a 
specific value you need to execute a CUDA kernel. 



Memory copy between CPU and GPU
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 cudaMemcpy(void *dst, void *src, size_t size, direction) 

• dst: destination buffer pointer

• src: source buffer pointer

• size: number of bytes to copy

• direction: macro name which defines the direction of data copy
 from CPU to GPU: cudaMemcpyHostToDevice (H2D)

 from GPU to CPU: cudaMemcpyDeviceToHost (D2H)

 on the same GPU: cudaMemcpyDeviceToDevice

• the copy begins only after all previous kernel have finished

• the copy is blocking: it prevents CPU control to proceed further in 
the program until last byte has been transfered

• returns only after copy is complete



CUDA 4.x - Unified Virtual Addressing

 CUDA 4.0 introduces a unique virtual address space for memory
(Unified Virtual Address) shared between GPU and HOST:

• the actual memory type a data resides is automatically understood at runtime
• greatly simplify programming model
• allow simple addressing and transfer of data among GPU devices

Pre-UVA UVA

A macro for each combination of 
source/destination

The system keeps track of the 
buffer location. 

cudaMemcpyHostToHost

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault
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CUDA 6.x - Unified Memory

 Unified Memory creates a pool of memory with an address
space that is shared between the CPU and GPU. In other
word, a block of Unified Memory is accessible to both the 
CPU and GPU by using the same pointer;

 the system automatically migrates data allocated in Unified 
Memory mode between the host and device memory

• no need to explicitly declare device memory regions

• no need to explicitly copy back and forth data between CPU and 
GPU devices

• greatly simplifies programming and speeds up CUDA ports

 REM: it can result in performances degradation with respect
to an explicit, finely tuned data transfer.
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void sortfile(FILE *fp, int N) {

char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, compare);

qsort<<< ... >>> (data, N, 1, compare);

cudaDeviceSynchronize();

use_data(data);

cudaFree(data);

}

Sample code using CUDA Unified Memory 
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void sortfile (FILE *fp, int N) {

char *data;

data = (char *) malloc (N);

fread(data, 1, N, fp);

qsort(data, N, 1, compare);

use_data(data);

free(data)

}

CPU code GPU code



Three steps for a CUDA porting
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1. identify data-parallel, computational intensive portions
1. isolate them into functions (CUDA kernels candidates)
2. identify involved data to be moved between CPU and GPU

2. translate identified CUDA kernel candidates into real CUDA 
kernels
1. choose the appropriate thread index map to access data
2. change code so that each thead acts on its own data

3. modify code in order to manage memory and kernel calls
1. allocate memory on the device
2. transfer needed data from host to device memory
3. insert calls to CUDA kernel with execution configuration syntax
4. transfer resulting data from device to host memory



Vector Sum
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int main(int argc, char *argv[]) {

int i; 

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

program vectoradd

integer :: i

integer, parameter :: N=1000

real(kind(0.0d0)), dimension(N):: u, v, z

call initVector (u, N, 1.0)

call initVector (v, N, 2.0)

call initVector (z, N, 0.0)

call  printVector (u, N)

call  printVector (v, N)

! z = u + v

do i = 1,N

z(i) = u(i) + v(i)

end do

call printVector (z, N)

end program

1. identify data-parallel computational intensive portions



 each thread execute the same kernel, but act on different data:
• turn the loop into a CUDA kernel function 
• map each CUDA thread onto a unique index to access data
• let each thread retrieve, compute and store its own data using the unique address
• prevent out of border access to data if data is not a multiple of thread block size

Vector Sum
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const int N = 1000;

double u[N], v[N], z[N];

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z) 

{

// index is a unique identifier for each GPU thread

int index =  blockIdx * blockDim.x + threadIdx.x ;

if (index < N)

z[index] = u[index] + v[index];

}

2. translate the identified data-parallel portions into CUDA kernels



Vector Sum

__global__  void gpuVectAdd (int N, const double *u, const double *v, double *z) 

{

// index is a unique identifier of each GPU thread

int index =  blockIdx.x * blockDim.x + threadIdx.x  ;

if (index < N)

z[index] = u[index] + v[index];

}

(0) (1) (2)

^(index)

(3)(0) (1) (2) (3) (4)

The __global__ qualifier declares a CUDA 
kernel

CUDA kernels are special C functions:
• can be called from host only
• must be called using the execution configuration 

syntax
• the return type must be void
• they are asynchronous: control is returned

immediately to the host code
• an explicit synchronization is needed in order to 

be sure that a CUDA kernel has completed the 
execution

2. translate the identified data-parallel portions into CUDA kernels



Vector Sum
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module vector_algebra_cuda

use cudafor

contains

attributes(global) subroutine gpuVectAdd (N, u, v, z)

implicit none

integer, intent(in), value :: N

real, intent(in) :: u(N), v(N)

real, intent(inout) :: z(N)

integer :: i

i = ( blockIdx%x - 1 ) * blockDim%x + threadIdx%x

if (i .gt. N) return

z(i) = u(i) + v(i)

end subroutine

end module vector_algebra_cuda

2. Translate the identified parallel portions into CUDA kernels



Vector Sum
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attributes(global) subroutine gpuVectAdd (N, u, v, z)

...

end subroutine

program vectorAdd

use cudafor

implicit none

interface

attributes(global) subroutine gpuVectAdd (N, u, v, z)

integer, intent(in), value :: N

real, intent(in) :: u(N), v(N)

real, intent(inout) :: z(N)

integer :: i

end subroutine

end interface

...

end program vectorAdd

If the kernels are not defined

within a module, then an 

explicit interface must be 

provided for each kernel you

want to launch within a 

program unit.

2. translate identified parallel parts into CUDA kernels



Vector Sum
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double *u_dev, *v_dev, *z_dev;

cudaMalloc((void **)&u_dev, N * sizeof(double));

cudaMalloc((void **)&v_dev, N * sizeof(double));

cudaMalloc((void **)&z_dev, N * sizeof(double));

real(kind(0.0d0)), device, allocatable, dimension(:,:) :: u_dev, v_dev, z_dev

allocate( u_dev(N), v_dev(N), z_dev(N) )

 CUDA C API:    cudaMalloc(void **p, size_t size)

• allocates size bytes of GPU global memory

• p is a valid device memory address (i.e. SEGV if you dereference 
p on the host)

 in CUDA Fortran the attribute device needs to be used while 
declaring a GPU array. The array can be allocated by using the 
Fortran statement allocate:

3. manage memory transfers and kernel calls



Vector Sum
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double *u_dev;

cudaMalloc( , N*sizeof(double));

 &u_dev
• u_dev  it’s a variable defined on the host memory
• u_dev contains an address of the device memory
• C pass arguments to function by value

 we need to pass u_dev by reference to let its value be modified by the 
cudaMalloc function

 this has nothing to do with CUDA, it’s a C common idiom
 if you don’t understand this, probably you are not ready for this course

 (void **) is a cast to force cudaMalloc to handle pointer to 
memory of any kind

 again, if you don’t understand this…

(void **) &u_dev

3. manage memory transfers and kernel calls



Vector Sum
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cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);

cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

u_dev = u ; v_dev = v

 CUDA C API: 
cudaMemcpy(void *dst, void *src, size_t size, direction)

• copy size bytes from the src to dst buffer

 in CUDA Fortran you can use the array syntax

3. manage memory transfers and kernel calls



Vector Sum
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Insert calls to CUDA kernels using the execution configuration syntax: 

kernelCUDA<<<numBlocks,numThreads>>>(...)

specifying the thread/block hierarchy you want to apply:

• numBlocks: specify grid size in terms of thread blocks along each 
dimension

• numThreads: specify the block size in terms of threads along each 
dimension

dim3 numThreads(32);

dim3 numBlocks( ( N + numThreads – 1 ) / numThreads.x );

gpuVectAdd<<<numBlocks, numThreads>>>( N, u_dev, v_dev, z_dev );

type(dim3) :: numBlocks, numThreads

numThreads = dim3( 32, 1, 1 )

numBlocks = dim3( (N + numThreads%x - 1) / numThreads%x, 1, 1 )

call gpuVectAdd<<<numBlocks,numThreads>>>( N, u_dev, v_dev, z_dev )

3. manage memory transfers and kernel calls



Vector Sum: the complete CUDA code
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double *u_dev, *v_dev, *z_dev;

cudaMalloc((void **)&u_dev, N * sizeof(double));

cudaMalloc((void **)&v_dev, N * sizeof(double));

cudaMalloc((void **)&z_dev, N * sizeof(double));

cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);

cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

dim3 numThreads( 256); // 128-512 are good choices

dim3 numBlocks( (N + numThreads.x - 1) / numThreads.x );

gpuVectAdd<<<numBlocks, numThreads>>>( N, u_dev, v_dev, z_dev );

cudaMemcpy(z, z_dev, N * sizeof(double), cudaMemcpyDeviceToHost);

real(kind(0.0d0)), device, allocatable, dimension(:,:) :: u_dev, v_dev, z_dev

type(dim3) :: numBlocks, numThreads

allocate( u_dev(N), v_dev(N), z_dev(N) )

u_dev = u; v_dev = v

numThreads = dim3( 256, 1, 1 ) ! 128-512 are good choices

numBlocks = dim3( (N + numThreads%x – 1) / numThreads%x, 1, 1 )

call gpuVectAdd<<<numBlocks,numThreads>>>( N, u_dev, v_dev, z_dev )

z = z_dev
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 CUDA Architecture
• FERMI and KEPLER generation
• more on CUDA Execution Model

 Compiling a CUDA program
• PTX, cubin, what’s inside
• computing capability

 other GPGPU approaches
• OpenCL
• OpenACC
• Intel Xeon Phi (MIC) coprocessor



NVIDIA Architectures naming
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 Desktop & laptop computers: GeForce

• gaming, multimedia

 Mobile devices: Tegra

• SOC for tablets and smartphones

 Workstation: Quadro

• professional graphics applications such as CAD, 
modeling 3D, animation and visual effects

 GPGPU: Tesla

• High Performance Computing



NVIDIA Fermi Architecture
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 16 Streaming Multiprocessors (SM)

 4-6 GB global memory with ECC

 first model with a cache hierarchy:

• L1 (16-48KB) per SM

• L2 (768KB) shared among all SM

 2 independent controllers for data 
transfer from/to host through PCI-
Express

 Global thread scheduler 
(GigaThread global scheduler) which 
manage and distribute thread blocks 
to be processed on SM resources



Fermi Streaming Multiprocessor (SM)
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Streaming Multiprocessor 
sports:

 32/48 CUDA cores with an 
arithmetic logic unit (ALU) and a 
floating point unit (FPU) fully 
pipelined

 floating point operations are fully  
IEEE 754-2008 a 32-bit e a 64-bit
• fused multiply-add (FMA) for both 

single and double precision

 32768 registers (32-bit)

 64KB configurable L1
shared-memory/cache 
• 48-16KB or 16-48KB shared/L1 cache

 16 load/store units

 4 Special Function Unit (SFU) to 
handle trascendental mathematical 
functions (sin, sqrt, recp-sqrt,..)



NVIDIA Kepler Architecture
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 x3 performance/watt
with respect to FERMI 
• 28nm litography

 192 CUDA cores

 4 warp scheduler (2 dispatcher)
• 2 independent instruction/warp

 standard IEEE 754-2008 

 65536 registers per SM (32-bit)

 32 load/store units

 32 Special Function Unit

 1534KB L2 cache (x2 vs Fermi)

 64KB shared-memory/cache 
+ 48KB read-only L1 cache

 16 texture units (x4 vs Fermi)



more on the CUDA Execution Model
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when a CUDA kernel is invoked:

 each thread block is assigned to a SM in a round-
robin mode
• a maximum number of blocks can be assigned to each SM, 

depending on hardware generation and on how many 
resorses each block needs to be executed (registers, shared 
memory, etc)

• the runtime system maintains a list of blocks that need to 
execute and assigns new blocks to SMs as they complete the 
execution of blocks previously assigned to them.

• once a block is assigned to a SM, it remains on that SM until 
the work for all threads in the block is completed

• each block execution is independent from the other
(no synchronization is possible among them)

 thread of each block are partitioned into warps of 
32 thread each, so to map a each thread with a 
unique consecutive thread index in the block, 
starting from index 0.

 the scheduler select for execution a warp from one 
of the residing blocks in each SM.

 A warp execute one common instruction at a time
• each CUDA core take care of one thread in the warp
• fully efficiency when all threads agree on their execution path

Software Hardware

Thread

CUDA 

core

Blocco di 

Thread Streaming

Multiprocessor

...

Griglia GPU



Trasparent Scalability
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 CUDA runtime system can execute blocks in any order 
relative to each other.

 This flexibility enables to execute the same application 
code on hardware with different numbers of SM

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

SM2



Resources per Thread Block
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 heach CUDA kernel needs a specific 
amount of resources to run

 Once blocks are assigned to the SM, 
registers are assigned to each thread 
block, depending on kernel required 
resources

 Once assigned, registers will belong to 
that thread until the thread block 
complete its work

 so that each thread can access only its 
own assigned registers

 allow for zero-overload schedule when 
content switching among different warp 
execution 



Assigning Thread Blocks to SM
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 Let’s provide an example of block assignmend 
on a SM:

• Fermi architecture: 32768 register per SM
• CUDA kernel grid with 32x8 thread blocks
• CUDA kernel needs 30 registers

 How many thread blocks can host a single SM?

• each block requires
30x32x8 = 7680 registers

• 32768/7680 = 4 blocks + “reminder”
• only 4 blocks can be hosted (out of 8)

 What happen if we modify the kernel a little bit, 
moving to an implementation which requires 33 
registers?

• each block now requires 
33x32x8 = 8448 registers

• 32768/8448 = 3 blocks + “reminder”
• only 3 blocks! (out of 8)

 25% reduction of potential parallelism

4 blocks 3 blocks



Hiding Latencies

43

 What is latency?

• the number of clock cycles needed to complete an istruction
• ... that is, the number of cycles I need to wait for before another dependent 

operation can start
 arithmetic latency (~ 18-24 cycles)
 memory access latency (~ 400-800 cycles)

 We cannot discard latencies (it’s an hardware design effect), but we can 
lesser their effect and hide them.

• saturating computational pipelines in computational bound problems
• saturating bandwidth in memory bound problems

 We can organize our code so to provide the scheduler a sufficient number 
of independent operations, so that the more the warp are available, the 
more content-switch can hide latencies and proceed with other useful 
operations

 There are two possible ways and paradigms to use (can be combined too!)

• Thread-Level Parallelism (TLP)
• Instruction-Level Parallelism (ILP)



Thread-Level Parallelism (TLP)
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 Strive for high SM occupancy: that is try to provide as much 
threads per SM as possible, so to easy the scheduler find a 
warp ready to execute, while the others are still busy

 This kind of approach is effective when there is a low level of 
independet operations per CUDA kernels



Instruction-Level Parallelism (ILP)
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 Strive for multiple independent operations inside you CUDA 
kernel: that is, let your kernel act on more than one data

 this will grant the scheduler to stay on the same warp and 
fully load each hardware pipeline

 note: the scheduler will 
not select a new warp 
untill there are eligible 
instructions ready to 
execute on the current 
warp



CUDA Compilation Workflow
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 each source file with CUDA extension should 
be compiler with a proper CUDA aware 
compiler
• nvcc CUDA C (NVIDIA)
• pgf90 -Mcuda CUDA Fortran (PGI)

 CUDA compiler processes the source code, 
separating device code from host code:
• host is modified replacing CUDA extensions by the 

necessary CUDA C runtime functions calls
• the resulting host code is output to a host compiler
• device code is compiled into the PTX assembly form

 starting from the PTX assembly code you can:
• generate one or more object forms (cubin) 

specialized for specific GPU architectures
• generate an executable which include both PTC 

code and object code

CUDA

Compiler

CUDA Source

Code

PTX Code

Virtual

CPU Code

PTX to Target
Compiler

G80 … GPU 

cubin binary object

Physical

just-in-time 

compilation



Compute Capability
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 the compute capability of a device describes its architecture

• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_10 basic CUDA support

compute_13 improved memory accesses 
+ double precision + atomics

compute_20 FERMI architecture 
caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, 
concurrent kernels/copies, function pointers, recursion

compute_30 KEPLER K10 architecture (support only single precision)

compute_35 KEPLER K20, K20X, K40 architectures 



Capability: resources constraints



CUDA Driver Vs Runtime API 

 CUDA is composed of two APIs:
• the CUDA runtime API
• the CUDA driver API

 They are mutually exclusive

 Runtime API: 
• easier to program 
• it eases device code management: it’s 

where the C-for-CUDA language lives

 Driver API:
• requires more code: no syntax  sugar for 

the kernel launch, for example
• finer control over the device expecially 

in multithreaded application
• doesn’t need nvcc to compile the host 

code. 



CUDA Driver API

 The driver API is implemented in the nvcuda dynamic library. All its entry 
points are prefixed with cu.

 It is a handle-based, imperative API: most objects are referenced by 
opaque handles that may be specified to functions to manipulate the 
objects.

 The driver API must be initialized with cuInit() before any function from 
the driver API is called. A CUDA context must then be created that is 
attached to a specific device and made current to the calling host thread.

 Within a CUDA context, kernels are explicitly loaded as PTX or binary 
objects by the host code**.

 Kernels are launched using API entry points.

 **by the way, any application that wants to run on future device 
architectures must load PTX, not binary code



Vector add: driver Vs runtime API

// driver API

// initialize CUDA

err = cuInit(0);

err = cuDeviceGet(&device, 0);

err = cuCtxCreate(&context, 0, device);

// setup device memory

err = cuMemAlloc(&d_a, sizeof(int) * N);

err = cuMemAlloc(&d_b, sizeof(int) * N);

err = cuMemAlloc(&d_c, sizeof(int) * N);

// copy arrays to device

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N);

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N);

// prepare kernel launch

kernelArgs[0] = &d_a;

kernelArgs[1] = &d_b;

kernelArgs[2] = &d_c;

// load device code (PTX or cubin. PTX here)

err = cuModuleLoad(&module, module_file);

err = cuModuleGetFunction(&function, module,kernel_name);

// execute the kernel over the <N,1> grid

err = cuLaunchKernel(function, N, 1, 1,  // Nx1x1 blocks

1, 1, 1, // 1x1x1 threads

0, 0, kernelArgs, 0);

// runtime API

// setup device memory

err = cudaMalloc((void**)&d_a, sizeof(int) * N);

err = cudaMalloc((void**)&d_b, sizeof(int) * N);

err = cudaMalloc((void**)&d_c, sizeof(int) * N);

// copy arrays to device

err=cudaMemcpy(d_a, a, sizeof(int) * N, cudaMemcpyHostToDevice);

err=cudaMemcpy(d_b, b, sizeof(int) * N, cudaMemcpyHostToDevice);

// launch kernel over the <N, 1> grid

matSum<<<N,1>>>(d_a, d_b, d_c); // CUDA C syntax sugar!



The Open Computing Language: OpenCL

 OpenCL is an open standard for cross-platform, parallel 
programming of modern processors. i.e,  multi core CPU and 
GPGPU . OpenCL is a low-level C API (but C++ bindings are also 
available) 

 it can be used to program heterogeneous computer architecture 
(multicore CPU + accelerator, OCL slogan: ‘program once, run 
everywhere’)

 it can be used to program NVIDIA GPU, AMD GPU or even 
Imagination Technology GPU (i.e. you don’t need to get married 
with NVIDIA GeForce/Tesla/Quadro products)

 So, how does the OpenCL framework look like?
• it supports the data parallel programming paradigm
• it has its dialects: a CUDA grid translates into a NDrange, a warp 

becomes a wavefront and so on…
• From a programmer point of view: very close to the CUDA driver API



Vector add: OpenCL Host Code
// initialize OpenCL

err = clGetPlatformIDs(1, &cpPlatform, NULL);

err = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);                  

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);                            

queue = clCreateCommandQueue(context, device_id, 0, &err);                                       

// setup device memory

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);                            

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL, NULL);            

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);           

// copy array to the device

err = clEnqueueWriteBuffer(queue, d_a, CL_TRUE, 0, bytes, h_a, 0, NULL, NULL);              

err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0, bytes, h_b, 0, NULL, NULL);         

// prepare kernel launch

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);                                                           

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);                                                           

// load, *COMPILE* and *LINK* device code

program = clCreateProgramWithSource(context, 1,

(const char **) & kernelSource, NULL, &err);                                          

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);                                                               

kernel = clCreateKernel(program, "vecAdd", &err);                                                                    

// Execute the kernel over the NDrange

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,               

0, NULL, NULL); 

// initialize CUDA

err = cuInit(0);

err = cuDeviceGet(&device, 0);

err = cuCtxCreate(&context, 0, device);

// setup device memory

err = cuMemAlloc(&d_a, sizeof(int) * N);

err = cuMemAlloc(&d_b, sizeof(int) * N);

err = cuMemAlloc(&d_c, sizeof(int) * N);

// copy arrays to the device

err = cuMemcpyHtoD(d_a, a, sizeof(int) * N);

err = cuMemcpyHtoD(d_b, b, sizeof(int) * N);

// prepare kernel launch

kernelArgs[0] = &d_a;

kernelArgs[1] = &d_b;

kernelArgs[2] = &d_c;

// load device code (PTX or cubin. PTX here)

err = cuModuleLoad(&module, module_file);

err = cuModuleGetFunction(&function, module,kernel_name);

// execute the kernel over the <N,1> grid

err = cuLaunchKernel(function, N, 1, 1,  // Nx1x1 blocks

1, 1, 1, // 1x1x1 threads

0, 0, kernelArgs, 0);



Vector add: OpenCL Device Code
// OpenCL kernel. Each work item takes care of one element of c
const char *kernelSource = \

"__kernel void vecAdd(  __global double *a,\n"\

"                       __global double *b,\n"\

"                      __global double *c)\n"\

“{\n"\

“//Get our global thread ID\n"\

"    int id = get_global_id(0);\n"\

“\n"\

“//Make sure we do not go out of bounds\n"\

"    if (id < n) \n"\

"        c[id] = a[id] + b[id];\n"\

“}\n" ;

• OpenCL kernels are much like CUDA kernels, but ...

• they are strings loaded at need on the host code

• compiled and linked at run-time

• there are such many similarities between OpenCL/CUDA that source-to-source 
translator programs are growing or on the way (i.e: CU2CL)



OpenACC

 OpenACC is an open standard for parallel 
programming design to easy the access to 
heterogeneous architectures

 OpenACC let the programmer instert hints to 
the compiler (through directives) to identify 
the regions to be accelerated

 the compiler will interpret these directive and 
do its best to arrange code to run on any 
accelerator it can support.

Major advantages:

• High-Level: does require a very small set of instruction to be on the way, with respect to 
the learning curve required by OpenCL, CUDA, etc.

• Single source: source code remains the same for the serial/parallel/accelerated version

• Portable: provider a good level of support to many accelerators devices from many 
vendors 

• most of these features are now part of the OpenMP v4.x revision
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OpenACC: A Simple Example

int main(){

int N = 1<<10;

float *x, *y;

x = (float*)malloc(N*sizeof(float));

y = (float*)malloc(N*sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f; y[i] = 1.0f; 

} 

saxpy(N, 1.0f, x, y);

return 0;  

} 

void saxpy (int n, float a,

float *x, float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

pgcc -acc -ta=nvidia -Minfo=accel saxpy.c 

saxpy:

3, Generating present_or_copyin(x[0:n])

Generating present_or_copy(y[0:n])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

4, Loop is parallelizable

Accelerator kernel generated

4, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

CC 1.0 : 8 registers; 48 shared, 0 constant, 0 local memory bytes

CC 2.0 : 12 registers; 0 shared, 64 constant, 0 local memory bytes

Compiler is able to parallelize
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OpenAcc performance

SpeedUp = 4x

SpeedUp vs 6 CPU cores

SpeedUp vs 1 CPU core

CPU: Intel Xeon X5680

6 Cores @ 3.33GHz

GPU: NVIDIA Tesla M2070
Example: Laplace equation in 2D
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Many Integrated Core (MIC): the Intel answer to GPGPU 
computing

 The Intel Xeon Phi KNC (Knight Corner*) is a 
(60+1)-x86-core SMP chip. 60 cores are 
available for computation, 1 is reserved for 
the system.

 each core has a 512-bit wide SSE vector unit

 all cores are connected by a bi-directional 512 
bit ring bus

 512 KB of L2 cache and 32KB of I/D L1 (each 
core) 

 A Xeon Phi KNC is packaged into a PCIe add-
on card together with 8 GB of GDDR5 
dedicated ram (theoretical peak perf. : 352 
GB/s. actual peak with ECC: 200 GB/s)

 Intel claims: ‘Up to 1 teraflops of  double 
precision perfomance’ 

*Knight Corner is the codename of the first-gen Intel MIC architecture processor. Second-gen 

MIC codename will be Knight Landing.  



Intel Xeon Phi: programming model

 Familiar OpenMP (or pthreads), MPI programming model
• no new language or new parallel programming paradigm to 

learn: what you already know about parallel programming is 
basically all that you need to start programming a Xeon Phi 
processor.

 OpenCL support to the MIC architecture is on its way
• can help the porting of CUDA application.  CUDA→OpenCL MIC 

with the CU2CL source-to-source translator, for example.

 Porting an existing OpenMP/MPI application onto a Xeon Phi 
processor can be as easy as to recompile the application with 
a couple of new MIC-specific pragmas and compiler flag 
activated, 
• *but* to make that application running at full speed on the Xeon 

Phi chip a little more effort is probably needed.



Intel Xeon Phi: accessing modes

 Offload mode: 

• using pragmas to augment existing codes so they offload 
work from the host processor to the Intel Xeon Phi 
coprocessors(s)

• Accessing the coprocessor as an accelerator through 
optimized libraries such as the Intel MKL (Math Kernel 
Library)

 Native mode: 

• Recompiling source code to run the entire application 
directly on coprocessor as a separate many-core Linux SMP 
compute node

• Using each coprocessor as a node in an MPI cluster or, 
alternatively, as a device containing a cluster of MPI nodes



Intel Xeon Phi Vs Nvidia K20. 
MAGMA LU factorization

these two images are taken from the presentations: 

http://icl.cs.utk.edu/projectsfiles/magma/pubs/25-MAGMA_1.3_SC12.pdf

http://icl.cs.utk.edu/projectsfiles/magma/pubs/24-MAGMA_MIC_03.pdf

authors: ICL-group@University of Tennesee. The ICL-group is actively developping the MAGMA

library which is a world-class performance open source Linear Algebra library for 

multicore+accelerator computer architecture: http://icl.cs.utk.edu/magma/index.html

http://icl.cs.utk.edu/projectsfiles/magma/pubs/25-MAGMA_1.3_SC12.pdf
http://icl.cs.utk.edu/projectsfiles/magma/pubs/24-MAGMA_MIC_03.pdf
http://icl.cs.utk.edu/magma/index.html

