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« What are they?

— Data types built from the basic MPI datatypes. Formally, the MPI
Standard defines a general datatype as an object that specifies
two things:

« asequence of basic datatypes
« asequence ofinteger (byte) displacements

— An easy way to represent such an object is as a sequence of
pairs of basic datatypes and displacements. MPI calls this
sequence a typemap.

typemap = {(type O, displ 0), ... (type n-1, displ n-1)}
- But for most situations you do not need to worry about the
typemap.
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 Why use them?

— Sometimes more convenientand efficient. For example, you
may need to send messages that contain
1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

2. contiguous data of mixed types (e.g., an integer count, followed by
a sequence ofreal numbers)

3. non-contiguous data of mixed types.

e As well as improving program readability and
portability they may improve performance.
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1. Construct the datatype using a template or
constructor.

2. Allocate the datatype.
. Use the datatype.
4. Deallocate the datatype.

w

You must construct and allocate a datatype before using
it. You are not required to use it or deallocate it, but it is
recommended (there may be a limit).
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MPI_Type_contiguous
— Simplest constructor. Makes count copies of an existing datatype

MPI_Type_vector, MPI_Type_hvector

— Like contiguous, but allows for regular gaps (stride) in the
displacements. For MPI_Type_hvector the stride is specified in
bytes.

MPI_Type_indexed, MPI_Type_hindexed

— An array of displacements of the input data type is provided as the
map for the new data type.MPI|_Type hindexed is identical to
MPI_Type indexed except that offsets are specified in byte

MPI_Type_struct

— The most general of all derived datatypes. The new data type is
formed according to completely defined map of the component data

types
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Allocate and deallocate

e C
— int MPI Type commit (MPI datatype *datatype)
— int MPI Type free (MPI datatype *datatype)

« FORTRAN
- INTEGER DATATYPE, MPIERROR
— MPI _TYPE COMMIT (DATATYPE, MPIERROR)
- MPI TYPE FREE (DATATYPE, MPIERROR)

e C

MPI Type vector (count, blocklength, stride, oldtype, &newtype);
MPI Type commit (&newtype) ;

MPI Send(buffer, 1, newtype, dest, tag, comm) ;

CINECA




Summer
School on

COMPUTING

MPI1_TYPE_CONTIGUOUS (count, oldtype, newtype)
IN count: replication count (hon-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

« MPI_TYPE_CONTIGUOUS constructs a typemap consisting of the replication of a
datatype into contiguous locations.

« newtype is the datatype obtained by concatenating count copies of oldtype.

—

oldtype

N S
—

newtype
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MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)

IN count: Number of blocks (non-negative integer)
IN blocklen: Number of elements in each block

(non-negative integer)
IN stride: Number of elements (NOT bytes) between start of

each block (integer)

IN oldtype: Old datatype (handle)
OUT newtype: New datatype (handle)

« Consists of a number of elements of the same datatype repeated with a certain
stride

oldtype

newtype

——

blocklength = 3 elements

N— U
—

stride = 5 el.s between block starts
R

count = 2 blocks
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count = 4;
MPI Type contignous(count, MPI FLOAT, &rowtype);

1.0 2.0 3.0 4.0

al4][4]
13.0 14.0 15.0 16.0
MPI Send{&a[2][0], 1, rowtype, dest, tag, comm};
1 element of
rowtype
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count = 4; blocklength = 1; stride = 4;
MPI_Type wector{count, blocklength, stride, MPI FLOAT,

&columntype);
1.0 3.0 4.0
5.0 7.0 8.0
al[4](4]
9.0 11.0 12.0
130 15.0 16.0

MPI_Send{&al[0][1], 1, columntype, dest, tag, comm);

1 element of
columntype
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« MPI_GET_COUNT,MPI_GET_ELEMENTS

— Routines which return the number of "copies" of type datatype
and the number of basic elements (often used after a

MPI_RECV).

int MPI_Get_count( const MPI_Status *status, MPI_Datatype datatype, int *count )
int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype, int *count)

o MPI_TYPE_GET_EXTENT (Advanced)

— Returns the lower bound and extent of a datatype (i.e. upper
bound + padding to align the datatype). Useful for creating new
datatypes with MPI_TYPE_CREATE_RESIZED, for example.
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Provide a portable and elegant way of communicating
non-contiguous or mixed types in a message.

By optimising how data is stored, should improve
efficiency during MPI send and receive (perhaps
avoiding buffering).

Derived datatypes are built from basic MPI datatypes,
according to a template. Can be used for many
variables of the same form.

Remember to commit the datatypes before using them.



