
Introduction to OpenMP

Fabio Affinito

Parallel paradigms in a nutshell

• Distributed memory

• Each PE has its own private memory and exchange
data buffers using messages; implemented, for
example using MPI (Message Passing Interface)

• Shared memory

• PEs can access the same memory address space;
implemented in OpenMP (and pthreads for example).

Limitations of MPI

• Each MPI process can only access its local memory
• The data to be shared must be exchanged with explicit inter-process

communications
• It is in charge to the programmer to design and implement the data exchange

between process (taking care of work balance)

• You cannot adopt a strategy of incremental parallelization
• The communications structure of the entire program has to implemented

• It is difficult to maintain a single version of the code for the serial and MPI
program
• Additional variables are needed
• Large use of #ifdef can be confusing

What is OpenMP

• OpenMP is de-facto standart API to write shared memory
applications in C, C++ and Fortran

• It consists of compiler directives, run-time routines and
environment variables

• It is mainained by the OpenMP Architecture Review Board (ARB)
(http://www.openmp.org)

• The “workers” who do the work in parallel (threads) “cooperate”
through shared memory
– Memory accesses instead of explicit messages
– “local” model of parallelization of the serial code

• It allows an incremental parallelization

http://www.openmp.org/
http://www.openmp.org/

OpenMP history
• Born to satisfy the need of unification of different proprietary solutions:
• The past:

• 1997: Fortran version 1.0
• 1998: C/C++ version 1.0
• 2000: Fortran version 2.0
• 2002: C/C++ version 2.0
• 2005: combined C7C++ version 2.5
• 2008: version 3.0 (introduction of tasks)

• The present:
• 2011 version 3.1
• 2013 version 4.0 (accelerator, SIMD extensions, affinity, etc.)
• ? 4.1/5

UMA and NUMA

What is a thread?

• A process is an instance of a
computer program

• Some information included in a
process are:
• Text (machine code)
• Data (global variables)
• Stack (local variables)
• Program counter (A pointer to the

instruction to be executed)

Multithreading

• The process contains several
concurrent execution flows
(threads)
• Each thread has its own program

counter (PC)
• Each thread has its own private

stack (variables local to the thread)
• The instructions executed by a

thread can access
• The process global memory
• The thread local stack

OpenMP execution model

Fork-join model:
At the beginning of a parallel region the master thread creates a team of

threads composed by itself and by a set of other threads
The thread team runs in parallel the code contained in the parallel region

(Single Program Multiple Data model)
At the end of the parallel region the thread team ends the execution and only

the master thread continues the execution ofthe (serial) program

OpenMP memory model

- All threads have access to the
same globally shared memory

- Data in private memory is only
accessible by the thread
owning this memory

- No other thread sees the
change(s)

- Data transfer is through shared
memory and is completely
transparent to the application

Directives

OpenMP is a directive based language. Directives mark the block of
code that should be made parallel and are interpreted by the
precompiler only when a flag is specified.

Syntax:

#pragma omp <directive> !$omp <directive>

Clauses

- Clauses are used to add information to the
directives, i.e.:
- Variables handling and scoping (shared, private,

default)
- Execution control (how many threads, work

distribution...)

#pragma omp <directive> [clause [clause] ...] !$omp <directive> [clause [clause]...]

Environment variables

• OMP_NUM_THREADS set the number of threads
• OMP_STACKSIZE “size *B|K|M|G+” size of the stack for

threads
• OMP_DYNAMICS {true|false} bound threads to processors
• OMP_SCHEDULE “schedule*,chunk+” iteration scheduling

scheme
• OMP_PROC_BIND {true|false} bound threads to processors
• OMP_NESTED {true|false} nested parallelism
• ...

Run-time functions

• Query/specify some specific feature or setting:
• omp_get_thread_num() : get thread ID
• omp_get_num_threads() : get number of threads in the team
• omp_set_num_threads (int n) : set the number of threads
• ...

• Allow you to manage the fine grain access (lock)
• omp_init_lock (lock var) : initializes the OpenMP lock
• ..

• Timing functions:
• omp_get_wtime() : returns elapsed wallclock time
• omp_get_wtick() : returns timer precision
- ...

Conditional compilation

To avoid dependancy on OpenMP libraries you can use pre-
processing libraries and the preprocessor macro _OPENMP
predefined by the standard

#ifdef _OPENMP
printf(“Compiled with OpenMP support: %d”,_OPENMP);
#else
printf(“Compiled for serial execution”);
#endif

Compiling and linking

• Compilers that support OpenMP interpret the
directives only if they are invoked with a compiler
option (switch):

• GNU: -fopenmp
• IBM: -qsmp=omp
• Sun: -xopenmp
• Intel: -openmp
• PGI: -mp

Parallel construct
It creates a parallel region:

- a construct is the lexical extent to which an executable directive
applies
- a region is the dynamic extent to which an executable directive
applies
- a parallel region is a block of code executed by all the threads in
the team

#pragma omp parallel
{
//some code to be executed in parallel
} // end of the parallel region

C/Fortran syntax differences

#pragma omp parallel
{
//some code to be executed in parallel
} // end of the parallel region

!$omp parallel
! some code to be executed in parallel
!$omp end parallel

Hello world

#include <stdio.h>

int main(){

#pragma omp parallel
{

printf(“Hello world!”);
}
return 0;

}

Shared and private variables

Inside a parallel region the scope of a variable can be shared o private.
• shared: there is only one instance of the data

• data is accessible by all threads in the team
• threads can read and write the data simultaneously
• all threads access the same address space

• private: each thread has a copy of the data
• no other thread can access this data
• changes are only visible to the thread owning the data
• values are undefined on entry and exit

Variables are shared by default but you can nullify the default with the clause
default (none)

Data races

A data race is when two or more threads access
the same (shared) memory location:

• asynchronously

• without holding any common exclusive locks

• at least one of the accesses is a write/store

In this case, the resulting values are undefined!

Critical construct

• One of the possible solutions for data races is to use
the critical construct

• The block of code inside a critical construct is executed
by only one thread at time.

• It is a synchronization to avoid simultaneous access to
a shared data.

• A critical construct locks the associated region
• It is a good practise to associate to each critical region

a label

Critical construct

sum = 0;
#pragma omp parallel private(i, MyThreadID)
{
ThreadId = omp_get_thread_num();
NumThreads = omp_get_num_threads();
for (i=ThreadId*N/NumThreads; i<(ThreadId+1)*N/NumThreads; i++){

psum += x[i];
}

#pragma omp critical label
sum += psum;

}

Worksharing

In principle, for a parallelization the fundamental
ingredients are:
• the parallel construct
• the critical construct
• the omp_get_thread_num and omp_get_num_threads

functions

But we need to distribute the work among threads and
doing it by hand is unefficient. The worksharing
construct can automate the process.

Worksharing construct

• A worksharing construct distributes the execution
of the associated parallel region over the threads
that must encounter it

• A worksharing construct has no barrier on entry,
but implicit barrier exists at the end of the
worksharing region

• The nowait clause can remove the barrier at the
end of the worksharing region

Worksharing construct

The OpenMP defines the following workshare
constructs:

• for/do loop construct

• sections construct

• single construct

• workshare construct

Loop construct

• The iterations of a loop are distributed over the threads that
already exist in the team

• The iteration variable is made private by default
• The inner loops are executed sequentially by each thread
• Beware the data sharing attribute of the inner loop iteration

variables:
• in Fortran they are private by default
• in C/C++ they aren’t

• Requirement for (loop) parallelization:
• no dependencies between loop indexes

Loop construct

#pragma omp for [clauses]
for (i=0; i<n; i++)
{ ... }

!$omp do
do i = 1, n
...

end do
!$omp end do

Loop construct
int main()
{
int i, n=10;
int a[n], b[n], c[n];

...
#pragma omp parallel
{
#pragma omp for
for (i=0; i<n; i++){

a[i] = b[i] = i;
c[i] = 0;

}
#pragma omp for
for (i=0; i<n; i++){

c[i] = a[i] + b[i];
}

}

Loop collapse

• allows the parallelization of perfect nested loops
• the collapse clause on for/do loops indicates how many loops

should be collapsed
• compiler then makes a single loop and then makes it parallel

#pragma omp for collapse(2) private(j)
for (i=0; i<n; i++){
for (j=0; j<m; j++){

..
}

}

Schedule clause

• the schedule clause specifies how the iterations of the associated
loops are divided into contiguous non-empty subsets, called
chunks, and how these chunks are distributed among threads of the
team.

• schedule presets are:
• static
• dynamic
• guided
• auto

• the chunksize can be assigned too

Static scheduling

• Iterations are divided into chunks of
size chunk.

• The chunks are assigned to the threads
in the team in a round-robin way in the
order of the thread number

• It is the default schedule and the
default chunk is number of iterations /
number of threads

• Figure: schedule (static,3)

Dynamic scheduling

• Iterations are distributed to
threads in the team in chunks
as the threads request them.
Each thread executes a chunk
of iterations, then requests
another chunk, until no chunks
remain to be distributed.

• The default chunk is 1

Guided scheduling

• Iterations are assigned to threads
in the team in chunks as the
executing threads request them.
Each thread executes a chunk of
iterations, then requests another
chunk, until no chunks remain to
be assigned. The chunk decreases
to chunk

• The default value of chunk is 1

Runtime and auto scheduling

• runtime: iteration scheduling scheme is set at runtime
using the environment variable OMP_SCHEDULE
• the schedule scheme can be modified without recompiling

• useful only when doing experiments during the
development of a code

• auto: the decision is delegated to the compiler and/or
runtime system

Scheduling

???

Scheduling

static

Scheduling

static

dynamic

Scheduling

static

dynamic

guided

Sections construct

• it is a worksharing construct to distribute
structured blocks of code among threads in a
team

• each thread receives a section
• when a thread has finished to execute its section

it receives another section
• if there are not other sections to execute, threads

wait for others to end up

Sections construct

#pragma omp sections
{
#pragma omp section

{ }
#pragma omp section
{ }
}

Single construct

• the first thread that reach the single construct executes
the associated block

• the other threads in the team wait at the implicit
barrier at the end of the construct unless a nowait
clause is specified

#pragma omp single [private] [firstprivate] [copyprivate] [nowait]
{
....
}

Workshare construct

• only supported in Fortran
• the structured block enclosed in the workshare

construct is divided into units of work that are assigned
to the threads.

!$omp workshare
! structured block
!$omp end workshare [nowait]

Data-sharing attributes

• in a parallel construct the data-sharing attributes
are implicitly determined by the default clause, if
present
• if no default clause is present, they are shared

• there are pre-determined data sharing attributes,
but it always safer to specify default(none) and to
assign the right value for each variable

Data-sharing attributes

• shared: there is only one instance of the objects accessible by all
threads in the team

• private: each thread has a copy of the variables
• firstprivate: same as private but all variables are initialized with the

value that the original object had before entering the parallel
construct

• lastprivate: same as private but the thread that executes the
sequentially last iteration or section updates the value of the
objects

Attention: if a variable is defined with the wrong attribute, it can
produce meaningless results!

Reduction

• if a variable is used to accumulate a value from the
different threads, this should be declared as a reduction
variable

• an implicit private copy is created for each thread and
properly initialized

• at the end of the parallel region the variable is updated
according to the specified operator

• reduction variables must be shared variables
• the reduction clause is valid on parallel, for/do loops and

sections constructs

Reduction

#pragma omp parallel for reduction (+:sum)
for (i=0; i<n; i++){
sum+=x[i]

}

Supported operators for a reduction clause are:
•C: +, *, -, &, |, ^, &&, || max e min from 3.1)
• Fortran: +, *, -, .and., .or., .eqv., .neqv., max, min, iand, ior, ieor

Barrier construct

• in a parallel region threads proceed asynchronously

• the synchronization can be enforced using an implicit
barrier with #pragma omp barrier

• implicit barriers are assumed at the end of a
worksharing construct

• when not necessary, a barrier can cause slowdowns

• implicit barriers can be removed using the nowait
clause

Atomic construct

• this construct applies only to statements that update the
value of a variable

• it ensures that no other thread updates the variable
between reading and writing

• it is similar to the critical construct (that applies to a region
rather than to a single instruction)
#pragma omp atomic
<instruction>

Master construct

• only the master thread executes the associated code
block

• there is not an implicit barrier at the entry neither at
the end

#pragma omp master
{structured block}

Task parallelism

• Main addition to OpenMP 3.0, then enhanced
in OpenMP 3.1 and 4.

• Allows to parallelize irregular problems
(unbounded, recursive algorithms,
multiblocks)

• Allows oversubcription of the resources

Pointer chasing in OpenMP 2.5

• using the omp single does not permit to obtain a good
parallelization;

• transform this code to a “canonical” loop can be very
difficult

#pragma omp parallel private (p)
p=head;
while (p){
#pragma omp single nowait
process(p);

p = p->next;
}

Tree traversal in OpenMP 2.5

void preorder (node *p){
process (p->data);
#pragma omp parallel sections num_threads(2)
{
#pragma omp section
if (p->left)

preorder (p->left);
#pragma omp sectio
if (p->right)

preorder (p->right);
}

}

First tasking construct...

• creates both tasks and threads
• tasks are implicit
• each task is executed by one thread
• each task is tied to one thread

#pragma omp parallel
{
....
}

New tasking construct

• it creates a new task but not a new thread
• this task is explicit
• it will be executed by a thread in the current team
• it can be deferred until a thread is available to execute
• the data environment is built at creation time (variables inherit thei data

sharing attributes, but private become firstprivate)

#pragma omp task [clauses]
{
....
}

Pointer chasing with tasks

1. create a team of threads
2. one thread executes the single

construct; other threads wait at
the barrier at the end of the
single construct

3. the single thread creates a task
with its own value for the
pointer p

4. threads waiting at the barrier
execute tasks; executions move
beyond the barrier after all the
tasks are completed

#pragma omp parallel private (p){
#pragma omp single
{
p=head;
while (p){
#pragma omp task
process(p);

p = p->next;
}

}

Pointer chasing with tasks

#pragma omp parallel private (p){
#pragma omp single
{
p=head;
while (p){
#pragma omp task
process(p);

p = p->next;
}

}

Load balancing with tasks

#pragma omp parallel {
#pragma omp for private(p)
for (i=0; i<n; i++){
p = head[i];
while(p){

#pragma omp task
process(p);

p = p->next;
}

}
}

• The assignement of one
thread per task can lead to
work unbalance (mitigated
by the scheduling...)

• Multiple threads create
tasks

• The whole team cooperates
to execute them

Tree traversal with task

• tasks are composable

• tasks are not
worksharing construct

void preorder (node *p){
process (p->data);
if (p->left)
#pragma omp task
preorder(p->left);

if (p->right)
#pragma omp task
preorder(p->right);

}

False sharing

Is this world so
wonderful?

Not really...

static long num_steps =100000;
#define NUM_THREADS=2
void main(){
int i, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{
int i, id, nthrds; double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0; i<num_steps; i=i+nthrds){

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for (i=0, pi=0.0; i<nthreads; i++)pi +=sum[i]*step;

}

False sharing

Is this world so
wonderful?

Not really...

static long num_steps =100000;
#define NUM_THREADS=2
void main(){
int i, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{
int i, id, nthrds; double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0; i<num_steps; i=i+nthrds){

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for (i=0, pi=0.0; i<nthreads; i++)pi +=sum[i]*step;

}

Threads time

1 1.86

2 1.03

3 1.08

4 0.97

False sharing

• if independent data elements happen to sit on the same
cache line, each update will cause the cache lines to “slosh
back and forth” between threads: this is called false sharing

• solution: pad arrays in order to place elements on distinct
cache lines

False sharing
static long num_steps =100000;
#define NUM_THREADS=2
#define PAD 8
void main(){
int i, nthreads; double pi, sum[NUM_THREADS][PAD];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{
int i, id, nthrds; double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id][0]=0.0; i<num_steps; i=i+nthrds){

x = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);

}
}
for (i=0, pi=0.0; i<nthreads; i++)pi +=sum[i][0]*step;

}

assume in this example that
L1 cache line is 64 byte
pad the array so each sum
value is in a different cache
line

False sharing
static long num_steps =100000;
#define NUM_THREADS=2
#define PAD 8
void main(){
int i, nthreads; double pi, sum[NUM_THREADS][PAD];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{
int i, id, nthrds; double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id][0]=0.0; i<num_steps; i=i+nthrds){

x = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);

}
}
for (i=0, pi=0.0; i<nthreads; i++)pi +=sum[i][0]*step;

}

assume in this example that
L1 cache line is 64 byte
pad the array so each sum
value is in a different cache
line

Threads time

1 1.86

2 1.01

3 0.69

4 0.53

Coming soon...

• OpenMP 4 is implemented in almost every compiler..

• ... but always check carefully which features are
implemented

• But already some new specifications are available for
OpenMP 4.1
• taskloops: task associated to loops

• offload

• other...

Is this enough?

• This lecture didn’t cover some important features
of OpenMP:
• flush
• locks
• simd
• offload
• ordered construct

• If you are still hungry -> www.openmp.org

Credits

To all the people who contributed more or less
synchronously and more or less consciently to these
slides:

Gian Franco Marras, Marco Comparato, Massimiliano
Culpo, Massimiliano Guarrasi, Giorgio Amati, Cristiano
Padrin, Federico Massaioli, Marco Rorro, Vittorio
Ruggiero, Francesco Salvadore, Claudia Truini, etc.

