
Mirko Cestari – m.cestari@cineca.it
Alessandro Marani – a.marani@cineca.it

SuperComputing Applications and Innovation Department

Introduction to EURORA
Parallel & production environment

February 09, 2015

mailto:m.cestari@cineca.it
mailto:a.marani@cineca.it

EURORA CHARACTERISTICS

Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

- Intel Xeon (Eight-Core SandyBridge) E5-
2658 2.10 GHz (Compute)

- Intel Xeon (Eight-Core SandyBridge) E5-
2687W 3.10 GHz (Compute)

- Intel Xeon (Esa-Core Westmere) E5645
2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12
(login)

accelerators: 64 nVIDIA Tesla K20 (Kepler)
+ 64 Intel Xeon Phi (MIC)

RAM: 1.1 TB (16 GB/Compute node +
32GB/Fat node)

OS: RedHat CentOS release 6.3, 64 bit

EURORA CHARACTERISTICS
• Compute Nodes: 64 16-core compute cards (nodes).

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2658
processors, with a clock rate of about 2 GHz,

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2687W
processors, with a clock rate of about 3 GHz.

– 58 compute nodes have 16GB of memory, but the allocatable memory on the
node is 14 GB. The remaining 6 nodes (with processors at 3 GHz clock rate)
have 32 GB RAM.

– The Eurora cores are capable of 8 floating point operations per cycle. Half of
the compute cards (the ones with a 3GHz clock rate) have two nVIDIAK20
(Kepler) GPU cards installed. The other half (the 2GHz ones) have two Intel
Xeon Phi accelerators installed.

• Login node: 2 Intel(R) Xeon(R) 6-core Westmere E5645 processors at 2.4 GHz.
• Network: all the nodes are interconnected through a custom Infiniband network,

allowing for a low latency/high bandwidth interconnection.

EURORA IN GREEN500
The Green500 is a ranking that classifies the

Top500 supercomputers in terms of
“energy efficiency”

(best ratio performance/power consumption)

In June 2013 ranking, EURORA has been proclaimed the greenest supercomputer in the world!!

In the last ranking (Nov 2015), unfortunately EURORA didn’t make the Top500.

How to log in

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:
– ssh available on all linux distros
– Putty (free) or Tectia ssh on Windows
– secure shell plugin for Google Chrome!
– login nodes are swapped to keep the load balanced
– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:
– ssh available on all linux distros
– Putty (free) or Tectia ssh on Windows
– secure shell plugin for Google Chrome!
– login nodes are swapped to keep the load balanced
– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide

WORK ENVIRONMENT

$HOME:

Permanent, backed-up, and local to EURORA.

5 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:

Large, parallel filesystem (GPFS).

No quota. Run your simulations and calculations here.

use the command cindata to get info on your disk occupation

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0
http://www.hpc.cineca.it/content/data-storage-and-filesystems-0
http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

LAUNCHING JOBS

As in every HPC cluster, EURORA allows you to run your simulations by

submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds it to a

queuing line and allows its execution when the resources required are

available

The operative scheduler in EURORA is PBS

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS JOB SCRIPT EXAMPLE
#!/bin/bash

#PBS -N myname

#PBS -o job.out

#PBS -e job.err

#PBS -m abe

#PBS -M user@email.com

#PBS -l walltime=00:30:00

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

#PBS -q parallel

#PBS -A <my_account>

#PBS -W group_list=<my_account>

echo “I’m working on EURORA!”

PBS KEYWORD ANALYSIS - 1

#PBS -N myname

Defines the name of your job
#PBS -o job.out

Specifies the file where the standard output is directed (default=jobname.o<jobID>)

#PBS -e job.err

Specifies the file where the standard error is directed (default=jobname.e<jobID>)

#PBS -m abe (optional)

Specifies e-mail notification. An e-mail will be sent to you when something

happens to your job, according to the keywords you specified (a=aborted,

b=begin, e=end, n=no email)
#PBS -M user@email.com (optional)

Specifies the e-mail address for the keyword above

mailto:user@email.com

PBS KEYWORD ANALYSIS - 2

#PBS -l walltime=00:30:00

Specifies the maximum duration of the job. The maximum time allowed depends on

the queue used (more about this later)

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)

ncpus – number of cpus per node (max. 16)

mpiprocs – number of MPI tasks per node (max=ncpus)

mem – memory allocated for each node (default=850MB, max.=14 GB)

You can require up to 32GB but have to wait more because you will be directed on

the special high memory nodes

NEVER ask for 15GB, or the job won’t run properly!

QUEUING SYSTEM

#PBS -q <queuename>

Specifies the queue requested for the job. Since EURORA is out of

production, queues are actually disabled.

You have a special queue reserved for the course. In order to use it,

you have to specify the following:

#PBS -q R1661336

ACCOUNTING SYSTEM

#PBS -A <my_account>

Specifies the account to use the CPU hours from.
As an user, you have access to a limited number of CPU hours to spend. They are not

assigned to users, but to projects and are shared between the users who are
working on the same project (i.e. your research partners). Such projects are called

accounts and are a different concept from your username.

You can check the status of your account with the command “saldo –b”, which tells you
how many CPU hours you have already consumed for each account you’re assigned

at (a more detailed report is provided by “saldo –r”).

ACCOUNT FOR THE COURSE

The account provided for this school is
“train_cmpB2015”

(you have to specify it on your job scripts).

It will expire two weeks after the end of the school
and is shared between all the students; there
are plenty of hours for everybody, but don’t

waste them!

#PBS -A train_cmpB2015

PBS COMMANDS

After the job script is ready, all there is left to do is to submit it:

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and
the queue you requested)

qstat
 qstat
Shows the list of all your scheduled jobs, along with their status
(idle, running, closing, …) Also, shows you the job id required for
other PBS commands

PBS COMMANDS

qstat
 qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you

will
learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduled jobs by killing it

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=16:mpiprocs=4

#PBS -o job.out

#PBS -e job.err

#PBS -q parallel

#PBS -A <my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload openmpi

mpirun –np 8 ./myprogram

MODULE SYSTEM
• All the optional software on the system is made available through

the "module" system

• provides a way to rationalize software and its environment
variables

• Modules are divided in 2 profiles

• profile/base (default - stable and tested modules)

• profile/advanced (software not yet tested or not well
optimized)

• Each profile is divided in 4 categories

• compilers (GNU, intel, openmpi)

• libraries (e.g. LAPACK, BLAS, FFTW, ...)

• tools (e.g. Scalasca, GNU make, VNC, ...)

• applications (software for chemistry, physics, ...)

MODULE SYSTEM

• CINECA’s work environment is organized in modules, a set of
installed libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell
environment variables will be set

• E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when
loading the module

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they
depend from (e.g.: parallel compiler depends from basic
compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not
suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module
with “module unload”

COMPILING ON EURORA

• On EURORA you can choose between three different
compiler families: gnu, intel and pgi

• You can take a look at the versions available with “module
av” and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary # loads specific
compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the
compilers flags with
the command man

PARALLEL COMPILING ON EURORA
• MPI libraries available: OpenMPI/IntelMPI

– The library and special wrappers to compile and link the personal programs are
contained in several "openmpi" modules, one for each supported suite of
compilers

• Load a version of OpenMPI:

module av openmpi

 openmpi/1.6.4--pgi--12.10

 openmpi/1.6.5--gnu--4.6.3

 openmpi/1.6.5--intel--cs-xe-2013--binary

 openmpi/1.6.5--pgi--12.10

 openmpi/1.6.5--pgi--14.1

module load autoload openmpi/1.6.4--gnu--4.6.3
• Load a version of IntelMPI:

module av intelmpi

intelmpi/4.1.0--binary

 intelmpi/4.1.1--binary

 module load autoload intelmpi/4.1.1--binary

PARALLEL COMPILING ON EURORA

OPENMPI/INTELMPI

Fortran90 mpif90

C mpicc

C++ mpiCC

Compiler flags are the same of the basic compiler (since
they are basically MPI wrappers of those compilers)

OpenMP is provided with following compiler flags:

gnu: -fopenmp

intel : -openmp

pgi: -mp

JOB SCRIPT FOR PARALLEL EXECUTION

Let’s take a step back…

#PBS -l select=2:ncpus=16:mpiprocs=4

This example line means “allocate 2 nodes with 16 CPUs each, and 4 of them should

be considered as MPI tasks”

So a total of 32 CPUs will be available. 8 of them will be MPI tasks, the others will be

OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

EXECUTION LINE IN JOB SCRIPT

mpirun –np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the command

“mpirun”.

With the “–np” flag you can set the number of MPI tasks used for the execution.

The default is the maximum number allowed by the resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded.
module load autoload openmpi

DEVELOPING IN COMPUTE NODES:
 INTERACTIVE SESSION

It may be easier to compile and develop directly in the compute nodes, without recurring to a

batch job.

For this purpose, you can launch an interactive job to enter inside a compute node by using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:

qsub –I –l select=1 –A <account_name> (-q <queue_name>)

Other PBS keyword can be added to the line as well (walltime, resources,…)

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27

