Intel Xeon Phi
Exercises

29.06.2016
Fabio Affinito

Preliminaries:
Exercises will be executed on the EURORA cluster. For any other technical reference look at
http://www.hpc.cineca.it/content/eurora-user-quide

In order to connect to this cluster you should use ssh from a terminal:
ssh <USERNAME>@login.eurora.cineca.it

where the usernames and the passwords will be given by the lab assistant.
In order to compile your files, you need to load modules and to source some files::

module load intel
module load mkl (if required)
source S$SINTEL HOME/bin/compilervars.sh intel64

You can execute your files on the compute nodes using a job script or in an interactive session.
If you want to use a job script, you should put at the begin of your job script the following lines:

#PBS -1 walltime=0:10:00

#PBS -1 select=l:ncpus=l:nmics=1
#PBS -A train_chyb2015

#PBS -g parallel

#PBS -W group list=train chyb2015

If you want to use an interactive session (this is better for testing and debugging purposes), you can request an interactive session
by specifying

gsub -I -1 walltime=0:10:00 -1 select=l:ncpus=l:nmics=1 -A train chyb2015 -W
group_list=train chyb2015 -g parallel

Fortran version:
Exercise 1

e Copyomp offload start.F90to omp offload.F90

e Editomp offload.F90 and add code to offload the OpenMP section and to offload the test to check whether or not the
code is running on the coprocessor

e Compare omp offload.F90toomp offload ours.F90 to make sure you got everything

e Make sure that the number of threads is unconstrained (unset OMP_NUM_THREADS)

e Build the result for host-only and check the vectorization messages
ifort -vec-report=3 -openmp -no-offload omp offload.F90 main.F90

e Build the result for offload and compare the vectorization messages with the case of the host compilation
ifort -vec-report=3 -openmp omp offload.F90 main.F90

e Run the result with different numbers of threads on the coprocessor so that you can see the scaling

e What sort of scaling do you see?

Exercise 2

e Make acopy of mCarlo offload start.F90:

http://www.hpc.cineca.it/content/eurora-user-guide

cp mCarlo offload start.F90 mCarlo myoffload.F90

e Add code to offload the “do_calculation” subroutine and write code in order to test whether or not the code is running on
the coprocessor. The code to be offloaded was placed in a subroutine to simplify the creation of the streams on the
coprocessor rather than on the processor.

e Build the result:
ifort -mkl -openmp mCarlo myoffload.F90

e |t could happen that for the last recent of the compiler, the VSL_METHOD_DGAUSSIAN_BOXMULLER? is no longer
present. You can replace it with the new method name VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2

e Compare your resulttomCarlo offload ours.F90

Exercise 3

“Native” Intel® Xeon PhiTM coprocessor applications treat the coprocessor as a standalone multicore computer. Once the binary is
built on your host system, it is copied to the “filesystem” on the coprocessor along with any other binaries and data it requires. The
program is then run from the ssh console. (On Cineca machines you can reach a MIC card typing ssh $HOSTNAME-mic0 or
$HOSTNAME-mic1).

e Build our sample application with the —mmic flag. The sample code is a single-file version of the matrix multiply code we
previously worked with:
ifort -mmic -vec-report=3 -openmp omp offload native.F90

e Once you are in a compute node (accessed in interactive mode) you can log on the coprocessor
ssh SHOSTNAME-micO
or
ssh $HOSTNAME-micl
There you should find on your filesystem the file that you compiled on the host side. Actually the filesystem is a the host
filesystem mounted with NFS on the MIC cards

e Try to run your code
~ # ./a.out 2048

e As you noted from the error message, we are missing the OpenMP runtime library needed to run this application. So,
when you're logged on the Xeon Phi, export the proper library directory:
export LD LIBRARY PATH=
/cineca/prod/compilers/intel/cs-xe-2013/binary/composerxe/lib/mic/

e Trytorun again.

Exercise 4

Code of any complexity tends to do things in stages. This can complicate things when multiple stages need to execute on a
coprocessor, and you need the results from one stage to persist until the next call. In this section, we will explore how this
is done.

e Takealook atomp offload ours.F90 and note how the data transfer and work happen in a single offload call. Let us
artificially change this into three stages and observe what happens.

e Start with omp 3stageoffload nopersist.F90. Build it and observe what happens when it runs:
ifort -03 omp 3stageoffload nopersist.F90 -o mmul nopersist
./mmul_nopersist 2048

e You will see an error message.

(] Now compare omp 3stageoffload nopersist.F90toomp 3stageoffload persist.F90

e Buildand run omp 3stageoffload persist.F90:
ifort -03 omp 3stageoffload persist.F90 -o mmul persist
./mmul_persist 2048

e Did you get the expected result?

e Make sure you understand how the alloc_if, free_if, and nocopy qualifiers are used in the offload statement. Refer to the
compiler reference manual.

Exercise 5

Codes often operate on blocks of data which require the data block to be moved to the coprocessor at the start of the computation
and back to the host at the end. Such codes benefit by the use of asynchronous data transfers where the

coprocessor computes one block of data while another block is being transferred from the host. Asynchronous transfers can also
improve performance for codes requiring multiple data transfers between the host and the coprocessor.

e Takealookatdo offload subroutineinasync_start.F90 and notice how the two arrays are processed one
after the other using offload statements.

e Change this code so that you transfer one array while the other one is computing. Modify the do_async function to use
asynchronous data transfers.

e Build and run the program.
ifort -o async.out async_start.F90
./async.out

e Notice that the do_async function is faster compared to the do offloads function.

e Make sure you understand how the signal and wait qualifiers are used in the offload statements. Refer to the compiler
reference manual for more details.

C/C++ version

Exercise 1

. Copy omp_offload start.cpptoomp offload.cpp
e Editomp offload.cpp and add code to offload the OpenMP section and to offload the test for whether or not the code
is running on the coprocessor
e Compare omp offload.cpptoomp offload ours.cpp to make sure you got everything
e Make sure that the number of threads is unconstrained (unset OMP_NUM_THREADS)
e Build the result for host-only and check the vectorization messages
icc -vec-report=3 -openmp -no-offload omp offload.cpp main.cpp
e Build the result for offload and compare the vectorization messages wrt to the offload version:
icc -vec-report=3 -openmp omp offload.cpp main.cpp
e Run the result with different numbers of threads on the coprocessor so that you can see the scaling
e What sort of scaling do you see?

Exercise 2

e Make acopy of mCarlo offload start.cpp
cp mCarlo offload start.cpp mCarlo myoffload.cpp

e Add code to offload the OpenMP section and write code in order to test whether or not the code is running on the
coprocessor. Note how we had to move the VSLStreamStatePtr definitions within the offload statement block (compare to
mCarlo offload ours.cpp).

e Build the result:
icc -mkl -openmp mCarlo myoffload.cpp

e It could happen that for the last recent of the compiler, the VSL_ METHOD DGAUSSIAN BOXMULLER2 is no longer
present. You can replace it with the new method name: VSL_RNG METHOD GAUSSIAN BOXMULLER2

e Compare your result to mCarlo_offload_ours.cpp

Exercise 3

“Native” Intel® Xeon PhiTM coprocessor applications treat the coprocessor as a standalone multicore computer. Once the binary is
built on your host system, it is copied to the “filesystem” on the coprocessor along with any other binaries and data it requires. The
program is then run from the ssh console. (On Cineca machines you can reach a MIC card typing ssh $HOSTNAME-micO or
$HOSTNAME-mic1).

Build our sample application with the —mmic flag. The sample code is a single-file version of the matrix multiply code we
previously worked with:

icc —-mmic -vec-report=3 -openmp omp offload native.cpp

Once you are in a compute node (accessed in interactive mode) you can log on the coprocessor

ssh $HOSTNAME-micO

or

ssh SHOSTNAME-micl

There you should find on your filesystem the file that you compiled on the host side. Actually the filesystem is a the host
filesystem mounted with NFS on the MIC cards

Try to run your code

~ # ./a.out 2048

As you noted from the error message, we are missing the OpenMP runtime library needed to run this application. So,
when you're logged on the Xeon Phi, export the proper library directory:

export LD LIBRARY PATH=
/cineca/prod/compilers/intel/cs-xe-2013/binary/composerxe/lib/mic/

Try to run again.

Exercise 4

Code of any complexity tends to do things in stages. This can complicate things when multiple stages need to execute on a
coprocessor, and you need the results from one stage to persist until the next call. In this section, we will explore how this

is done. Take a look at omp offload ours.cpp and note how the data transfer and work happen in a single offload call. Let us
artificially change this into three stages and observe what happens.

Start with omp_3stageoffload nopersist.cpp. Build it and observe what happens when it runs:
icc -03 -openmp omp 3stageoffload nopersist.cpp -o mmul nopersist

./mmul _nopersist 2048

You will see an error message.

Now compare omp 3stageoffload nopersist.cpp toomp 3stageoffload persist.cpp
Build and run omp 3stageoffload persist.cpp:

icc -03 -openmp omp 3stageoffload persist.cpp -o mmul persist

./mmul persist 2048

Did you get the expected result?

Make sure you understand how the alloc_if, free_if, and nocopy qualifiers are used in the offload statement. Refer to the
compiler reference manual.

Exercise 5

Codes often operate on blocks of data which require the data block to be moved to the coprocessor at the start of the computation
and back to the host at the end. Such codes benefit by the use of asynchronous data transfers where the

coprocessor computes one block of data while another block is being transferred from the host. Asynchronous transfers can also
improve performance for codes requiring multiple data transfers between the host and the coprocessor.

Take a look at do_offload function in async_start.cpp and notice how the two arrays are processed one after the
other using offload statements.

Change this code so that you transfer one array while the other one is computing. Modify the do_async function to use
asynchronous data transfers.

Build and run the program.

icc -o async.out async start.cpp

./async.out

Notice that the do_async function is faster compared to the do_offloads function.

Make sure you understand how the signal and wait qualifiers are used in the offload statements. Refer to the compiler
reference manual for more details.

