
Parallel programming

Introduction to Parallel Computing with MPI and OpenMP

P.Dagna

May 2015

Designing Parallel Program
The first step in developing parallel software is to first understand the

problem that you wish to solve in parallel.

Before spending time in an attempt to develop a parallel solution for a

problem, determine whether or not the problem is one that can actually be

parallelized.

•Identify the program's hotspots

The majority of scientific and technical programs usually accomplish most

of their work in a few places: profilers and performance analysis tools can

help here. Focus on parallelizing the hotspots and ignore those sections of

the program that account for little CPU usage.

•Identify bottlenecks in the program

For example, I/O is usually something that slows a program down.

May be possible to restructure the program or use a different algorithm

to reduce or eliminate unnecessary slow areas

Designing Parallel Program

Overview

In order to design and develop a parallel program, we have to pay attention at

several aspects:

– Partitioning

– Communications

– Synchronization

– Data Dependencies

– Load Balancing

– Granularity

– I/O

Designing Parallel Program
Partitioning

•One of the first steps in designing a parallel program is to break the problem

into discrete "chunks" of work that can be distributed to multiple tasks. This is

known as decomposition or partitioning.

•There are two basic ways to partition computational work among parallel

tasks: domain decomposition and functional decomposition.

Domain Decomposition:

•In this type of partitioning, the data associated with a problem is

decomposed. Each parallel task then works on a portion of of the data.

Functional Decomposition:

•In this approach, the focus is on the computation that is to be performed

rather than on the data manipulated by the computation. The problem is

decomposed according to the work that must be done. Each task then

performs a portion of the overall work.

Designing Parallel Program

Communications

The need for communications between tasks depends upon your problem:

•You DON'T need communications

– Some types of problems can be decomposed and executed in parallel

with virtually no need for tasks to share data: these types of problems

are often called embarrassingly parallel. Very little inter-task

communication is required.

•You DO need communications

– Most parallel applications are not quite so simple, and do require tasks

to share data with each other. Changes to neighboring data has a

direct effect on that task's data.

Designing Parallel Program
Communications

There are a number of important factors to consider when designing your

program's inter-task communications:

•Cost of communications

– Inter-task communication virtually always implies overhead.

– Machine cycles and resources that could be used for computation are

instead used to package and transmit data.

– Communications frequently require some type of synchronization

between tasks, which can result in tasks spending time "waiting"

instead of doing work.

– Competing communication traffic can saturate the available network

bandwidth, further aggravating performance problems.

Designing Parallel Program

Communications

•Latency vs. Bandwidth

–latency is the time it takes to send a minimal (0 byte) message from

point A to point B. Commonly expressed as microseconds.

–bandwidth is the amount of data that can be communicated per unit of

time. Commonly expressed as megabytes/sec or gigabytes/sec.

–Sending many small messages can cause latency to dominate

communication overheads. Often it is more efficient to package small

messages into a larger message, thus increasing the effective

communications bandwidth.

Designing Parallel Program

Communications

•Synchronous vs. asynchronous communications

– Synchronous communications require some type of "handshaking"

between tasks that are sharing data. This can be explicitly structured

in code by the programmer, or it may happen at a lower level

unknown to the programmer.

– Synchronous communications are often referred to as blocking

communications since other work must wait until the communications

have completed.

– Asynchronous communications allow tasks to transfer data

independently from one another. For example, task 1 can prepare and

send a message to task 2, and then immediately begin doing other

work. When task 2 actually receives the data doesn't matter.

– Asynchronous communications are often referred to as non-blocking

communications since other work can be done while the

communications are taking place.

Designing Parallel Program

Communications

•Scope of communications

– Point-to-point: involves two tasks with one task acting as the

sender/producer of data, and the other acting as the

receiver/consumer.

– Collective: involves data sharing between more than two tasks, which

are often specified as being members in a common group, or

collective.

Both of the two scopings described can be implemented synchronously or

asynchronously.

Designing Parallel Program

Synchronization

•Barrier

– Usually implies that all tasks are involved: each task performs its work

until it reaches the barrier. It then stops, or "blocks". When the last

task reaches the barrier, all tasks are synchronized.

•Lock / semaphore

– Can involve any number of tasks: typically used to serialize (protect)

access to global data or a section of code. Only one task at a time may

use (own) the lock / semaphore / flag.

– The first task to acquire the lock "sets" it. This task can then safely

(serially) access the protected data or code. Other tasks can attempt

to acquire the lock but must wait until the task that owns the lock

releases it. Can be blocking or non-blocking.

•Synchronous communication operations

Designing Parallel Program

Data Dependencies

Definition:

•A dependence exists between program statements when the order of

statement execution affects the results of the program.

•A data dependence results from multiple use of the same location(s) in

storage by different tasks.

•Dependencies are important to parallel programming because they are one

of the primary inhibitors to parallelism.

How to Handle Data Dependencies:

•Distributed memory architectures: communicate required data at

synchronization points.

•Shared memory architectures: synchronize read/write operations

between tasks.

Designing Parallel Program
Load Balancing

•Load balancing refers to the practice of distributing work among tasks so

that all tasks are kept busy all of the time.

•Load balancing is important to parallel programs for performance reasons.

For example, if all tasks are subject to a barrier synchronization point, the

slowest task will determine the overall performance.

How to Achieve Load Balance:

•Equally partition the work each task receives

– For array/matrix operations where each task performs similar work,

evenly distribute the data set among the tasks.

– For loop iterations where the work done in each iteration is similar,

evenly distribute the iterations across the tasks.

•Use dynamic work assignment

– It may become necessary to design an algorithm which detects and

handles load imbalances as they occur dynamically within the code.

Designing Parallel Program
Granularity

In parallel computing, granularity is a qualitative measure of the ratio of

computation to communication.

Periods of computation are typically separated from periods of

communication by synchronization events.

Fine-grain Parallelism:

•Relatively small amounts of computational work are done between

communication events: if granularity is too fine it is possible that the

overhead required for communications and synchronization between tasks

takes longer than the computation.

Coarse-grain Parallelism:

•Relatively large amounts of computational work are done between

communication/synchronization events but it’s harder to load balance

efficiently

Designing Parallel Program

I/O

•I/O operations are generally regarded as inhibitors to parallelism

•Parallel I/O systems may be immature or not available for all platforms

•In an environment where all tasks see the same file space, write operations can result

in file overwriting

•Read operations can be affected by the file server's ability to handle multiple read

requests at the same time

A few advices:

– Reduce overall I/O as much as possible

– Writing large chunks of data rather than small packets is usually significantly

more efficient.

– Confine I/O to specific serial portions of the job, and then use parallel

communications to distribute data to parallel tasks.

– Use local, on-node file space for I/O if possible. For example, each node may

have /tmp filespace which can used. This is usually much more efficient than

performing I/O over the network to one's home directory.

Parallel programs

Generally speaking a program parallelisation implies a subdivision of the

problem model.

After subdivision the computing tasks can be distributed among more

processes.

Two main approaches may be distinguished:

• Thread level parallelism

• Data level parallelism

Task parallelism

Thread (or task) parallelism is based on parting the operations of the

algorithm.

If an algorithm is implemented with series of independent operations these

can be spread throughout the processors thus realizing program

parallelisation.

begin

end

task 1

task 2

task 3

task 4

cpu

1

cpu

2

cpu

3

cpu

4

Data parallelism

Data parallelism means spreading data to be computed through the

processors.

The processors execute merely the same operations, but on diverse data sets.

This often means distribution of array elements across the computing units.

begin

end

task

cpu

1

cpu

2

cpu

3

cpu

4

i<4?

data
array[4]yes

no

Parallel, concurrent, distributed

What is the difference between parallel, concurrent and distributed

programming?

A program is said to be concurrent if multiple threads are generated during

execution.

A parallel program execution is carried on by multiple, tightly cooperating

threads.

A program is distributed when indipendent processes do cooperate to

complete execution.

Anyhow there are not unique definitions and authors may give different

versions. The definitions herein cited are those held by P. Pacheco, “An

introduction to parallel programming”.

Parallel, concurrent, distributed

Based on the preceding definitions, parallel and distributed programs are

concurrent programs, because multiple independent threads are working

together to complete computation.

Often a program is said to be parallel if it is executed on computing units that

share the same memory or are elsewhere connected by a high speed

network and usually are very closed together.

Distributed programs instead are executed on processors physically

distributed in a (wide) geographical area and connected by a (not so fast)

network. Program processes are therefore considered rather independent

each other.

Processes, threads and multitasking

Operating systems are sets of programs that manage software and hardware

resources in a computer. Operating systems control the usage of processor

time, mass storage, I/O devices and other resources.

When a program execution is started, the operating system generates one or

more processes. These are instances of the computer program and contain:

• Executable machine code

• A memory area, often divided in stack, heap and other parts

• A list of computer resources allocated to enable program execution

• Security data to access hardware and software resources

• Informations on the state of the process, i.e. executing, waiting for a

resource availability, memory allocation and so on

Processes, threads and multitasking

If the operating system is able to manage the execution of multiple processes

at one time, it is said to be multitasking. On high performance parallel

computers multi-tasking is usually of the pre-emptive type, i.e. slices of CPU

time are dedicated in turn to each process, unless enough multiple

computing units are available.

This means that parallel programs can be executed by concurrent processes

and the operating system is able to manage their requests. If a computing

resource is temporarily unavailable, the requiring process is halted. Anyhow

program execution may still be carried on because time slices are granted to

the processes that have the availability of the resource.

Parallel programs launched on systems where processors share a global

memory are often executed as one process containing multiple threads,

that share the computing resources of the process including process

memory and devices.

Process interactions

Process interactions may be classified as:

• Cooperation

• Competition

• Interference

•Mutual exclusion

• Deadlock

Cooperation

This kind of interaction is predictable and desirable. Cooperating

processes exchange short signals or heavier data transfers.

Process interaction leads to synchronisation and hence to a

communication if data are transferred.

Competition

This kind of interaction is undesirable but nonetheless predictable and

unavoidable. It may happen when more processes need to access a

common resource that can not be shared (as an example updating a unique

counter). Competition may be managed with so called critical sections.

Also contending processes exchange signals and synchronize but in a way

different from cooperation.

We can distinguish direct or explicit synchronisation (coming from

cooperation) from indirect or implicit synchronisation (caused by

competition).

Interference

Interference is an unpredictable and undesirable kind of

interaction usually arising from errors in developing a parallel

program. Errors could come from interactions not required by

the implemented algorithm or from interactions not properly

handled.

This kind of interaction may show up or not depending by

process execution flowing.

Mutual exclusion

Whenever more processes should not access concurrently a

computing resource the problem of realising mutual exclusion

has to be managed. This may come up from accessing devices

such as writing a disk file or from updating a common memory

space.

This kind of problem is often solved using critical sections.

Critical sections do ensure that processes can execute the

instructions contained therein but only one at a time.

Deadlock

This undesired situation is always due to programming errors

and arises when one or more processes are compelled to wait

for something that will never happen.

Processes often enter a deadlock state if they encounter a

synchronising point while some other process follow a different

executing stream. As an example a program could contain two

distinct barriers but processes can reach both of them

concurrently.

Parallel program performance

The goal of program parallelisation is to reduce execution elapsed time. This

is accomplished by distributing execution tasks across the independent

computing units. To measure the goodness of the parallelisation effort the

time spent in execution by the sequential version of the program (i.e. the

program before parallelisation optimisation) must be compared to the time

spent by the parallelised version of the program.

Let us call Tserial the execution elapsed time of the sequential version of a

program and Tparallel the execution elapsed time of the parallel version. In

an ideal case if we run the program with p computing units (or cores):

If that is true it is said the (parallel) program has a linear speed-up.

p

T
T serial
parallel =

Speed-up and efficiency

In a real program a linear speed-up is difficult to gain. It has to be considered

that the execution flow of the sequential version of the program does not

encounter troubles that the parallel version does.

Overheads in a parallel program are introduced by simply dividing the

program execution stream. Moreover there is often need of synchronisation

and data exchange; furthermore critical sections have to be implemented.

Speed-up is defined as:

The program has a linear speed-up if S=p, where p is the number of cores

used in executing the program.

parallel

serial

T

T
S =

Speed-up and efficiency
It could be difficult to get a linear speed-up because of the overheads due to

synchronisations, communications and often because of an unbalanced

distribution of the computing tasks.

This leads to decreasing speed-up while growing the number of cores,

because each core brings added overhead.

Efficiency is said to be the ratio between speedup and number of cores:

Usually more cores are added, less efficiency is measured.

parallel

serialparallel

serial

Tp

T

p

T

T

p

S
E

⋅
=

==

Overhead

Overheads are a significant issue in parallel programs and

strongly affect program efficiency.

If overhead delays have to be considered elapsed execution

times could be calculated according to:

overhead
serial

parallel T
p

T
T +=

Amdahl’s law

If we can analyze a program and measure the portion of code that must be

executed sequentially and the part of code that can be distributed across the

cores we are able to forsee the program speed-up.

As an example, if it would be possible to parallelize 90% of a program, the

remaining 10% of code runs seq uentially; then according to Amdhal law:

Tparallel = (0.9xTserial)/p + 0.1xTserial = 18/p + 2

where p = number of available cores

If Tserial = 20 sec and p = 6, then speed-up will be: S = 20/(18/p + 2) = 4.

The time spent in the parallel portion of code decreases as the number of

cores increases. Eventually this time tends to zero, but the time spent in the

sequential part of the code still remains and strongly limits the program

speed-up.

Amdahl’s law

As a consequence Amdahl's law tells that speed-up will always be less than

1/r, where r is the sequential portion of the program.

But let us not worry too much!

In real parallel computing world we have to take account of many facets and

one of the most important is problem dimension. If we consider this we can

be interested in Gustafson's (or Gustafson-Barsis') law:

SG
p = p – a (p-1)

This formula can be applied to problems for which execution time can be kept

constant increasing parallel cores as the problem dimensions increase. This

actually applies to many real cases.

Problem dimensions

Problem dimension is important because size of data to be computed

increases the processors computing time. It is possible to lower global

elapsed time by distributing the work across more processors.

But overheads due to parallelisation stuff will not grow as much, hence

speed-up is likely to increase.

Usually, as the dimension of the problem grows, speed-up will grow as well, if

enough parallel processors are added.

Speed-up and problem dimension

Efficiency and problem dimension

Scalability

In conclusion, there are basically two ways of evaluating

scalability of a program.

If global problem dimension is fixed and efficiency does not

decrease while increasing the number of cores, then it is said

that the program is strongly scalable.

If the efficiency does not decrease when problem dimension per

processor (i.e. global dimension has to be augmented as the

number of processors increases) is kept almost unchanged, then

the program is said to be weakly scalable.

Example: ANSYS Fluent benchmarks

L3
linear scalability till 128 cpus

linear scalability till 16 cpusMedium

Large

