\

24" Summer
School on
PARALLEL

COMPUTING

MPI Derived Data Types

Andrew Emerson - a.emerson@cineca. it
SuperComputing Applications and Innovation Department

CINECA

Summer
School on

COMPUTING

« What are they?

— Data types built from the basic MPI datatypes. Formally, the MPI
Standard defines a general datatype as an object that specifies
two things:

« asequence of basic datatypes
« asequence ofinteger (byte) displacements

— An easy way to represent such an object is as a sequence of
pairs of basic datatypes and displacements. MPI calls this
sequence a typemap.

typemap = {(type O, displ 0), ... (type n-1, displ n-1)}
- But for most situations you do not need to worry about the
typemap.

CINECA

Summer
School on

COMPUTING

 Why use them?

— Sometimes more convenientand efficient. For example, you
may need to send messages that contain
1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

2. contiguous data of mixed types (e.g., an integer count, followed by
a sequence ofreal numbers)

3. non-contiguous data of mixed types.

e As well as improving program readability and
portability they may improve performance.

CINECA

Summer
School on

COMPUTING

1. Construct the datatype using a template or
constructor.

2. Allocate the datatype.
. Use the datatype.
4. Deallocate the datatype.

w

You must construct and allocate a datatype before using
it. You are not required to use it or deallocate it, but it is
recommended (there may be a limit).

CINECA

Summer
School on

COMPUTING

MPI_Type_contiguous
— Simplest constructor. Makes count copies of an existing datatype

MPI_Type_vector, MPI_Type_hvector

— Like contiguous, but allows for regular gaps (stride) in the
displacements. For MPI_Type_hvector the stride is specified in
bytes.

MPI_Type_indexed, MPI_Type_hindexed

— An array of displacements of the input data type is provided as the
map for the new data type.MPI|_Type hindexed is identical to
MPI_Type indexed except that offsets are specified in byte

MPI_Type_struct

— The most general of all derived datatypes. The new data type is
formed according to completely defined map of the component data

types

CINECA

Summer
School on

COMPUTING

Allocate and deallocate

e C
— int MPI Type commit (MPI datatype *datatype)
— int MPI Type free (MPI datatype *datatype)

« FORTRAN
- INTEGER DATATYPE, MPIERROR
— MPI _TYPE COMMIT (DATATYPE, MPIERROR)
- MPI TYPE FREE (DATATYPE, MPIERROR)

e C

MPI Type vector (count, blocklength, stride, oldtype, &newtype);
MPI Type commit (&newtype) ;

MPI Send(buffer, 1, newtype, dest, tag, comm) ;

CINECA

Summer
School on

COMPUTING

MPI1_TYPE_CONTIGUOUS (count, oldtype, newtype)
IN count: replication count (hon-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

« MPI_TYPE_CONTIGUOUS constructs a typemap consisting of the replication of a
datatype into contiguous locations.

« newtype is the datatype obtained by concatenating count copies of oldtype.

—

oldtype

N S
—

newtype

CINECA 7

Summer
School on

COMPUTING

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)

IN count: Number of blocks (non-negative integer)
IN blocklen: Number of elements in each block

(non-negative integer)
IN stride: Number of elements (NOT bytes) between start of

each block (integer)

IN oldtype: Old datatype (handle)
OUT newtype: New datatype (handle)

« Consists of a number of elements of the same datatype repeated with a certain
stride

oldtype

newtype

——

blocklength = 3 elements

N— U
—

stride = 5 el.s between block starts
R

count = 2 blocks
CINECA 8

Summer
School on

COMPUTING

count = 4;
MPI Type contignous(count, MPI FLOAT, &rowtype);

1.0 2.0 3.0 4.0

al4][4]
13.0 14.0 15.0 16.0
MPI Send{&a[2][0], 1, rowtype, dest, tag, comm};
1 element of
rowtype
CINECA 9

Summer
School on

COMPUTING

count = 4; blocklength = 1; stride = 4;
MPI_Type wector{count, blocklength, stride, MPI FLOAT,

&columntype);
1.0 3.0 4.0
5.0 7.0 8.0
al[4](4]
9.0 11.0 12.0
130 15.0 16.0

MPI_Send{&al[0][1], 1, columntype, dest, tag, comm);

1 element of
columntype

CINECA ~—— 10

Summer
School on

COMPUTING

« MPI_GET_COUNT,MPI_GET_ELEMENTS

— Routines which return the number of "copies" of type datatype
and the number of basic elements (often used after a

MPI_RECV).

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)
int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype, int *count)

o MPI_TYPE_GET_EXTENT (Advanced)

— Returns the lower bound and extent of a datatype (i.e. upper
bound + padding to align the datatype). Useful for creating new
datatypes with MPI_TYPE_CREATE_RESIZED, for example.

CINECA

CINECA

Summer
School on

COMPUTING

Provide a portable and elegant way of communicating
non-contiguous or mixed types in a message.

By optimising how data is stored, should improve
efficiency during MPI send and receive (perhaps
avoiding buffering).

Derived datatypes are built from basic MPI datatypes,
according to a template. Can be used for many
variables of the same form.

Remember to commit the datatypes before using them.

