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3. Concepts of Parallelism 
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Molecular Dynamics 
milestones 

• 1959: First MD simulation (Alder and Wainwright) 

– Hard spheres at constant velocity. 500 particles on IBM-704. Simulation 
time >2 weeks 

• 1964: First MD of a continuous potential (A. Rahman) 

– Lennard-Jones spheres (Argon), 864 particles on a CDC3600. 50,000 
timesteps > 3 weeks 

• 1977: First large biomolecule (McCammon, Gelin and Karplus). 

– Bovine Pancreatic Trypsine inhibitor. 500 atoms, 9.2ps  

• 1998: First μs simulation (Duan and Kollman)  

– villin headpiece subdomain HP-36. Simulation time on Cray T3D/T3E ~ 
several months 

• 2006. MD simulation of the complete satellite tobacco mosaic virus (STMV) 

– 1 million atoms, 50ns using NAMD on 46 AMD and 128 Altix nodes 

• 2006:  Longest run. Folding@home (computers supplied by general public!) 

– 500 μs of Villin Headpiece protein (34 residues). 
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folding@home 
equivalent to peak ~40 
Pflops (Wikipedia) 
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Biomolecular MD Simulation  
– system sizes 

2006. Satellite tobacco 
mosaic virus (STMV). 1M 
atoms, 50ns 
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2008. Ribosome. 3.2M atoms, 230ns.  

early 1990s. Lysozyme, 40k atoms 

2011. Chromatophore, 

100M atoms (SC 2011) 
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Anatomy of a program 
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1. Read in parameters to control the simulation (e.g. run time, 
temperature, etc). 

2. Generate or read in atomic coordinates and connectivity 
information. If starting from a previous run read in velocities, 
forces and other system data. 

3. Start Main loop at time t. 
1. Compute forces between interacting atoms. 
2. Integrate forces to obtain velocities and positions at new time step 

t+Δt. 
3. Calculate thermodynamic properties (e.g. Temp, Pressure,etc). 
4. At intervals store configuration for trajectory and restart 

information. 
5. If t < required time loop back to step 1. 

4. Output final configuration, thermodynamic and perhaps timing 
data. 



Simple Molecular Dynamics program for neutral 
atoms 
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call init  
T=0  
do while (T.lt.Tmax)  
   call compute_forces()  
   call integrate_motion() 
   call save_crds()  
   call sample_averages()  
   T = T + DT  
enddo  
call save_state()  
stop  
end  

subroutine compute_energy_forces 
 
Utot=0.0 
do i=1,N-1 
  F(i) = 0.0 
  do j=i+1,N 
    rij=r(i)-r(j) 
    Utot=Utot+Uij 
    F(i)=F(i)+force(i,j)    
  enddo 
enddo 
 
subroutine integrate_motion 
do i=1,N 
  r(i)=r(i)+verlet(F(i)) 
  v(i)=v(i)+verlet(F(i)) 
enddo 
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High Performance Molecular 
Dynamics 

In a (serial) molecular dynamics program often 70-90% of the CPU time is 
spent in the calculation of the non-bonded energies and forces -> this is the 
first place to look when optimising or parallelising a program. 

 

There are usually two types of long range non-bonded interactions: 

1. Dispersion-type particle-particle interactions 

2. Electrostatic interactions. 

 

The dispersion interactions are normally solved with Lennard Jones (LJ) type 
potentials which can be truncated at short inter-particle separations. 

Electrostatic interactions are commonly solved with the Particle Mesh Ewald  
(PME) Method or similar. (electrostatic cutoffs are too approximate) 
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GROMACS timings 
Computing:                               M-Number         M-Flops  % Flops 

----------------------------------------------------------------------------- 

 LJ                                   66460.022385     2193180.739     2.8 

 Coul(T)                              67295.126727     2826395.323     3.6 

 Coul(T) [W3]                          1361.881485      170235.186     0.2 

 Coul(T) + LJ                        113027.749257     6216526.209     7.9 

 Coul(T) + LJ [W3]                    21305.487096     2940157.219     3.7 

 Coul(T) + LJ [W3-W3]                 67057.921884    25616126.160    32.5 

 Outer nonbonded loop                 16258.069653      162580.697     0.2 

 1,4 nonbonded interactions            1814.923008      163343.071     0.2 

 Calc Weights                         11664.933552      419937.608     0.5 

 Spread Q Bspline                    248851.915776      497703.832     0.6 

 Gather F Bspline                    248851.915776     1493111.495     1.9 

 3D-FFT                             4145210.365398    33161682.923    42.1 

 Solve PME                              819.609600       52455.014     0.1 

 NS-Pairs                             72105.130813     1514207.747     1.9 

 Reset In Box                           264.244768         792.734     0.0 

 CG-CoM                                 650.966640        1952.900     0.0 

 Angles                                1587.865536      266761.410     0.3 

 Propers                                397.158480       90949.292     0.1 

 Impropers                               88.972464       18506.273     0.0 

..... 
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Optimising a serial program 
• To increase the performance of the 

program the number of interactions 
O(N2) to be calculated needs to be 
reduced.  

• Common strategies include: 
– Potential cutoffs + Neighbour lists  
– United atoms (e.g. CH4) or coarse grain 

approaches (e.g. Martini)  to reduce 
the number of interacting sites 

– Holonomic constraints (e.g. SHAKE) 
– Multiple time steps (e.g. electrostatic 

time step in NAMD) 
– Implicit solvents as opposed to explicit 

solvents (but not recommended). 
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united atoms 

martini model 

rc 

rl 

holonomic constraints (e.g. 
SHAKE) Δt=1fs → Δt=2fs  

implicit and 
explicit 
solvents 

cut-off and neighbour list 



Electrostatic Interactions 
For complex molecules electrostatic interactions are usually 
calculated by assigning each atom a partial charge: 
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The interaction energy between two isolated charges is known 
(Coulomb):  

Problem: This is a long range interaction, 
varying with ~1/r. (c.f LJ, ~1/r6) and so decays 
to zero slowly. The box cannot be made large 
enough without making the simulation 
impracticable. Electrostatic cutoffs on the 
other hand can give rise to artefacts. 

+0.8 

-0.9 

+0.4 

+0.3 

-0.19 

The partial charges are defined by 
the force-field, usually via QM 
calculations. 



Electrostatic Interactions –Ewald Sum 
(1921) 

Solution for periodic systems first suggested by Ewald and others from 
their work on ionic crystals. Start with the interaction of a particle with 
all the other particles, including their images: 
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n=(nxL, nyL, nzL) 

For large n the cell distribution 
is spherical 



Electrostatic interactions – Ewald Sum 
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This pairwise summation converges slowly, but by assuming gaussian 
charge distributions around each charge it can be converted into faster 
converging real space (short range) and reciprocal space (long range) 
sums:  

V = real space sum + reciprocal space sum + constant 
corrections 

The real space term (which contains erfc(x)) can be calculated quite 
easily with standard libraries and usually a cutoff is applied (e.g. 9 Å). 

 
16/11/2015 

 
High Performance Molecular Dynamics 



Particle Mesh Ewald 
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This is an N2 problem but by replacing the 
point charges by a grid-based charge 
distribution one can use discrete FFT (Fast 
Fourier Transform) which scales as N lnN (e.g. 
Particle Mesh Ewald). 

The second term converges quickly in reciprocal space but is computationally 
expensive: 
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Parallelising a  serial program 

Do we need to parallelise MD ? 
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Galileo  
gromacs 4.6.7 1 node (16 cores) 
               Core t (s)   Wall t (s)        

(%) 

       Time:     8060.990      504.626     

1597.4 

                 (ns/day)    (hour/ns) 

Performance:        3.425        7.008 

Finished mdrun on node 0 Fri Nov  6 15:26:07 

2015 

 
PC:  
                  (ns/day)    (hour/ns) 

Performance:        0.075      319.699 

Even using just one 
node of a cluster we 
can get speedups of 
10X, 100X or more. 



Concepts and practice of 
Parallelism  

• Even if you do not intend to write a parallel program, 
just use one already present, it is important to 
understand some of the concepts and techniques used 
in the preparation and execution of a parallel project. 

• Hardware is moving quite quickly so it is a challenge to 
understand everything but useful topics include: 
– MPI and message passing 

– OpenMP and threads 

– Accelerators such as GPUs and Xeon PHIs 

– Measuring performance 
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Message Passing Interface (MPI) 

• MPI is a standard which 
implements parallelism via 
message passing, i.e. providing a 
mechanism for communication 
between parallel tasks. 

• Usually SPMD (Single Program 
Multiple Data) model where 
multiple instances of the same 
program are launched. When 
necessary they communicate by 
MPI calls. 

• Each instance is called a task and is 
identified by its rank (starting from 
0). Normally all the tasks are 
created at the beginning of the 
parallel execution.  
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message 

Task 0 

Task 1 

Task 2 



MPI Communications 
• MPI communications can be of various 

types: 
1. One-way communications. 
2. Point-to-point between two tasks. 
3. Collective calls between groups of tasks 

or even all of them. 

• They can also be synchronous or 
asynchronous.  

• Collective calls can be expensive, 
particularly when many tasks are 
involved. 

• An efficient MPI program will minimise 
the time spent in communications as 
much as possible often by overlapping 
communications with calculations (non-
blocking communications). 
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Using MPI 

 
• Advantages: 

– Only standard model which allows cores over multiple nodes in a 
cluster to be used in a parallel program. 

– Highly optimised for current architectures 

• Disadvantages: 
– Complex programming model and may require high memory (program 

instances  + buffers) 
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module load intelmpi       # Intel MPI   

mpirun –np 64 ./myprog.exe  

• MPI is implemented as a library which is used during 
compilation/linking and often also at execution. 

• Different implementations may exist on a particular 
computer system (e.g. Intel MPI, OpenMPI, etc). 

• Usually used within a launcher (e.g. mpirun, mpiexec, runjob, 
etc) which launches the required number of tasks. 



OpenMP and threads 

• The OpenMP standard implements parallel 
programming via threads.  

• Threads are light-weight processes, 
requiring fewer resources than MPI tasks. 
Usually created and destroyed in a fork-
join process. 

• Often used for “work sharing” within loops 
but can be used to generate tasks. 

• They communicate by reading and writing 
program variables in shared memory. 

• Advantages: 
– Less memory and may be faster than MPI 

within a shared memory node. Simpler 
programming model than MPI. 

• Disadvantages: 
– Cannot be used between separate nodes 
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Using OpenMP 

• But since openmp cannot be used 
between nodes common to use both – 
so called hybrid MPI/OpenMP programs 
(e.g. Gromacs) 

• Typically use OpenMP thread within a 
node but MPI between nodes. Useful for 
minimising the number of MPI tasks. 
(see later) 
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memory 

memory 

memory 

memory 

mpi task 
openmp thread 

gfortran –fopenmp 

myprog.c –o myprog 

export OMP_NUM_THREADS=8 

./myprog.exe 



Strong and weak scaling and 
parallel efficiency 

• For any parallel program important to measure the 
performance as a function of the parallel resources used 
(e.g. MPI tasks, threads, physical cores, etc).  

• For MD usual to measure performance in terms of ns/day 
and this value is reported by most MD programs. Since 
computer grants are based on use of physical resources 
(e.g. cores) makes sense to plot performance against 
processor cores. 

• This is called strong  scaling and by comparison with the 
ideal case indicates how well parallelised your set up is. 
This can be emphasised by plotting the speedup with 
respect to the smallest number of cores used (e.g. 1 core). 
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Strong scaling examples 
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Strong scaling and parallel 
efficiency 

• Computer scientists often 
prefer a metric called the 
parallel efficiency. 

• Less interesting for MD 
researchers but worth quoting 
for grant applications (where 
the reviewers may be non MD 
users). 

• Important to do strong scaling 
curves before embarking on 
production. 
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Weak scaling 

• This is formally as defined as “how 
the solution time varies with the 
number of processors for a fixed 
problem size per processor.” 

• But usually used to know how the 
performance varies on increasing 
the input or problem size. Should 
be a horizontal line for perfect 
weak scaling. 

• For MD this indicates how the 
performance varies with system 
size, i.e. number of atoms. 

• Not often used in MD since 
researchers use one or only a few 
systems, probably with similar 
numbers of atoms. 
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Other parallel concepts 

• SIMD (Single Instruction Multiple Data) Vectorisation 
– Special hardware in the CPU (SIMD or Vector Unit) for optimising loops. For 

Intel known as SSE, AVX, etc (depending on processor version) 
– Most users do not need to know  about this unless compiling or writing their 

own code. 

• Load balancing 
– If parallel tasks in the program finish their calculations more or less at the 

same time, there is good “load balancing”.   If some processes have to wait for 
other processes then clearly the program will take longer.  

• Parallel I/O 
– Often one task (e.g. rank 0) is given the job of reading and writing files since 

having many tasks accessing the same file is not safe. This task then sends the 
data to the other tasks. 

– For very large files and many processes may be more efficient to allow 
multiple access. Normally achieved by MPI-IO or specialist formats (HDF5). 

– In MD not normally used except for very large simulations (millions of atoms), 
e.g. in NAMD 2.10 or DL_POLY4.  
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Why do parallel programs stop 
scaling? 
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Regardless of algorithm, as  the number of parallel tasks increase the relative 
time spent doing communications also increases, thus reducing the time for 
calculations. 
 
Very roughly, when 
  
 Time (communications) > Time (calculations) 
 
increasing  the number of processors will not lead  to an increase in 
performance (in fact it may start decreasing). 
 
Of particular importance are global or collective communications involving 
groups or even all the parallel tasks and programmers tend to minimise their 
use. 
Other factors affecting scaling may include increased I/O or memory usage. 
 



Parallelising Molecular Dynamics 

• Now we have the tools how can we parallelise an MD program? 
• Need an algorithm to accelerate the most timing consuming parts 

of the serial program, i.e the non-bonded long ranges forces 
calculation. 
– Dispersion forces 
– electrostatic forces with PME 

• But must minimise communications between tasks. 
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Atom (particle) decomposition 

• One of the first algorithms 
implemented for parallel MD. 
Sometimes also called 
“Replicated Data” since each 
processor requires a copy of the 
entire system. 

• Nowadays rarely used because 
of  the high memory and global 
communications required. 

• The particle decomposition 
option of Gromacs was removed 
in the latest release.  
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Force decomposition 

• Improvement on 
particle decomposition, 
inspired by the parallel 
algorithms for matrices. 

• Reduced memory and 
communication 
overheads but still 
relatively expensive at 
high core counts. 
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Spatial (or domain) decomposition 
algorithm 

Here each processor is assigned to a spatial region of the simulation box (with 
side rd > 2*rc) such that it stores only a portion of the whole system. This has 
two components: 

 

• The atoms which lie in that region and the forces between them. 

•  Atom positions and forces from neighbouring regions owned by other 
processors. 

 

In order to minimise the surface with respect to the volume, and hence the 
communications, it is important to use regions that are as cubic as possible. In 
any case the communications are reduced since it is not necessary to update 
the whole system in local memory. 
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Domain decomposition 
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rd >2 rc 

Must choose 
domain sides 
to be greater 
than 2xcutoff 



Domain Decomposition 
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internal 
part of 
domain  

Atoms which 
need to be 
shared with 
neighbouring 
domains. 

storage for 
neighbouring 
atoms 



Simple Domain Decomposition 
- algorithm 

1. Read in atomic coordinates 
2. Assign atoms to domains (processors) according to 

x,y,z position. 
3. For each domain (processor): 

1.  identify interacting atoms in neighbouring domains 
and copy coords. 

2. calculate forces. 
3. copy partial forces of neighbour atoms back to their 

home domains 
4. with the forces calculate new velocities and 

positions. 

4. Calculate thermodynamic averages (T, P,E, etc) 
5. Loop back to 2 if not finished.   
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MPI has many commands for 
transferring data efficiently in 
a cartesian topology (such as 
a simulation box.) 



Domain decomposition 

Advantages 

– Exploits locality of atomic interactions, minimizing communications 
(no All-to-All) and memory required per processor 

– scalable, for large systems.  

– can exploit MPI cartesian topology 

Disadvantages 

– needs large system, otherwise domain size too small. As no. of 
processors increases eventually stops scaling 

– for inhomogeneous systems (liquid+vapour) load balancing problems 
as some procs have too few atoms.  
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Novel domain-decomposition schemes 

Problem with domain decomposition 
occurs when density of particles is uneven 
or fluctuates. 

  
Can be mitigated by “zonal” (or “neutral 
territory”) methods, where forces between 
particles i and j are not necessarily 
calculated on a processor where either of 
particles i or j resides. 

 
GROMACS uses a zonal method called the 
“eighth-shell” method, with reduced 
communication wrt standard dd.  Other 
methods incl “midpoint” (Desmond). 

 
Like NAMD, Gromacs 4 now has Dynamic 
Load Balancing. 

35 

Hess et al., J. Chem, Theory 
Comput. C, 2007 
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Parallelisation of Electrostatics with Domain 
Decomposition and PME 

 

 

 

36 

PME can be parallelised with a DD scheme but 3D FFT is very 
inefficient for many processors (or small N) because of all-to-all global 
communications (e.g MPI_AlltoAll).  
 
GROMACS and NAMD use instead  a  2D decomposition of thin 
columns or “pencils” 

In this way the first 1D part of the 
3D  can be done within a single 
processor (e.g. along z) to avoid 
extra communication 

z 
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Does Domain Decomposition 
Work? 

Compare 

 

• GROMACS v 3.x and earlier with force-decomposition schemes 

• GROMACS v 4.x with domain decomposition 

• NAMD with domain decomposition 

 
Disclaimer: There are many other differences between programs which could affect 
performance but parallel scaling is a good indicator of the parallelization scheme. 
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Does Domain Decomposition 
Work? 

Compare 

 

• GROMACS v 3.x and earlier with force-decomposition schemes 

• GROMACS v 4.x with domain decomposition 

• NAMD with domain decomposition 

 
Disclaimer: There are many other differences between programs which could affect 
performance but parallel scaling is a good indicator of the parallelization scheme. 
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NAMD/Gromacs speedup
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Does domain decomposition 
work? 

Simulation of 280K atoms of liquid argon with 
DL_POLY (Classic) and DL_POLY 4.03 



Why do MD (programs stop scaling ? 

For most parallel programs the scaling levels out when the time of 
communications > time needed for calculations.   

For modern molecular dynamics programs this can happen when the system is 
too small (i.e. number of atoms too low) compared  to the number of cores: 

1. Limits of domain decomposition –with few particles/proc the domain size 
becomes too small. 

2. The parallel PME calculation contains all-to-all communications (in the 3D 
FFT) and this cost varies as N2 . 

As a rule-of-thumb many MD simulations reach a scaling limit when there are 
ca. 100-200 atoms/core. 
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Why do MD programs stop 
scaling? 
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GROMACS BG/P scaling for d.kv12 
membrane (1.8M atoms) 

For this benchmark we 
had to duplicate the std 
GROMACS benchmark 
d.kv12 ion channel 16 
times ! 
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At the scaling limit communication time 
presumably > calculations, but which algorithm 
features cause this? 
Candidate features: 

1. Non-bonded dispersion with DD or 
2. PME for electrostatics. 

 



Implicit and Explicit solvents 

Life Sciences Molecular Dynamics Applications on the IBM System Blue Gene Solution: Performance Overview, 
http://www-03.ibm.com/systems/resources/systems_deepcomputing_pdf_lsmdabg.pdf 
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The influence of PME on parallel scaling can be tested by using implicit solvent 
models which model the solvent as a continuous medium instead of  interacting 
particles, but for many biological environments (interiors of proteins or 
membranes) it is considered too approximate. 



 Implicit and Explicit solvents 
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NAMD 2.10 
Beta-lactoglobulin 
in explicit and 
implicit solvents 
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Why is parallel scaling 
important ? 

The Bluegene and other  multi-thousand core architectures represent a challenge 
for  projects  based on molecular dynamics since often a minimum scaling is 
required. 

PRACE Tier-0 parallel scaling requirements in 2013 
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Computer System Minimum Parallel Scaling Max 
memory/core 
(Gb) 

Curie Fat Nodes 128 
Thin Nodes 512 
Hybrid 32 

4 
4 
3 

Fermi 2048 (but typically >=4096) 1 

SuperMUC 512 ( typically >=2048) * 

Hornet 2048 * 

Mare Nostrum 1024 2Gb 



How can I increase the parallel 
scaling ? 

 
1. Reduce the communications in the PME calculations. (e.g. –npme option of 

GROMACS) 
2. Try exploiting threads with hybrid MPI/OpenMP . 

– OpenMP allows a finer-grain parallelism. With fewer MPI processes we can have larger 
domain sizes. 

3. Increase the system size. 

– But not always possible if your problem size is “fixed” (i.e. because you are 
studying  a particular molecule) 

4. Design a project which uses multiple replicas of the same system. 
– Examples  include replica exchange (REMD), metadynamics, ensemble 

simulations,.. 

Each system is different so important to benchmark your simulations to find 
the best results. 
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It is generally accepted that the PME method has the most influence on parallel scaling 
due to the global communications in the FFT but even without PME  the simulations reach 
a performance limit. How can we mitigate this ?   



Reducing the PME cost - GROMACS 

Particle-Particle (PP) and PME interactions can be decoupled so could be 
beneficial to assign separate nodes to PME part to reduce the 
communications for FFT. 

 

GROMACS 4.x allows separate nodes to be assigned to PME calculations: 

mpirun  mdrun –npme 4 md.conf 

 

Rule of thumb is PP:PME = 3:1 but g_pme utility allows this to be tested. 

Also possible to change how the PME and PP nodes are partitioned with the –
ddorder option of mdrun. 
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Reducing the PME cost: GROMACS 

GROMACS also allows 
the partitioning 
scheme between the 
PP/PME nodes to be 
varied. 
 

Can be combined 
with MPI rank 
mapping scheme of 
Bluegene BG/P. 

PP PP PP  PME 

PP PP PP PME 

PP PME PP  PME 

PP PME PP PME 

Interleave, 4 PME nodes Cartesian, 2 PME nodes 
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http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf 



Hybrid MPI/OpenMP 

GROMACS v4.6 can use OpenMP threads for the PME but only makes sense 
for very high number of cores or slow networks. 

PLX – fast network, few 
nodes → no difference 

compare 
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http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf 



Hybrid MPI/OpenMP - NAMD 

Small, but significant improvements obtained with threaded version of NAMD 2.9 
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bg_size=128, ranks/node=4 (512 tasks)  

http://www.hpc.cineca.it/content/namd-
benchmark 



Replica Exchange Molecular Dynamics 

Replica Exchange Molecular 
Dynamics 

– Used to prevent simulation from 
getting “stuck” in local minima. 

– Run multiple simulations 
(“replicas”) at different 
temperatures or with varying 
potential parameters. 

– At regular intervals the n replicas  
exchange coordinates and then 
re-continue their trajectories. 

– For a BG with N cores the 
individual replicas need only scale 
up to N/n  cores for efficient 
performance. 

50 

T=T0 
T=T1 

T=T2 T=T3 

T=T6 

T=T4 T=T5 

T=T7 
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Other examples include metadynamics with multiple 
walkers, various free energy algorithms, etc.. 



Molecular Dynamics and 
accelerators 

• If we cannot increase the parallelism, how 
can we increase performance assuming 
Moore’s law no longer valid? 

• Most of the common MD applications have 
GPU/CUDA-enabled versions which 
accelerate the calculations by off-loading 
the expensive, non-bonded calculations to 
the GPU. 

• Particular effort with Amber with GPU-
enabled port giving large speedups (tens of 
times in some cases) compared to non-
accelerated codes. 

• But reasonable speed-ups of 2-3x also for 
NAMD, GROMACS, etc. 

• Sometimes maximum performance not 
affected significantly – main advantage is to 
obtain performance using fewer nodes. 
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Molecular Dynamics and 
Acceleration - GROMACS 
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Gromacs offloads non-bonded (non PME) calculation to GPU while the main 
CPU does PME and  bonded force calculations. 
NAMD uses a similar strategy (I think) 



“Accelerated” Molecular 
Dynamics - results 
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NAMD APOA1  

GROMACS 4.6 
DPPC 

It is argued that 
poorly optimised un-
accelerated codes 
give best speed-ups. 



Final Conclusions 
• There are many features which affect performance but project proposals for 

computer time are judged mainly on the parallel scaling. 

• All modern MD programs use domain decomposition for parallelisation.  

• Parallel scaling strongly influenced by system size due to: 

1. limits of domain decomposition for non-bonded interactions 

2. all-to-all communication in FFT for electrostatics 

 The FFT is the more serious limitation.  

• Many “normal” systems do not scale upto thousands of cores. One workaround is 
to use “ensemble methods” (e.g. replica exchange, metadynamics or free energy 
calculations).  

• Most MD codes offer GPU-versions which can get good performance for fewer 
resources, but do not increase by orders of magnitude the maximum 
performances.  Xeon PHI code versions starting to appear but still at an early stage. 

• Memory and I/O not normally problems but become important for million atom 
systems. 

• No obvious candidate for beating the scalability barrier. Some interest in the use of 
Fast Multipole Methods for long-range forces but still very much in the research 
phase. 
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