
Tutorial 2.Comparison of parallelisation

strategies used in molecular dynamics programs.

Objective

The aim of this tutorial is to highlight the differences in parallel scaling between two

parallelisation strategies: atom decomposition (replicated data) and domain decomposition. In

addition, the tutorial will give the student practice in running parallel programs on an HPC

computer, collecting and plotting benchmark results.

Application codes

For the exercises two versions of a popular moelcular dynamics code will be used: DL_POLY

classic (for replicated data) and DL_POLY v4 (for domain decomposition). This program was

chosen because it is relatively simple to install and run and allows us easily to test directly the

main parallelisation strategies.

For more information about DL_POLY Classic see

Program Input

As input we have a chosen a simple system of Lennard-Jones particles which can be used to

model simple, atomic liquids (e.g. liquid argon). No electrostatic interactions are included so

performance should be entirely due the parallelisation strategy to non-bonded forces.

Computer system

We shall use Cineca’s Eurora cluster for the exercises. This system has 2 8-core Intel

SandyBridge processors and 2 NVIDIA M2030 GPUs or 2 Xeon PHIs per node (but the GPUs

and XeonPHIs are not used in this tutorial) and uses the PBS batch system for submitting jobs.

See http://hpc.cineca.it for more details.

Exercises brief description.

1. Replicated data strategy with DL_POLY Classic. Simple strong, scaling example.

Calculate parallel efficiency, performance in ns/day.

2. Domain decomposition strong scaling. Same as exercise 1 but using DL_POLY v4.

3. (Optional) Analyse the MPI communication profiles of both versions of the program to

understand better the different parallelisation algorithms.

http://hpc.cineca.it/

Exercise 1. Replicated data strategy with DL_POLY (classic)

Preparation

Download and unpack the simulation files for DL_POLY classic. We recommend you use the

$CINECA_SCRATCH directory:

cd $CINECA_SCRATCH

tar xvf exercises.tar.gz

cd exercises/T1

You will find different sub-directories corresponding to starting configurations with different

numbers of Argon atoms. Choose one of these directories

Each directory will have the following three files:

1. CONFIG - atomic coordinates

2. CONTROL - run parameters

3. FIELD - force field parameters.

Unless you know DL_POLY well, you should only edit the CONTROL file. In particular you might

like to change the parameter:

steps 10000

In order to change the number of time steps to be simulated.

Simulation runs

You will find an example job script for PBS which you should modify before submitting to the

PBS batch system. Copy this into one of the sub-directories:

cp exercise.pbs Ar128K

cd Ar128K

(modify as appropriate exercise.pbs)

qsub exercise.pbs

First do a test run with, say, 1 core to see how long a typical run might last and to give an

estimate of the walltime parameter to be passed to PBS.

Run DL_POLY classic for n=2,4,8,12,24, cores etc .

Important: DL_POLY writes always to a file called OUTPUT so this should be renamed

between runs.

Performance Analysis

The performance of a parallel, MD program can be expressed in various ways:

1. The inverse of the wall time for a given problem size (e.g. no. of time steps).

2. ns/day, i.e the simulation time in ns which can performed in 24 hours of wall time.

3. The parallel efficiency or speed-up.

The second option is generally more useful for researchers wishing to plan an MD project,

while the third is often requested by resource providers and gives information on how well the

program has been parallelised or is being used.

Obtaining the walltime

The walltime W for a DL_POLY run can be found near the end of the OUTPUT as:

 time elapsed since job start = 253.886 seconds

You should collect the wall times as from the output files and create a table, e.g

#nprocs walltime/s

1 380

2 315

4 283

If you have many files you could use a UNIX script containing lines such as:

tail OUTPUT.* | awk '/elapsed/{print $7}'

You could also obtain the wall time from a PBS job script (bash):

module load dl_poly/1.9

start_time=$(date +"%s")

mprun -np 4 DLPOLY.X

end_time=$(date +"%s")

walltime=$(($end_time-$start_time))

echo "walltime $walltime"

Performance in ns/day

For walltime W (seconds) this is given by:

P = no. of. time steps * time step (ns) * 86400 / W

(86400 = seconds in 24h)

For DL_POLY the time step is given in picoseconds (1ns = 10^3 ps).

Parallel Efficiency

The Parallel Efficiency En at n cores is given by:

En = 100 * Pn / (n * P1)

where Pn is the performance at n cores, P1 for 1 core.

Plotting performance data

This can be conveniently done in gnuplot. For example if results.dat contains two columns, #

cores and walltime, the performance can be plotted as:

module load gnuplot

plot “results.dat” u 1: (1/$2)

For performance in ns/day, assuming 1000 time steps and a time step of 1e-3 ps (=1e-6 ns),

nsteps=1000

dt=1e-6

daysecs=86400 # no. of secs in 24hrs

set ylabel “ns/day”

set xlabel “#cores”

plot “results.dat” u 1:(nsteps*dt*daysecs/$2)

You might like to compare this behaviour with ideal scaling behaviour. For example, if we find

that the walltime (w1) for 1 proc is 380s you can do this:

w1=380

plot “results.dat” u 1:(nsteps*dt*daysecs/$2) tit “simulated”, u 3:

($2*nsteps*dt*daysecs/w1) tit “ideal”

Question : Assuming you had a grant of 100k core hours. How many nano-seconds of

simulation could you hope to simulate with this time at the maximum performance? How many

calendar days would it take ? Now consider using half the no. of cores of maximum

performance. How long can you simulate now (in nano seconds)?

Question. For which system size do you get the best scaling behaviour and why ?

Exercise 2. Domain decomposition with DL_POLY v4.x

In this exercise you should repeat the runs you did in Exercise 1 but using DL_POLY v4.x which

uses domain decomposition.

Consider the following questions:

1. How does the parallel scaling compare to the replicated data?

2. How does the paralllel scaling compare with system size? As a rule of thumb, how many

atoms/core do you need before the program stops scaling?

Exercise 3. (optional) Profiling analysis of MD codes with Scalasca

In this exercise we will use a parallel profiling tool, Scalasca, to identify the differences in

parallel behaviour of the two codes in terms of communication or synchronization calls.

step 1. Run the scalasca version of DL_POLY in a PBS script

for DL_POLY Classic

exe=DL_POLY.X.scalasca

for DL_POLY 4

exe=DL_POLY.Z.scalasca

module load autoload scalasca

scalasca -analyze mpirun -np 4 $exe

step 2. Analyze scalasca-instrumented output

 A successful run should generate a directory called epik_DLPOLY_4_sum (or similar). Analyze

this directory with the examine option of scalasca.

scalasca -examine epik_DLPOLY_4_sum

Repeat this procedure for both versions of DL_POLY.

Analysis

You might like to open two scalasca sessions (one for each program) so you can compare them

directly. Scalasca allows you to compare various metrics - some you could look at include:

● Load balancing - Select Computational balance (Metric tree)+System tree

● Bytes transferred. (Metric tree)

Question: How does the load balancing compare between the two cases ?

(i.e. the ratio of the process with the largest load compared to that with the smallest)

Question: Which version transfers more bytes via collective calls and which via point-to-point?

Question: In DL_POLY2, which MPI call transfers the most data?

