
Debugging and Optimization of Scientific
Applications

G. Amati P. Lanucara
V. Ruggiero

CINECA Rome - SCAI Department

Rome, 20-22 April 2015

AGENDA

20th April 2015

9.00-9.30 Registration
9.30-10.30 Architectures
10.30-13.00 Cache and Memory System + Esercises
14.00-15.00 Pipelines + Exercises
15.00-17.00 Profilers + Exercises

21st april 2015

9.30-13.00 Compilers+Exercises
14.00-15.30 Scientific Libraries + Exercises
15.00-17.00 Floating-point + Exercises

22nd april 2015

9.30-11.00 Makefile + Exercises
11.00-13.00 Debugging+Exercises
14.00-17.00 Debugging+Exercises

Outline

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Programming languages

I Many programming languages were defined...
I http://foldoc.org/contents/language.html

20-GATE; 2.PAK; 473L Query; 51forth; A#; A-0; a1; a56;
Abbreviated Test Language for Avionics Systems; ABC;
ABC ALGOL; ABCL/1; ABCL/c+; ABCL/R; ABCL/R2; ABLE;
ABSET; abstract machine; Abstract Machine Notation;
abstract syntax; Abstract Syntax Notation 1;
Abstract-Type and Scheme-Definition Language; ABSYS;
Accent; Acceptance, Test Or Launch Language; Access;
ACOM; ACOS; ACT++; Act1; Act2; Act3; Actalk; ACT ONE;
Actor; Actra; Actus; Ada; Ada++; Ada 83; Ada 95; Ada 9X;
Ada/Ed; Ada-O; Adaplan; Adaplex; ADAPT; Adaptive Simulated
Annealing; Ada Semantic Interface Specification;
Ada Software Repository; ADD 1 TO COBOL GIVING COBOL;
ADELE; ADES; ADL; AdLog; ADM; Advanced Function Presentation;
Advantage Gen; Adventure Definition Language; ADVSYS; Aeolus;
AFAC; AFP; AGORA; A Hardware Programming Language; AIDA;
AIr MAterial COmmand compiler; ALADIN; ALAM; A-language;
A Language Encouraging Program Hierarchy; A Language for Attributed ...

Programming languages

I Interpreted language
I statement by statement translation during code execution
I no way to perform optimization between different statements
I easy to find semantic errors
I e.g. scritping languages, Java (bytecode),. . .

I Compiled language
I Che code is translated by the compiler before the execution
I possibility to perform optimization between different statements
I e.g. Fortran, C, C++

CPU/1

I It is composed by (first approximation):
I registers: instruction operands
I Functional units: performs instructions

I Functional units
I logical operations (bitwise)
I integer arithmetic
I floating-point arithmetic
I computing address
I load & store operation
I branch prediction and branch execution

CPU/2

I RISC: Reduced Instruction Set CPU
I simple "basic" instructions
I one statement→ many istructions
I simple decode and execution

I CISC: Complex Instruction Set CPU
I many "complex" instructions
I one statement→ few istructions
I complex decode and execution

I in these days now CISC like-machine split instruction in micro
RISC-line ones

Architecture vs. Implementation

I Architecture:
I instruction set (ISA)
I registers (integer, floating point, . . .)

I Implementation:
I physical registers
I clock & latency
I # of functional units
I Cache’s size & features
I Out Of Order execution, Simultaneous Multi-Threading, ...

I Same architecture, different implementations:
I Power: Power3, Power4, . . ., Power8
I x86: Pentium III, Pentium 4, Xeon, Pentium M, Pentium D, Core,

Core2, Athlon, Opteron, . . .
I different performances
I different rules to improve performance

The Compiler

I It "translate" source code in executable
I It rejects code with sintax errors
I It (sometimes) warns about "semantic" problems
I It (if allowed) try to optimize the code

I code independent optimization
I code dependent optimization
I CPU dependent optimization
I Cache & Memory oriented optimization
I Hint to the CPU (branch prediction)

I It is:
I powerfull: can save programmer’s time
I complex: can perform "complex" optimization
I limited: it is an expert system but can be fooled by the way you

write the code . . .

Building an executable

I It is a three-step process:
I Pre-processing:

I every source code is analyzed by the pre-processor
I MACROs substitution (#define)
I code insertion for #include statements
I code insertion or code removal (#ifdef . . .)
I removing comments . . .

I Compiling:
I each code is translated in object files

I object files is a collection of "symbols" refers to variables/function
defined in the program

I Linking:
I All the object files are put together to build the finale executable
I Any symbol in the program must be resolved

I the symbols can be defined inside your object files
I you can use othe object file (e.g. external libraries)

Example: gfortran compilation
I With the command:

user@caspur$> gfortran dsp.f90 dsp_test.f90 -o dsp.exe

all the three steps (preprocessing, compiling, linking) are
performed

I Pre-processing

user@caspur$> gfortran -E -cpp dsp.f90
user@caspur$> gfortran -E -cpp dsp_test.f90

I -E -cpp options force gfortran to stop after pre-processing
I no need to use -cpp if file extension is *.F90

I Compiling

user@caspur$> gfortran -c dsp.f90
user@caspur$> gfortran -c dsp_test.f90

I -c option force gfortran only to pre-processing and compile
I from every sorce file an object file *.o is created

Example: gfortran linking
I Linking: we must use object files

user@caspur$> gfortran dsp.o dsp_test.o -o dsp.exe

I To solve symbols from external libraries
I suggest the libraries to use with option -l
I suggest the directorse where the libraries are with option -L

I How link libdsp.a library located in /opt/lib

user@caspur$> gfortran file1.o file2.o -L/opt/lib -ldsp -o dsp.exe

I How create and link a static library

user@caspur$> gfortran -c dsp.f90
user@caspur$> ar curv libdsp.a dsp.o
user@caspur$> ranlib libdsp.a
user@caspur$> gfortran test_dsp.f90 -L. -ldsp

I ar creates the archive libdsp.a containing dsp.o
I ranlib builds the library

Compiler: what it can do

I It performs these code modifications
I Register allocation
I Register spilling
I Copy propagation
I Code motion
I Dead and redundant code removal
I Common subexpression elimination
I Strength reduction
I Inlining
I Index reordering
I Loop pipelining , unrolling, merging
I Cache blocking
I . . .

I Everything to maximize performances!!

Compiler: what it cannot do

I Global optimization of "big" source code, unless switch on
interprocedural analisys (IPO) but it is very time consuming . . .

I Understand and resolve complex indirect addressing
I Strenght reduction (with non-integer values)
I Common subexpression elimination through function calls
I Unrolling, Merging, Blocking with:

I functions/subroutine calls
I I/O statement

I Implicit function inlining
I Knowing at run-time variabile’s values

Optimizations: levels

I All compilers have
“predefined” optimization levels -O<n>

I with n from 0 a 3 (IBM up to 5)
I Usually :

I -O0: no optimization is performed, simple translation (tu use
with -g for debugging)

I -O: default value
I -O1: basic optimizations
I -O2: memory-intensive optimizations
I -O3: more aggressive optimizations, it can alter the instruction

order (see floating point section)
I Some compilers have -fast option (On plus more)

Intel compiler: -O3 option
icc (or ifort) -O3

I Automatic vectorization (use of packed SIMD instructions)
I Loop interchange (for more efficient memory access)
I Loop unrolling (more instruction level parallelism)
I Prefetching (for patterns not recognized by h/w prefetcher)
I Cache blocking (for more reuse of data in cache)
I Loop peeling (allow for misalignment)
I Loop versioning (for loop count; data alignment; runtime dependency tests)
I Memcpy recognition (call Intel’s fast memcpy, memset)
I Loop splitting (facilitate vectorization)
I Loop fusion (more efficient vectorization)
I Scalar replacement (reduce array accesses by scalar temps)
I Loop rerolling (enable vectorization)
I Loop reversal (handle dependencies)

From source code to executable

I Executable (i.e. istructions performed by CPU) is very very
different from what you think writing a code

I Example: matrix-matrix production

do j = 1, n
do k = 1, n

do i = 1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

I Computational kernel
I load from memory three numbers
I perform un product and one sum
I store back the result

Hands-on: download code

I Examples at the same place
https://hpc-forge.cineca.it/files/CoursesDev/public/2015/...
...Debugging_and_Optimization_of_Scientific_Applications/Rome/

Compilers_codes.tar

Libraries_codes.tar

FloatingPoints_codes.tar

Hands-on: compiler optimization flags
I Matrix-Matrix product, 1024×1024, double precision
I main loop cache friendly
I code in matrixmul directory (both C & Fortran)
I to load compiler: (module load profile/advanced):

I GNU –> gfortran, gcc : module load gnu
I Intel –> ifort, icc : module load intel
I PGIi –> pgf90, pgcc: module load pgi
I You can load one compiler at time, module purge to remove

previous compiler

GNU Intel PGI GNU Intel PGI
flags seconds seconds seconds GFlops GFlops GFlops
-O0
-O1
-O2
-O3

-O3 -funroll-loops —– —– —– —–
-fast —– —–

Hands-on: Solution

I Matrix-Matrix product, 1024×1024, double precision
I 2 esa-core XEON 5645 Westmere CPUs@2.40GHz
I Fortran results

GNU Intel PGI GNU Intel PGI
flags seconds seconds seconds GFlops GFlops GFlops

default 7.78 0.76 3.49 0.27 2.82 0.61
-O0 7.82 8.87 3.43 0.27 0.24 0.62
-O1 1.86 1.45 3.42 1.16 1.49 0.63
-O2 1.31 0.73 0.72 1.55 2.94 2.99
-O3 0.79 0.34 0.71 2.70 6.31 3.00

-O3 -funroll-loops 0.65 —– —– 3.29 —– —–
-fast —– 0.33 0.70 —– 6.46 3.04

I Open question:
I Why this behaviour?
I Which is he best compiler?

Matmul: performance

I Size 1024×1024, duble precision
I Fortran core, cache friendly
I Tested using:

I FERMI: IBM Blue Gene/Q system, single-socket PowerA2 with
1.6 GHz, 16 core

I PLX: 2 esa-core XEON 5650 Westmere CPUs 2.40 GHz

FERMI - xlf

Option seconds Mflops
-O0 65.78 32.6
-O2 7.13 301
-O3 0.78 2735
-O4 55.52 38.7
-O5 0.65 3311

PLX - ifort

Option seconds MFlops
-O0 8.94 240
-O1 1.41 1514
-O2 0.72 2955
-O3 0.33 6392
-fast 0.32 6623

I Why ?

Compiler: report

I What happens at different optimization level?
I Why performance degradation using -O4?

I Hint: use report flags to investigate
I Using IBM -qreport flag for -O4 level shows that:

I The compiler understant matrix-matrix pattern (it is smart) ad
perform a substitution with external BLAS function
(__xl_dgemm)

I But it is slow because it doesn’t belong to IBM optimized BLAS
library (ESSL)

I At -O5 level it decides not to use external library
I As general rule of thumb performance increase as the

optimization level increase . . .
I . . . but it’s bettet to check!!!

Take a look to assembler

I Very very old example (IBM Power3) but usefull

Load,store and floating point

Loop control instructions

Data addressing

?????

I Memory addressing operations are predominant (30/37)

I Hint:
I the loop access to contigous memory locations
I memory address can be computed in easy way from the first

location adding a constant
I use one single memory address operation to address more

memory locations

I A (smart) compiler can perform all in automatic way

Optimization/1

Optimization/2

Instruction to be performed

I Instruction to be performed for the statement
c(i,j) = c(i,j) + a(i,k)*b(k,j)

I -O0: 24 instructions
I 3 load/1 store, 1 floating point multiply+add
I flop/instructions 2/24 (i.e. 8% if peak performance)

I -O2: 9 instructions (more efficent data addressing)
I 4 load/1 store, 2 floating point multiply+add
I flop/instructions 4/9 (i.e. 44% if peak performance)

I -O3: 150 instructions (unrolling)
I 68 load/34 store, 48 floating point multiply+add
I flop/instructions 96/150 (i.e. 64% if peak performance)

I -O4: 344 instructions (unrolling&blocking)
I 139 load/74 store, 100 floating point multiply+add
I flop/instructions 200/344 (i.e. 54% if peak performance)

Who does the dirty work?

I option -fast (ifort on PLX) produce a ' 30x speed-up respect
to option -O0

I many different (and complex) optimizations are done . . .
I Hand-made optimizations?
I The compiler is able to do

I Dead code removal: removing branch

b = a + 5.0;
if ((a>0.0) && (b<0.0)) {

......
}

I Redudant code removal

integer, parameter :: c=1.0
f=c*f

I But coding style can fool the compiler

Loop counters

I Always use the correct data type
I If you use as loop index a real type means to perform a implicit

casting real→ integer every time . . .
I I should be an error according to standard, but compilers

sometimes are sloppy...

real :: i,j,k
....
do j=1,n
do k=1,n
do i=1,n
c(i,j)=c(i,j)+a(i,k)*b(k,j)
enddo
enddo
enddo

Time in seconds
compiler/level integer real

(PLX) gfortran -O0 9.96 8.37
(PLX) gfortran -O3 0.75 2.63

(PLX) ifort -O0 6.72 8.28
(PLX) ifort -fast 0.33 1.74

(PLX) pgif90 -O0 4.73 4.85
(PLX) pgif90 -fast 0.68 2.30
(FERMI) bgxlf -O0 64.78 104.10
(FERMI) bgxlf -O5 0.64 12.38

Compilers limitations

I A compiler can do a lot of work . . . but it is a program
I It is easy to fool it!

I loop body too complex
I loop values not defined a compile time
I to much nested if structure
I complicate indirect addressing/pointers

index reordering

I For simple loops there’s no problem
I . . . using appropriate optimization level

do i=1,n
do k=1,n

do j=1,n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

I Time in seconds
j-k-i i-k-j

(PLX) ifort -O0 6.72 21.8
(PLX) ifort -fast 0.34 0.33

index reordering/2
I For more complicated loop nesting could be a problem . . .

I also at higher optimization levels
I solution: always write cache friendly loops, if possible

do jj = 1, n, step
do kk = 1, n, step

do ii = 1, n, step
do j = jj, jj+step-1

do k = kk, kk+step-1
do i = ii, ii+step-1

c(i,j) = c(i,j) + a(i,k)*b(k,j)
enddo

enddo
enddo

enddo
enddo

enddo

I Time in seconds
Otimization level j-k-i i-k-j
(PLX) ifort -O0 10 11.5
(PLX) ifort -fast 1. 2.4

Cache & subroutine

do i=1,nwax+1
do k=1,2*nwaz+1

call diffus (u_1,invRe,qv,rv,sv,K2,i,k,Lu_1)
call diffus (u_2,invRe,qv,rv,sv,K2,i,k,Lu_2)

....
end do

end do

subroutine diffus (u_n,invRe,qv,rv,sv,K2,i,k,Lu_n)
do j=2,Ny-1
Lu_n(i,j,k)=invRe*(2.d0*qv(j-1)*u_n(i,j-1,k)-(2.d0*rv(j-1)

+K2(i,k))*u_n(i,j,k)+2.d0*sv(j-1)*u_n(i,j+1,k))
end do

end subroutine

I non unitary access (stride MUST be ' 1)

Cache & subroutine/2

call diffus (u_1,invRe,qv,rv,sv,K2,Lu_1)
call diffus (u_2,invRe,qv,rv,sv,K2,Lu_2)
....

subroutine diffus (u_n,invRe,qv,rv,sv,K2,i,k,Lu_n)
do k=1,2*nwaz+1
do j=2,Ny-1
do i=1,nwax+1
Lu_n(i,j,k)=invRe*(2.d0*qv(j-1)*u_n(i,j-1,k)-(2.d0*rv(j-1)

+K2(i,k))*u_n(i,j,k)+2.d0*sv(j-1)*u_n(i,j+1,k))
end do
end do
end do

end subroutine

I "same" results as the the previous one
I stride = 1
I Sometimes compiler can perform the transformations, but

inlining option must be activated

Inlining

I means to substitue the functon call with all the instruction
I no more jump in the program
I help to perform interpocedural analysis

I the keyword inline for C and C++ is a “hint” for compiler
I Intel (n: 0=disable, 1=inline functions declared, 2=inline any

function, at the compiler’s discretion)
-inline-level=n

I GNU (n: size, default is 600):
-finline-functions
-finline-limit=n

I It varies from compiler to compiler, read the manpage . . .

Common Subexpression Elimination

I Reusing common Subexpression for intemediate results:
A= B+C+D
E= B+F+C

I 4 load, 2 store, 4 sums
A=(B+C) + D
E=(B+C) + F

I 4 load, 2 store, 3 sums
I WARNING: with floating point arithmetics results can be

different
I “Scalar replacement” if you access to a vector location many

times
I compilers can do that (at some optimization level)

Functions & Side Effects

I Functions returns a values but
I sometimes global variables are modified
I I/O operations can prduce side effects

I side effects can “stop” compiler to perform inlining
I Example (no side effect):

function f(x)
f=x+dx

end

so f(x)+f(x)+f(x) it is equivalent to 3*f(x)

I Example (side effect):
function f(x)

x=x+dx
f=x

end

so f(x)+f(x)+f(x) it is different from 3*f(x)

CSE & function

I reordering function calls can produce different results
I It is hard for a compiler understand is there’s side effects
I Example: 5 calls to functons, 5 products:

x=r*sin(a)*cos(b);
y=r*sin(a)*sin(b);
z=r*cos(a);

I Example: 4 calls to functons, 4 products, 1 tempory variable:
temp=r*sin(a)
x=temp*cos(b);
y=temp*sin(b);
z=r*cos(a);

I Correct if there’s no side effect!

CSE: limitations

I Core loop too wide:
I Compiler is able to handle a fixed number of lines: it could not

realize that there’s room for improvement
I Functions:

I there is a side effect?
I CSE mean to alter order of operations

I enabled at “high” optimization level (-qnostrict per IBM)
I use parentheis to “inhibit” CSE

I “register spilling”: when too much intermediate values are used

What can do a compiler?

do k=1,n3m
do j=n2i,n2do

jj=my_node*n2do+j
do i=1,n1m

acc =1./(1.-coe*aciv(i)*(1.-int(forclo(nve,i,j,k))))
aci(jj,i)= 1.
api(jj,i)=-coe*apiv(i)*acc*(1.-int(forclo(nve,i,j,k)))
ami(jj,i)=-coe*amiv(i)*acc*(1.-int(forclo(nve,i,j,k)))
fi(jj,i)=qcap(i,j,k)*acc

enddo
enddo

enddo
...
...
do i=1,n1m

do j=n2i,n2do
jj=my_node*n2do+j
do k=1,n3m

acc =1./(1.-coe*ackv(k)*(1.-int(forclo(nve,i,j,k))))
ack(jj,k)= 1.
apk(jj,k)=-coe*apkv(k)*acc*(1.-int(forclo(nve,i,j,k)))
amk(jj,k)=-coe*amkv(k)*acc*(1.-int(forclo(nve,i,j,k)))
fk(jj,k)=qcap(i,j,k)*acc

enddo
enddo

enddo

. . . this . . .

do k=1,n3m
do j=n2i,n2do

jj=my_node*n2do+j
do i=1,n1m

temp = 1.-int(forclo(nve,i,j,k))
acc =1./(1.-coe*aciv(i)*temp)
aci(jj,i)= 1.
api(jj,i)=-coe*apiv(i)*acc*temp
ami(jj,i)=-coe*amiv(i)*acc*temp
fi(jj,i)=qcap(i,j,k)*acc

enddo
enddo

enddo
...
...
do i=1,n1m

do j=n2i,n2do
jj=my_node*n2do+j
do k=1,n3m

temp = 1.-int(forclo(nve,i,j,k))
acc =1./(1.-coe*ackv(k)*temp)
ack(jj,k)= 1.
apk(jj,k)=-coe*apkv(k)*acc*temp
amk(jj,k)=-coe*amkv(k)*acc*temp
fk(jj,k)=qcap(i,j,k)*acc

enddo
enddo

enddo

. . . but not that!!! (20% faster)

do k=1,n3m
do j=n2i,n2do

do i=1,n1m
temp_fact(i,j,k) = 1.-int(forclo(nve,i,j,k))

enddo
enddo

enddo
...
...
do i=1,n1m

do j=n2i,n2do
jj=my_node*n2do+j
do k=1,n3m

temp = temp_fact(i,j,k)
acc =1./(1.-coe*ackv(k)*temp)
ack(jj,k)= 1.
apk(jj,k)=-coe*apkv(k)*acc*temp
amk(jj,k)=-coe*amkv(k)*acc*temp
fk(jj,k)=qcap(i,j,k)*acc

enddo
enddo

enddo
...
...
! the same for the other loop

Array syntax
I in place 3D-array translation (5123)
I Explixcit loop (Fortran77): 0.19 seconds

I CAVEAT: the loop order is “inverse” in order not to overwirte
data

do k = nd, 1, -1
do j = nd, 1, -1
do i = nd, 1, -1

a03(i,j,k) = a03(i-1,j-1,k)
enddo

enddo
enddo

I Array Syntax (Fortran90): 0.75 seconds
I According to the Standard→ store in an intermediate array to

avoid to overwrite data

a03(1:nd, 1:nd, 1:nd) = a03(0:nd-1, 0:nd-1, 1:nd)

I Array syntax with hint: 0.19 seconds
a03(nd:1:-1,nd:1:-1,nd:1:-1) = a03(nd-1:0:-1, nd-1:0:-1, nd:1:-1)

Ottimizzazione Report/1

I A report of optimization performed can help to find “problems”
I Intel

-opt-report[n] n=0(none),1(min),2(med),3(max)
-opt-report-file<file>
-opt-report-phase<phase>
-opt-report-routine<routine>

I one or more *.optrpt file are generated
...
Loop at line:64 memcopy generated
...

I It is this memcopy necessary?

Ottimizzazione Report/2

I There’s no equivalent flag for GNU compilers
I Best solution:

-fdump-tree-all

I dump all compiler operations
I very hard to understand

I PGI compilers
-Minfo
-Minfo=accel,inline,ipa,loop,opt,par,vect

Info at standard output

Give hints to compiler

I Loop size known at compile-time o run-time
I Some optimizations (like unrolling) can be inhibited

real a(1:1024,1:1024)
real b(1:1024,1:1024)
real c(1:1024,1:1024)
...
read(*,*) i1,i2
read(*,*) j1,j2
read(*,*) k1,k2
...
do j = j1, j2
do k = k1, k2
do i = i1, i2
c(i,j)=c(i,j)+a(i,k)*b(k,j)
enddo
enddo
enddo

I Time in seconds
(Loop Bounds Compile-Time
o Run-Time)

flag LB-CT LB-RT
(PLX) ifort -O0 6.72 9
(PLX) ifort -fast 0.34 0.75

I WARNING: compiler dependent...

Static vs. Dynamic allocation

I Static allocation gives more information to compilers
I but the code is less flexible
I recompile every time is really boring

integer :: n
parameter(n=1024)
real a(1:n,1:n)
real b(1:n,1:n)
real c(1:n,1:n)

real, allocatable, dimension(:,:) :: a
real, allocatable, dimension(:,:) :: b
real, allocatable, dimension(:,:) :: c
print*,’Enter matrix size’
read(*,*) n
allocate(a(n,n),b(n,n),c(n,n))

Static vs. Dynamic allocation/2

I for today compilers there’s no big difference
I Matrix-Matrix Multiplication (time in seconds)

static dynamic
(PLX) ifort -O0 6.72 18.26
(PLX) ifort -fast 0.34 0.35

I With static allocation data are put in the “stack”
I at run-time take care of stacksize (e.g. sementation fault)
I using bash: to check

ulimit -a

I using bash: to modify

ulimit -s unlimited

Dynamic allocation using C/1

I Using C matrix→ arrays of array
I with static allocation data are contiguos (columnwise)

double A[nrows][ncols];

I with dynamic allocation
I “the wrong way”

/* Allocate a double matrix with many malloc */
double** allocate_matrix(int nrows, int ncols) {

double **A;
/* Allocate space for row pointers */
A = (double**) malloc(nrows*sizeof(double*));
/* Allocate space for each row */
for (int ii=1; ii<nrows; ++ii) {

A[ii] = (double*) malloc(ncols*sizeof(double));
}
return A;

}

Dynamic allocation using C/2
I allocate a linera array

/* Allocate a double matrix with one malloc */
double* allocate_matrix_as_array(int nrows, int ncols) {

double *arr_A;
/* Allocate enough raw space */
arr_A = (double*) malloc(nrows*ncols*sizeof(double));
return arr_A;

}

I using as a matrix (with index linearization)
arr_A[i*ncols+j]

I MACROs can help
I also use pointers

/* Allocate a double matrix with one malloc */
double** allocate_matrix(int nrows, int ncols, double* arr_A) {

double **A;
/* Prepare pointers for each matrix row */
A = new double*[nrows];
/* Initialize the pointers */
for (int ii=0; ii<nrows; ++ii) {

A[ii] = &(arr_A[ii*ncols]);
}
return A;

}

Aliasing & Restrict

I Aliasing: when two pointers point at the same area
I Aliasing can inhibit optimization

I you cannot alter order of operations
I C99 standard introduce restrict keyword to point out that

aliasing is not allowed
void saxpy(int n, float a, float *x, float* restrict y)

I C++: l’aliasing not allowed between pointer to different type
(strict aliasing)

Different operations, different latencies

For a CPU different operations could present different latencies

I Sum: few clock cycles
I Product: few clock cycles
I Sum+Product: few clock cycles
I Division: many clock cycle (O(10))
I Sin,Cos: many many clock cycle (O(100))
I exp,pow: many many clock cycle (O(100))
I I/O operations: many many many clock cycles

(O(1000− 10000))

Input/Output

I Handled by the OS
I system calls
I pipeline goes dry
I cache coerency can be destroyed
I it is very slow

I Golden Rule #1: NEVER mix computing with I/O operations
I Golden Rule #2: NEVER read/write a single data, pack them in

a block

Different I/O

do k=1,n ; do j=1,n ; do i=1,n
write(69,*) a(i,j,k) ! formatted I/O
enddo ; enddo ; enddo

do k=1,n ; do j=1,n ; do i=1,n
write(69) a(i,j,k) ! binary I/O
enddo ; enddo ; enddo

do k=1,n ; do j=1,n
write(69) (a(i,j,k),i=1,n) ! by colomn
enddo ; enddo

do k=1,n
write(69) ((a(i,j,k),i=1),n,j=1,n) ! by matrix
enddo

write(69) (((a(i,j,k),i=1,n),j=1,n),k=1,n) ! dump1

write(69) a ! dump2

Different I/O: some figures

seconds Kbyte
formatted 81.6 419430

binary 81.1 419430
by colunm 60.1 268435
nt matrix 0.66 134742
dump (1) 0.94 134219
dump (2) 0.66 134217

I WARNING: the filesystem used could affect performance (e.g.
RAID). . .

I/O

I Read/write operations are slow
I Read/write format data are very very slow
I ALWAYS Read/write binary data
I Golden Rule #1: NEVER mix computing with I/O operations
I Golden Rule #2: NEVER read/write a single data, pack them in

a block
I For HPC is possibile use:

I I/O libraries: MPI-I/O, HDF5, NetCDF,...

Vector units

I We are not talking of vector machine
I Vector Units performs parallel floating/integer point operations

on dedicate SIMD units simultanee
I Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX

I Example: summing 2 arrays of 4 elements in one single
instruction

c(0) = a(0) + b(0)
c(1) = a(1) + b(1)
c(2) = a(2) + b(2)
c(3) = a(3) + b(3)

no vectorization vectorization

SIMD - evolution

I SSE: 128 bit register (Intel Core - AMD Opteron)
I 4 floating/integer operations in single precision
I 2 floating/integer operations in double precision

I AVX: 256 bit register (Intel Sandy Bridge - AMD Bulldozer)
I 8 floating/integer operations in single precision
I 4 floating/integer operations in double precision

I MIC: 512 bit register (Intel Knights Corner - 2013)
I 16 floating/integer operations in single precision
I 8 floating/integer operations in double precision

Vectorization issues

I Vectorization is a key issue for performance
I To be vectorized single loop iteration must be independent: no

data dependence
I coding style can inhibit vectorization
I Some issues for vectorization:

I Countable
I Single entry-single exit (no break or exit)
I Straight-line code (no branch)
I Only internal loop can be vectorized
I no function call (unless math or inlined)

I WARNING: due to floating point arithmetic results could differ
. . .

Algorithm & Vectorization

I Different algorithm for the same problem could be vectorazable
or not

I Gauss-Seidel: data dependencies, cannot be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)
a[i][j] = w0 * a[i][j] +

w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

I Jacobi: no data dependence, can be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

b[i][j] = w0*a[i][j] +
w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

a[i][j] = b[i][j];

Optimization & Vectorization

I “coding tricks” can inhibit vectorization
I can be vectorized

for(i = 0; i < n-1; ++i){
b[i] = a[i] + a[i+1];

}

I cannot be vectorized

x = a[0];
for(i = 0; i < n-1; ++i){
y = a[i+1];
b[i] = x + y;
x = y;

}

I You can help compiler’s work
I removing unnecessary data dependencies
I using directives for forcing vectorization

Directives
I You can force to vectorize when the compiler doesn’t want

using directive
I they are “compiler dependent”

I Intel Fortran: !DIR$ simd
I Intel C: #pragma simd

I Example: data dependency found by the compiler is apparent,
cause every time step inow is different from inew

do k = 1,n
!DIR$ simd

do i = 1,l
...

x02 = a02(i-1,k+1,inow)
x04 = a04(i-1,k-1,inow)
x05 = a05(i-1,k ,inow)
x06 = a06(i ,k-1,inow)
x11 = a11(i+1,k+1,inow)
x13 = a13(i+1,k-1,inow)
x14 = a14(i+1,k ,inow)
x15 = a15(i ,k+1,inow)
x19 = a19(i ,k ,inow)

rho =+x02+x04+x05+x06+x11+x13+x14+x15+x19
...

a05(i,k,inew) = x05 - omega*(x05-e05) + force
a06(i,k,inew) = x06 - omega*(x06-e06)

...

Hands-on: Vectorization

I Compare performances w/o vectorization simple_loop.f90
using PGI and Intel compilers

I -fast, to inibhit vectorization use -Mnovect (PGI) or
-no-vec (Intel)

I Program vectorization_test.f90 contains 18 different
loops

I Which can be vectorized?
I check with PGI compiler with reporting flag -fast -Minfo
I check with Intel compiler with reporting flag
-fast -opt-report3 -vec-report3

I check with GNU compiler with reporting flag
-ftree-vectorizer-verbose=n

I Any idea to force vectorization?

Hands-on: Vectorization/2
PGI Intel

Vectorized time
Non-Vectorized time

Loop # Description Vect/Not PGI Intel
1 Simple
2 Short
3 Previous
4 Next
5 Double write
6 Reduction
7 Function bound
8 Mixed
9 Branching

10 Branching-II
11 Modulus
12 Index
13 Exit
14 Cycle
15 Nested-I
16 Nested-II
17 Function
18 Math-Function

Hands-on: Vectorization Results
PGI Intel

Vectorized time 0.79 0.52
Non-Vectorized time 1.58 0.75

Loop Description PGI Intel
1 Simple yes yes
2 Short no: unrolled yes
3 Previous no: data dep. no: data dep.
4 Next yes yes: how?
5 Double write no: data dep. no: data dep.
6 Reduction yes ? ignored
7 Function bound yes yes
8 Mixed yes yes
9 Branching yes yes

10 Branching-II ignored yes
11 Modulus no: mixed type no: inefficient
12 Index no: mixed type yes
13 Exit no: exits no: exits
14 Cycle ? ignored yes
15 Nested-I yes yes
16 Nested-II yes yes
17 Function no: function call yes
18 Math-Function yes yes

Handmade Vectorization

I It is possible to insert inside the code vectorized function
I You have to rewrite the loop making 4 iteration in parallel . . .

void scalar(float* restrict result,
const float* restrict v,
unsigned length)

{
for (unsigned i = 0; i < length; ++i)
{

float val = v[i];
if (val >= 0.f)

result[i] = sqrt(val);
else

result[i] = val;
}

}

void sse(float* restrict result,
const float* restrict v,
unsigned length)

{
__m128 zero = _mm_set1_ps(0.f);

for (unsigned i = 0; i <= length - 4; i += 4)
{

__m128 vec = _mm_load_ps(v + i);
__m128 mask = _mm_cmpge_ps(vec, zero);
__m128 sqrt = _mm_sqrt_ps(vec);
__m128 res =

_mm_or_ps(_mm_and_ps(mask, sqrt),
_mm_andnot_ps(mask, vec));

_mm_store_ps(result + i, res);
}

}

I Non-portable tecnique...

Automatic parallelization

I Some compilers are able to exploit parallelism in an automatic
way

I Shared Memory Parallelism
I Similar to OpenMP Paradigm without directives

I Usually performance are not good . . .
I Intel:

-parallel
-par-threshold[n] - set loop count threshold
-par-report{0|1|2|3}

I IBM:
-qsmp la abilita automaticamente
-qsmp=openmp:noauto per disabilitare la

parallelizzazione automatica

Outline

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Static and Dynamic libraries

I you have to link with
-L<library_directory> -l<library_name>

I Static library:
I *.a
I all symbols are included in the executable at linking
I if you built a new library that use an other external libray it

doesn’t contains the other symbols: you have to explicit linking
the library

I Dynamic Library:
I *.so
I Symbols are resolved at run-time
I you have to set-up where find the requested library at run-time

(i.e. setting LD_LIBRARY_PATH environment variable)
I ldd <exe_name> gives you info about dynamic librariy

requested

Scientific Libraries

I A (complete?) set of function implementing different numeric
algorithms

I A set of basic function (e.g. Fasr Fourier Transform, . . .)
I A set of low level function (e.g. scalar products or random

number generator), ma anche algoritmi piú complicati
(trasformata di Fourier o diagonalizzazione di matrici)

I (Usually) Faster than hand made code (i.e. sometimes written
in assembler)

I Proprietary or OpenSource
I Take care at link between library & compilers

Pros & Cons

I Pros:
I helps to moudularize the code
I portability
I efficient
I ready to use

I Cons:
I some details hidden (e.g. Memory requirements)
I you don’t have complete control . . .

Which library?

I It is hard to have a complete overview of Scientific libraries
I many different libraries
I still evolving . . .
I . . . especially for “new architectures” (e.g GPU, MIC)

I Main libraries used in HPC
I Linibear Algebra
I FFT
I I/O libraries
I Parallel Computing
I Mesh decomposition
I . . .

Linear Algebra

I Different parallelization paradigm
I Shared memory (i.e. multi-threaded) or/and Distributed Memory

I Shared memory
I BLAS
I GOTOBLAS
I LAPACK/CLAPACK/LAPACK++
I ATLAS
I PLASMA
I SuiteSparse
I . . .

I Distributed Memory
I Blacs (only decomposition)
I ScaLAPACK
I PSBLAS
I Elemental
I . . .

BLAS

I BLAS: Basic Linear Algebra Subprograms
I it is one of the first library developed for HPC (1979, vector

machine)
I it includes basic operations between vectors, matrix and vector,

matrix and matrix
I it is used by many other high level libraries

I It is divided into 3 different levels
I BLAS lev. 1: basic subroutines for scalar-vector operations

(1977-79, vector machine)
I BLAS lev. 2: basic subroutines for vector-matrix operations

(1984-86)
I BLAS lev. 3: subroutine for matrix-matrix operations (1988)

BLAS/2

I It apply to real/complex data, in single/double precision
I Old Fortran77 style
I Level 1: scalar-vector operations (O(n))

I *SWAP vector swap
I *COPY vector copy
I *SCAL scaling
I *NRM2 L2-norm
I *AXPY sum: a*X+Y (X,Y are vectors)

I Level 2: vector-matrix operations (O(n2))
I *GEMV product vector/matrix (generic)
I *HEMV product vector/matrix (hermitian)
I *SYMV product vector/matrix (simmetric)

BLAS/3

I Level 3: matrix-matrix operations (O(n3))
I *GEMM product matrix/matrix (generic)
I *HEMM product matrix/matrix (hermitian)
I *SYMM product matrix/matrix (simmetric)

I GOTOBLAS
I optimized (using assembler) BLAS library for different

supercomputers. Develped by Kazushige Goto, now at Texas
Advanced Computing Center, University of Texas at Austin).

LAPACK & Co.

I LAPACK: Linear Algebra PACKage
I Linear algebral solvers (linear systems of equations, Ordinary

Least Square, eigenvalues, . . .)
I evolution of LINPACK e EISPACK

I ATLAS: Automatically Tuned Linear Algebra Software
I BLAS and LAPACK (but only some subroutine) implementations
I Automatic optization of Software paradigm

I PLASMA: Parallel Linear Algebra Software for Multi-core
Architectures

I Similare to LAPACK (less subroutines) developed to be efficent
on multicore systems.

I SuiteSparse
I Sparse Matrix

Linear Algebra/2

I Eigenvalues/Eigenvectors
I EISPACK: with specialized version for matrix fo different kinf

(real/complex, hermitia, simmetrich, tridiagonal, . . .)
I ARPACK: eigenvalus for big size problems. Parallel version use

BLACs and MPI libraries.
I Distributed Memory Linear Algebra

I BLACS: linear algebra oriented message passing interface
I ScaLAPACK: Scalable Linear Algebra PACKage
I Elemental: framework per algebra lineare densa
I PSBLAS: Parallel Sparse Basic Linear Algebra Subroutines
I . . .

Input/Output Libraries

I I/O Libraries are extremely important for
I interoperability: C/Fortran, Little Endian/Big Endian, . . .
I visualizzazion
I Sub-set data analysis
I metadata
I I/O parallelo

I HDF5: “is a data model, library, and file format for storing and
managing data”

I NetCDF: “NetCDF is a set of software libraries and
self-describing, machine-independent data formats that
support the creation, access, and sharing of array-oriented
scientific data”

I VTK: “open-source, freely available software system for 3D
computer graphics, image processing and visualization”

Other Libraries

I MPI: Message Passing Interface
I De facto standard for Distributed Memory Parallelization

(MPICH/OpenMPI)

I Mesh decomposition
I METIS e ParMETIS: “can partition a graph, partition a finite

element mesh, or reorder a sparse matrix”
I Scotch e PT-Scotch: “sequential and parallel graph partitioning,

static mapping and clustering, sequential mesh and hypergraph
partitioning, and sequential and parallel sparse matrix block
ordering”

Other Scientific computing libraries

I Trilinos
I object oriented software framework for the solution of

large-scale, complex multi-physics engineering and scientific
problems

I A two-level software structure designed around collections of
packages

I A package is an integral unit developed by a team of experts in
a particular algorithms area

I PETSc
I It is a suite of data structures and routines for the (parallel)

solution of applications modeled by partial differential equations.
I It supports MPI, shared memory pthreads, and GPUs through

CUDA or OpenCL, as well as hybrid MPI-shared memory
pthreads or MPI-GPU parallelism.

Specialized Libraries

I MKL: Intel Math Kernel Library
I Major functional categories include Linear Algebra, Fast Fourier

Transforms (FFT), Vector Math and Statistics. Cluster-based
versions of LAPACK and FFT are also included to support
MPI-based distributed memory computing.

I ACML: AMD Core Math Library
I Optimized functions for AMD processors. It includes BLAS,

LAPACK, FFT, Random Generators . . .
I GSL: GNU Scientific Library

I The library provides a wide range of mathematical routines such
as random number generators, special functions and
least-squares fitting. There are over 1000 functions in total with
an extensive test suite.

I ESSL (IBM): Engineering and Scientific Subroutine library
I BLAS, LAPACK, ScaLAPACK, Sparse Solvers, FFT e may other.

The Parallel version uses MPI

How to call a library

I first of all the sintax should be correct (read the manual!!!)
I always check for the right version
I sometimes for proprietary libraries linking could be

“complicated”
I e.g. Intel ScaLAPACK

mpif77 <programma> -L$MKLROOT/lib/intel64 \
-lmkl_scalapack_lp64 -lmkl_blacs_openmpi \
-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core \
-liomp5 -lpthread

Interoperability

I Many libreries are written using C, many others using Fortran
I This can produce some problems

I type matching: C int is not granted to be the same with
Fortran integer

I symboli Match: Fortran e C++ “alter” symbol’s name producing
object file (e.g. Fortran put an extra _)

I Brute force approach
I hand-made match all types and add _ to match all librarie’s

objects.
I nm <object_file> lists all symbols

I Standard Fortran 2003 (module iso_c_binding)
I The most important library gives you Fortran2003 interface

I In C++ command extern "C"

Interoperability/2
I To call libraries from C to Fortran and viceversa
I Example: mpi written using C/C++:

I old style: include "mpif.h"
I new style: use mpi
I the two approach are not fully equivalent: using the module

implies also a compile-time check type!
I Example: fftw written using C

I legacy : include "fftw3.f"
I modern:

use iso_c_binding
include ’fftw3.f03’

I Example: BLAS written using Fortran
I legacy: call dgemm_ insted of dgemm
I modern: chiamare cblas_dgemm

I Standardization still lacking...
I Read the manual . . .

BLAS: Interoperability/1

I Take a look at “netlib” web site
http://www.netlib.org/blas/

I BLAS was written in Fortran 77, some compilatori gives you
interfaces (types check, F95 features)

I Using Intel e MKL

use mkl95_blas

BLAS:Interoperability/2

I C (legacy):
I add underscore to function’s name
I Fortran: argoments by reference, it is mandatory to pass

pointers
I Type matching (compiler dependent): probably double, int,

char→ double precision, integer, character
I C (modern)

I use interface cblas: GSL (GNU) or MKL (Intel)
I include header file #include <gsl.h> or #include<mkl.h>

http://www.gnu.org/software/gsl/manual/html_node/GSL-CBLAS-Library.html

Hands-on: BLAS
I make an explicit call to DGEMM routine (BLAS).
I DGEMM It perform double precision matrix-matrix multiplication
I DGEMM : http://www.netlib.org/blas/dgemm.f

C := alpha*op(A)*op(B) + beta*C,

I Fortran: GNU, use acml:
I gfortran64 (serial)
I gfortran64_mp (multi-threaded)

module load profile/advanced
module load gnu/4.7.2 acml/5.3.0--gnu--4.7.2
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACML_HOME/gfortran64/lib/
gfortran -O3 -L$ACML_HOME/gfortran64/lib/ -lacml matrixmulblas.F90

I Fortran: Intel, use mkl:
I sequential (serial)
I parallel (multi-threaded)

module load intel
module load mkl
ifort -O3 -mkl=sequential matrixmulblas.F90

Hands-on: BLAS/2

I C: Intel (MKL with cblas)
I include header file #include<mkl.h>
I try -mkl=sequential e -mkl=parallel

module load profile/advanced
module load intel/cs-xe-2013--binary
icc -O3 -mkl=sequential matrixmulblas.c

I C: GNU (GSL with cblas)
I include l’header file #include <gsl/gsl_cblas.h>

module load profile/advanced
module load gnu/4.8.0 gsl/1.15--gnu--4.8.0
gcc -O3 -L$GSL_HOME/lib -lgslcblas matrixmulblas.c -I$GSL_INC

I Compare with performance obtained with -O3/-fast
I Write the measured GFlops for a matrix of size 4096x4096

GNU -O3 Intel -fast GNU-ACML/GSL seq Intel-MKL seq

— Intel -fast -parallel GNU-ACML par Intel-MKL par
— —

Hands-on: solutions

I Fortran:
call DGEMM(’n’,’n’,N,N,N,1.d0,a,N,b,N,0.d0,c,N)

I C (cblas):
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

nn, nn, nn, 1., (double*)a, nn, (double*)b,
nn, 0., (double*)c, nn);

I C (legacy):
dgemm_(&transpose1, &transpose2, &n, &n, &n, &alfa,

(double*)a, &n, (double*)b, &n, &beta, (double*)c, &n);

GNU -O3 Intel -fast GNU-ACML/GSL seq Intel-MKL seq
1.5 6.3 5.3/1.2 9.1
— Intel -fast -parallel GNU-ACML par Intel-MKL par
— 75 61 75

Which performance can I reach?

I A factor 100x!!!!!

Outline

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Why talking about data formats?

I The “numbers” used in computers are different from the “usual”
numbers

I Some differences have known consequences
I size limits
I numerical stability
I algorithm robustness

I Other differences are often misunderstood/not known
I portability
I exceptions
I surprising behaviours with arithmetic

Bits and Integers
I Computers handle bits (0/1)
I An integer number n is stored as a sequence of bits (r)
I You have a range

−2r−1 ≤ n ≤ 2r−1 − 1

I Two common sizes
I 32 bit: range −231 ≤ n ≤ 231 − 1
I 64 bit: range −263 ≤ n ≤ 263 − 1

I Languages allow for declaring different flavours of integers
I select the type you need compromizing on avoiding overflow

and saving memory
I Is it difficult to have an integer overflow?

I consider a cartesian discretization mesh (1536× 1536× 1536)
and a linearized index i

0 ≤ i ≤ 3623878656 > 231 = 2147483648

Bits and Integers/2

I Fortran “officially” does not let you specify the size of declared
data

I you request kind and the language do it for you
I in principle very good, but interoperability must be considered

with attention

I C standard types do not match exact sizes, too
I look for int, long int, unsigned int, . . .
I char is an 8 bit integer
I unsigned integers available, doubling the maximum value

0 ≤ n ≤ 2r − 1

Bits and Reals

I Note: From now on, some examples will consider base 10
numbers just for readability

I Representing reals using bits is not natural
I Fixed size approach

I select a fixed point corresponding to comma
I e.g., with 8 digits and 5 decimal places 36126234 gets

interpreted as 361.26234
I Cons:

I limited range: from 0.00001 to 999.99999, spanning 108

I only numbers having at most 5 decimal places can be exactly
represented

I Pros:
I constant resolution, i.e. the distance from one point to the

closest one (0.00001)

Floating point approach

I Scientific notation:

n = (−1)s ·m · βe

0.0046367 = (−1)0 · 4.6367 · 10−3

I Represent it using bits reserving
I one digit for sign s
I “p-1” digits for significand (mantissa) m
I “w” digits for exponent e

Exponent and Mantissa

I Exponent
I unsigned biased exponent
I emin ≤ e ≤ emax
I emin must be equal to (1− emax)

I Mantissa
I precision p, the digits xi are 0 ≤ xi < β
I “hidden bit” format used for normal values: 1.xx...x

IEEE Name Format Storage Size w p emin emax
Binary32 Single 32 8 24 -126 +127
Binary64 Double 64 11 53 -1022 +1023
Binary128 Quad 128 15 113 -16382 +16383

Mantissa

I Cons:
I only “some” real numbers are floating point numbers (see later)

I Pros:
I constant relative resolution (relative precision), each number is

represented with the same relative error which is the distance
from one point to the closest one divided by the number (see
later)

I wide range: “normal” positive numbers from 10emin to
9,999..9 · 10emax

I The representation is unique assuming the mantissa is

1 ≤ m < β

i.e. using “normal” floating-point numbers

Resolution

I The distance among “normal” numbers is not constant

I E.g., β = 2, p = 3, emin = −1 and emax = 2:
I 16 positive “normalized” floating-point numbers

e = -1 -> 1/2 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/8:5/8:6/8:7/8]
e = 0 -> 1 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/4:5/4:6/4:7/4]
e = +1 -> 2 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/2:5/2:6/2:7/2]
e = +2 -> 4 ; m = 1 + [0:1/4:2/4:3/4] ==> [4/1:5/1:6/1:7/1]

Relative Resolution

I What does it mean “constant relative resolution”?
I Given a number N = m · βe the nearest number has distance

R = β−(p−1)βe

I E.g., given 3.536 · 10−6, the nearest (larger) number is
3.537 · 10−6 having distance 0.001 · 10−6

I The relative resolution is (nearly) constant (considering
m ' β/2)

R
N

=
β−(p−1)

m
' 1/2β−p

Intrinsic Error

I WARNING: not any real number can be expressed as a
floating point number

I because you would need a larger exponent
I or because you would need a larger precision

I The resolution is directly related to the intrinsic error
I if p = 4, 3.472 may approximate numbers between 3.4715 and

3.4725, its intrinsic error is 0.0005
I the instrinsic error is (less than) (β/2)β−pβe

I the relative intrinsic error is

(β/2)β−p

m
≤ (β/2)β−p = ε

I The intrinsic error ε is also called “machine epsilon” or “relative
precision”

Measuring error

I When performing calculations, floating-point error may
propagate and exceed the intrinsic error

real value = 3.14145
correctly rounded value = 3.14
current value = 3.17

I The most natural way to measure rounding error is in “ulps”,
i.e. units in the last place

I e.g., the error is 3 ulps
I Another interesting possibility is using “machine epsilon”, which

is the relative error corresponding to 0.5 ulps
relative error = 3.17-3.14145 = 0.02855
machine epsilon = 10/2*0.001 = 0.005
relative error = 5.71 ε

Handling errors

I Featuring a constant relative precision is very useful when
dealing with rescaled equations

I Beware:
I 0.2 has just one decimal digit using radix 10, but is periodic

using radix 2
I periodicity arises when the fractional part has prime factors not

belonging to the radix
I by the way, in Fortran if a is double precision, a=0.2 is badly

approximated (use a=0.2d0 instead)
I Beware overflow!

I you think it will not happen with your code but it may happen
(mayby for intermediate results . . .)

I exponent range is symmetric: if possibile, perform calculations
around 1 is a good idea

Types features

IEEE Name min max ε C Fortran
Binary32 1.2E-38 3.4E38 5.96E-8 float real
Binary64 2.2E-308 1.8E308 1.11E-16 double real(kind(1.d0))

Binary128 3.4E-4932 1.2E4932 9.63E-35 long double real(kind=...)

I There are also “double extended” type and parametrized types
I Extended and quadruple precision devised to limit the

round-off during the double calculation of trascendental
functions and increase overflow

I Extended and quad support depends on architecture and
compiler: often emulated and so really slow

I Decimal with 32, 64 and 128 bits are defined by standards, too
I FPU are usually “conformant” but not “compliant”
I To be safe when converting binary to text specify 9 decimals for

single precision and 17 decimal for double

Error propagation
I Assume p = 3 and you have to compute the difference

1.01 · 101 − 9.93 · 100

I To perform the subtraction, usually a shift of the smallest
number is performed to have the same exponent

I First idea: compute the difference exactly and then round it to
the nearest floating-point number

x = 1.01 · 101 ; y = 0.993 · 101

x − y = 0.017 · 101 = 1.70 · 10−2

I Second idea: compute the difference with p digits

x = 1.01 · 101 ; y = 0.99 · 101

x − y = 0.02 · 101 = 2,00 · 10−2

the error is 30 ulps!

Guard digit

I A possibile solution: use the guard digit (p+1 digits)

x = 1.010 · 101

y = 0.993 · 101

x − y = 0.017 · 101 = 1.70 · 10−2

I Theorem: if x and y are floating-point numbers in a format with
parameters and p, and if subtraction is done with p + 1 digits
(i.e. one guard digit), then the relative rounding error in the
result is less than 2 ε.

Cancellation

I When subtracting nearby quantities, the most significant digits
in the operands match and cancel each other

I There are two kinds of cancellation: catastrophic and benign
I benign cancellation occurs when subtracting exactly known

quantities: according to the previous theorem, if the guard digit
is used, a very small error results

I catastrophic cancellation occurs when the operands are subject
to rounding errors

I For example, consider b = 3.34, a = 1.22, and c = 2.28.
I the exact value of b2 − 4ac is 0.0292
I but b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final

answer is 0.1 which is an error by 70ulps
I the subtraction did not introduce any error, but rather exposed

the error introduced in the earlier multiplications.

Cancellation/2
I The expression x2 − y2 is more accurate when rewritten as

(x − y)(x + y) because a catastrophic cancellation is
replaced with a benign one

I replacing a catastrophic cancellation by a benign one may be
not worthwhile if the expense is large, because the input is often
an approximation

I Eliminating a cancellation entirely may be worthwhile even if
the data are not exact

I Consider second-degree equations

x1 =
−b +

√
b2 − 4ac

2a

I if b2 >> ac then b2 − 4ac does not involve a cancellation
I but, if b > 0 the addition in the formula will have a catastrophic

cancellation.
I to avoid this, multiply the numerator and denominator of x1 by
−b −

√
b2 − 4ac to obtain x1 = (2c)/(−b −

√
b2 − 4ac) where

no catastrophic cancellation occurs

Rounding and IEEE standards

I The IEEE standards requires correct rounding for:
I addition, subtraction, mutiplication, division, remainder, square

root
I conversions to/from integer

I The IEEE standards recommends correct rounding for:
I ex , ex − 1, 2x , 2x − 1, logα(φ), 1/

√
(x), sin(x), cos(x), tan(x),....

I Remember: “No general way exists to predict how many extra
digits will have to be carried to compute a transcendental
expression and round it correctly to some preassigned number
of digits” (W. Kahan)

Special values

I Zero: signed

I Infinity: signed
I overflow, divide by 0
I Inf-Inf, Inf/Inf, 0 · Inf→ NaN (indeterminate)
I Inf op a→ Inf if a is finite
I a / Inf→ 0 if a is finite

I NaN: not a number!
I Quiet NaN or Signaling NaN
I e.g.

√
a with a < 0

I NaN op a→ NaN or exception
I NaNs do not have a sign: they aren’t a number
I The sign bit is ignored
I NanS can “carry” information

Zero and Denormals

I Considering positve numbers, the smallest ”normal” floating
point number is nsmallest = 1.0 · βemin

I In the previous example it is 1/2

I At least we need to add the zero value
I there are two zeros: +0 and -0

I When a computation result is less than the minimum value, it
could be rounded to zero or to the minimum value

Zero and Denormals/2

I Another possibility is to use denormal (also called subnormal)
numbers

I decreasing mantissa below 1 allows to decrease the floating
point number, e.g. 0.99 · βemin , 0.98 · βemin ,. . . , 0.01 · βemin

I subnormals are linearly spaced and allow for the so called
“gradual underflow”

I Pro: k/(a− b) may be safe (depending on k) even is
a− b < 1.0 · βemin

I Con: performance of denormals are significantly reduced
(dramatic if handled only by software)

I Some compilers allow for disabling denormals
I Intel compiler has -ftz: denormal results are flushed to zero
I automatically activated when using any level of optimization!

Walking Through

I Double precision: w=11 ; p=53

0x0000000000000000 +zero
0x0000000000000001 smallest subnormal
...
0x000fffffffffffff largest subnormal
0x0010000000000000
...
0x001fffffffffffff smallest normal
0x0020000000000000 2 X smallest normal
...
0x7fefffffffffffff largest normal
0x7ff0000000000000 +infinity

Walking Through

0x7ff0000000000001 NaN
...
0x7fffffffffffffff NaN
0x8000000000000000 -zero
0x8000000000000001 negative subnormal
...
0x800fffffffffffff ’largest’ negative subnormal
0x8010000000000000 ’smallest’ negative normal
...
0xfff0000000000000 -infinity
0xfff0000000000001 NaN
...
0xffffffffffffffff NaN

Error-Free Transformations

I An error-free transformation (EFT) is an algorithm which
determines the rounding error associated with a floating-point
operation

I E.g., addition/subtraction

a + b = (a⊕ b) + t

where ⊕ is a symbol for floating-point addition
I Under most conditions, the rounding error is itself a

floating-point number
I An EFT can be implemented using only floating-point

computations in the working precision

EFT for Addition

I FastTwoSum: compute a + b = s + t where

|a| ≥ |b|

s = a⊕ b

void FastTwoSum(const double a, const double b,
double* s, double* t) {

// No unsafe optimizations !
*s = a + b;
*t = b - (*s - a);
return;

}

EFT for Addition/2

I No requirements on a or b
I Beware: avoid compiler unsafe optimizations!

void TwoSum(const double a, const double b,
double* s, double* t) {

// No unsafe optimizations !
*s = a + b;
double z = *s - b;
*t = (a-z)+(b-s-z));return;

Summation techniques

I Condition number
Csum =

|
∑

ai |∑
|ai |

I If Csum is “ not too large”, the problem is not ill conditioned and
traditional methods may suffice

I But if it is “too large”, we want results appropriate to higher
precision without actually using a higher precision

I But if higher precision is available, consider to use it!
I beware: quadruple precision is nowadays only emulated

Traditional summation

s =
n∑

i=0

xi

double Sum(const double* x, const int n) {
int i;
for (i = 0; i < n; i++) {

Sum += x[i];
}
return Sum;

}

I Traditional Summation: what can go wrong?
I catastrophic cancellation
I magnitude of operands nearly equal but signs differ
I loss of significance
I small terms encountered when running sum is large
I the smaller terms don’t affect the result
I but later large magnitude terms may reduce the running sum

Kahan summation

I Based on FastTwoSum and TwoSum techniques
I Knowledge of the exact rounding error in a floating-point

addition is used to correct the summation
I Compensated Summation

double Kahan(const double* a, const int n) {
double s = a[0]; // sum
double t = 0.0; // correction term
for(int i=1; i<n ; i++) {

double y = a[i] - t; // next term "plus" correction
double z = s + y; // add to accumulated sum
t = (z - s) - y; // t <- -(low part of y)
s = z; // update sum

}
return s;

}

More

I Many variations known (Knutht, Priest,...)

I Sort the values and sum starting from smallest values (for
positive numbers)

I Other techniques (distillation)

I Use a greater precision or emulate it (long accumulators)

I Similar problems for Dot Product, Polynomial evaluation,...

Exceptions (IEEE 754-2008)

I Underflow
I Absolute value of a non zero result is less than the minimum

value (i.e., it is subnormal or zero)
I Overflow

I Magnitude of a result greater than the largest finite value
I Result is ±∞

I Division by zero
I a/b where a is finite and non zero and b=0

I Inexact
I Result, after rounding, is not exact

I Invalid
I an operand is sNaN, square root of negative number or

combination of infinity

Exception in real life . . .

Handling exceptions

I Let us say you may produce a NaN
I What do you want to do in this case?

I First scenario: go on, there is no error and my algorithm is
robust

I E.g., the function maxfunc compute the maximum value of a
scalar function f (x) testing each function value corresponding
to the grid points g(i)

call maxfunc(f,g)

I to be safe I should pass the domain of f but the it could be
difficult to do

I I may prefer to check each grid point g(i)
I if the function is not defined somewhere, I will get a NaN (or

other exception) but I do not care: the maximum value will be
correct

Handling exceptions/2

I Second scenario: ops, something went wrong during the
computation...

I (Bad) solution: complete your run and check the results and, if
you see NaN, throw it away

I (First) solution: trap exceptions using compiler options (usually
systems ignore exception as default)

I Some compilers allow to enable or disable floating point
exceptions

I Intel compiler: -fpe0: Floating-point invalid, divide-by-zero,
and overflow exceptions are enabled. If any such exceptions
occur, execution is aborted.

I GNU compiler:
-ffpe-trap=zero,overflow,invalid,underflow

I very useful, but the performance loss may be material!
I use only in debugging, not in production stage

Handling exceptions/3

I (Second) solution: check selectively
I each Ncheck time-steps
I the most dangerous code sections

I Using language features to check exceptions or directly special
values (NaNs,...)

I the old print!
I Fortran (2003): from module ieee_arithmetic,
ieee_is_nan(x), ieee_is_finite(x)

I C: from <math.h>, isnan or isfinite, from C99 look for
fenv.h

I do not use old style checks (compiler may remove them):

int IsFiniteNumber(double x) {
return (x <= DBL_MAX && x >= -DBL_MAX);

}

Floating-point control

I Why doesn’t my application always give the same answer?
I inherent floating-point uncertainty
I we may need reproducibility (porting, optimizing,...)
I accuracy, reproducibility and performance usually conflict!

I Compiler safe mode: transformations that could affect the
result are prohibited, e.g.

I x/x = 1.0, false if x = 0.0,∞,NaN
I x − y = −(y − x) false if x = y , zero is signed!
I x − x = 0.0 ...
I x ∗ 0.0 = 0.0 ...

Floating-point control/2

I An important case: reassociation is not safe with floating-point
numbers

I (x + y) + z = x + (y + z) : reassociation is not safe
I compare

−1.0+1.0e−13+1.0 = 1.0−1.0+1.0e−13 = 1.0e−13+1.0−1.0

I a ∗ b/c may give overflow while a ∗ (b/c) does not
I Best practice:

I select the best expression form
I promote operands to the higher precision (operands, not results)

Floating-point control/3

I Compilers allow to choose the safety of floating point semantics
I GNU options (high-level):

-f[no-]fast-math

I It is off by default (different from icc)
I Also sets abrupt/gradual underflow
I Components control similar features, e.g. value safety

(-funsafe-math-optimizations)

I For more detail
http://gcc.gnu.org/wiki/FloatingPointMath

Floating-point control/4

I Intel options:
-fp-model <type>

I fast=1: allows value-unsafe optimizations (default)
I fast=2: allows additional approximations
I precise: value-safe optimizations only
I strict: precise + except + disable fma

I Also pragmas in C99 standard
#pragma STDC FENV_ACCESS etc

Endianness

I Which is the ordering of bytes in memory? E.g.,
-1267006353 ===> 10110100011110110000010001101111

I Big endian: 10110100 01111011 00000100 01101111
I Little endian: 01101111 00000100 01111011 10110100
I Other exotic layouts (VAX,...) nowadays unusual
I Limits portability

I Possibile solutions
I conversion binary to text and text to binary
I compiler extensions(Fortran):

- Intel: -convert big_endian | little_endian
- PGI: -Mbyteswapio
- Intel: F_UFMTENDIAN (variabile di ambiente)

I explicit reoredering
I conversion libraries

C and Fortran data portability

I For C Standard Library a file is written as a stream of byte
I In Fortran file is a sequence of records:

I each read/write refer to a record
I there is record marker before and after a record (32 or 64 bit

depending on file system)
I remember also the different array layout from C and Fortran

I Possible portability solutions:
I read Fortran records from C
I perform the whole I/O in the same language (usually C)
I use Fortran 2003 access=’stream’
I use I/O libraries

How much precision do I need?

I Single, Double or Quad?
I maybe single is too much!
I computations get (much) slower when increasing precision,

storage increases and power supply too
I Famous story

I Patriot missile incident (2/25/91) . Failed to stop a scud missile
from hitting a barracks, killing 28

I System counted time in 1/10 sec increments which doesn’t have
an exact binary representation. Over time, error accumulates.

I The incident occurred after 100 hours of operation at which
point the accumulated errors in time variable resulted in a 600+
meter tracking error.

I Wider floating point formats turn compute bound
problems into memory bound problems!

How much precision do I need?/2

I Programmers should conduct mathematically rigorous analysis
of their floating point intensive applications to validate their
correctness

I Training of modern programmers often ignores numerical
analysis

I Useful tricks
I Repeat the computation with arithmetic of increasing precision,

increasing it until a desired number of digits in the results agree
I Repeat the computation in arithmetic of the same precision but

rounded differently, say Down then Up and perhaps Towards
Zero, then compare results

I Repeat computation a few times in arithmetic of the same
precision but with slightly different input data, and see how
widely results vary

Interval arithmetic
I A “correct” approach
I Interval number: possible values within a closed set

x ≡ [xL, xR] := {x ∈ R|xL ≤ x ≤ xR}

I e.g., 1/3=0.33333 ; 1/3 ∈ [0.3333,0.3334]
I Operations

I Addition x + y = [a, b] + [c, d] = [a + c, b + d]
I Subtraction x + y = [a, b] + [c, d] = [a -d, b -c]
I . . .

I Properties are interesting and can be applied to equations
I Interval Arithmetic has been tried for decades, but often

produces bounds too loose to be useful
I A possible future

I chips supporting variable precision and uncertainty tracking
I runs software at low precision, tracks accuracy and reruns

computations automatically if the error grows too large.

References

I N.J. Higham, Accuracy and Stability of Numerical Algorithms
2nd ed., SIAM, capitoli 1 e 2

I D. Goldberg, What Every Computer Scientist Should Know
About Floating-Point Arithmetic, ACM C.S., vol. 23, 1, March
1991 http://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html

I W. Kahan http://www.cs.berkeley.edu/ wkahan/
I Standards: http://grouper.ieee.org/groups/754/

Hands-on: Compensated sum

I The code in summation.cpp/f90 initializes an array with an
ill-conditioned sequence of the order of

100,-0.001,-100,0.001,.....

I Simple and higher precision summation functions are already
implemented

I Implement Kahan algorithm in C++ or Fortran
I Compare the accuracy of the results

Hands-on: C++ Solution

REAL_TYPE summation_kahan(const REAL_TYPE a[],
const size_t n_values)

{
REAL_TYPE s = a[0]; // sum
REAL_TYPE t = 0; // correction term
for(int i = 1; i < n_values; i++) {

REAL_TYPE y = a[i] - t; // next term "plus" correction
REAL_TYPE z = s + y; // add to accumulated sum
t = (z - s) - y; // t <- -(low part of y)
s = z; // update sum

}
return s;

}

Summation simple : 35404.96093750000000000
Summation Kahan : 35402.85156250000000000
Summation higher : 35402.85546875000000000

Hands-on: Fortran Solution

function sum_kahan(a,n)
integer :: n
real(my_kind) :: a(n)
real(my_kind) :: s,t,y,z

s=a(1) ! sum
t=0._my_kind ! correction term
do i=1,n

y = a(i) - t ! next term "plus" correction
z = s + y ! add to accumulated sum
t = (z-s) - y ! t <- -(low part of y)
s = z ! update sum

enddo
sum_kahan = s

end function sum_kahan

Summation simple: 7293.98193359375000
Summation Kahan: 7294.11230468750000
Summation Higher: 7294.10937500000000

	Compilers and Code optimization
	Scientific Libraries
	Floating Point Computing

