

Debugging and Optimization of Scientific Applications

G. Amati P. Lanucara V. Ruggiero

CINECA Rome - SCAI Department

Rome, 20-22 April 2015

AGENDA

20th April 2015

9.00-9.30 Registration 9.30-10.30 Architectures 10.30-13.00 Cache and Memory System + Esercises 14.00-15.00 Pipelines + Exercises 15.00-17.00 Profilers + Exercises

21st april 2015

9.30-13.00 Compilers+Exercises 14.00-15.30 Scientific Libraries + Exercises 15.00-17.00 Floating-point + Exercises

22nd april 2015

9.30-11.00 Makefile + Exercises 11.00-13.00 Debugging+Exercises 14.00-17.00 Debugging+Exercises

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Programming languages

- Many programming languages were defined...
- http://foldoc.org/contents/language.html

20-GATE: 2.PAK: 473L Ouerv: 51forth: A#: A-0: a1: a56: Abbreviated Test Language for Avionics Systems; ABC; ABC ALGOL; ABCL/1; ABCL/c+; ABCL/R; ABCL/R2; ABLE; ABSET; abstract machine; Abstract Machine Notation; abstract syntax; Abstract Syntax Notation 1; Abstract-Type and Scheme-Definition Language; ABSYS; Accent; Acceptance, Test Or Launch Language; Access; ACOM; ACOS; ACT++; Act1; Act2; Act3; Actalk; ACT ONE; Actor; Actra; Actus; Ada; Ada++; Ada 83; Ada 95; Ada 9X; Ada/Ed; Ada-O; Adaplan; Adaplex; ADAPT; Adaptive Simulated Annealing: Ada Semantic Interface Specification: Ada Software Repository; ADD 1 TO COBOL GIVING COBOL; ADELE; ADES; ADL; AdLog; ADM; Advanced Function Presentation; Advantage Gen: Adventure Definition Language: ADVSYS; Aeolus; AFAC; AFP; AGORA; A Hardware Programming Language; AIDA; AIr MAterial COmmand compiler; ALADIN; ALAM; A-language; A Language Encouraging Program Hierarchy; A Language for Attributed ...

Programming languages

- Interpreted language
 - statement by statement translation during code execution
 - no way to perform optimization between different statements
 - easy to find semantic errors
 - e.g. scritping languages, Java (bytecode),...
- Compiled language
 - Che code is translated by the compiler before the execution
 - possibility to perform optimization between different statements
 - e.g. Fortran, C, C++

- It is composed by (first approximation):
 - registers: instruction operands
 - Functional units: performs instructions
- Functional units
 - logical operations (bitwise)
 - integer arithmetic
 - floating-point arithmetic
 - computing address
 - load & store operation
 - branch prediction and branch execution

- RISC: Reduced Instruction Set CPU
 - simple "basic" instructions
 - ► one statement → many istructions
 - simple decode and execution
- CISC: Complex Instruction Set CPU
 - many "complex" instructions
 - ► one statement → few istructions
 - complex decode and execution
- in these days now CISC like-machine split instruction in micro RISC-line ones

Architecture vs. Implementation

- ► Architecture:
 - instruction set (ISA)
 - registers (integer, floating point, ...)
- Implementation:
 - physical registers
 - clock & latency
 - # of functional units
 - Cache's size & features
 - ► Out Of Order execution, Simultaneous Multi-Threading, ...
- Same architecture, different implementations:
 - ▶ Power: Power3, Power4, ..., Power8
 - x86: Pentium III, Pentium 4, Xeon, Pentium M, Pentium D, Core, Core2, Athlon, Opteron, ...
 - different performances
 - different rules to improve performance

The Compiler

- It "translate" source code in executable
- It rejects code with sintax errors
- It (sometimes) warns about "semantic" problems
- It (if allowed) try to optimize the code
 - code independent optimization
 - code dependent optimization
 - CPU dependent optimization
 - Cache & Memory oriented optimization
 - Hint to the CPU (branch prediction)
- It is:
 - powerfull: can save programmer's time
 - complex: can perform "complex" optimization
 - limited: it is an expert system but can be fooled by the way you write the code ...

Building an executable

- It is a three-step process:
- Pre-processing:
 - every source code is analyzed by the pre-processor
 - MACROs substitution (#define)
 - code insertion for #include statements
 - code insertion or code removal (#ifdef...)
 - removing comments ...
- Compiling:
 - each code is translated in object files
 - object files is a collection of "symbols" refers to variables/function defined in the program
- Linking:
 - All the object files are put together to build the finale executable
 - Any symbol in the program must be resolved
 - the symbols can be defined inside your object files
 - you can use othe object file (e.g. external libraries)

Example: gfortran compilation

With the command:

user@caspur\$> gfortran dsp.f90 dsp_test.f90 -o dsp.exe

all the three steps (preprocessing, compiling, linking) are performed

Pre-processing

user@caspur\$> gfortran -E -cpp dsp.f90 user@caspur\$> gfortran -E -cpp dsp_test.f90

- -E -cpp Options force gfortran to stop after pre-processing
- no need to use -cpp if file extension is *.F90

Compiling

```
user@caspur$> gfortran -c dsp.f90
user@caspur$> gfortran -c dsp_test.f90
```

-c option force gfortran only to pre-processing and compile

Example: gfortran linking

Linking: we must use object files

user@caspur\$> gfortran dsp.o dsp_test.o -o dsp.exe

- To solve symbols from external libraries
 - suggest the libraries to use with option -1
 - suggest the directorse where the libraries are with option -L
- How link libdsp.a library located in /opt/lib

user@caspur\$> gfortran file1.o file2.o -L/opt/lib -ldsp -o dsp.exe

How create and link a static library

```
user@caspur$> gfortran -c dsp.f90
user@caspur$> ar curv libdsp.a dsp.o
user@caspur$> ranlib libdsp.a
user@caspur$> gfortran test_dsp.f90 -L. -ldsp
```

- ▶ ar creates the archive libdsp.a Containing dsp.o
- ranlib builds the library

Compiler: what it can do

- It performs these code modifications
 - Register allocation
 - Register spilling
 - Copy propagation
 - Code motion
 - Dead and redundant code removal
 - Common subexpression elimination
 - Strength reduction
 - Inlining
 - Index reordering
 - Loop pipelining , unrolling, merging
 - Cache blocking
 - ▶ ...
- Everything to maximize performances!!

Compiler: what it cannot do

- Global optimization of "big" source code, unless switch on interprocedural analisys (IPO) but it is very time consuming ...
- Understand and resolve complex indirect addressing
- Strenght reduction (with non-integer values)
- Common subexpression elimination through function calls
- Unrolling, Merging, Blocking with:
 - functions/subroutine calls
 - I/O statement
- Implicit function inlining
- Knowing at run-time variabile's values

Optimizations: levels

- All compilers have "predefined" optimization levels -O<n>
 - with n from 0 a 3 (IBM up to 5)
- Usually :
 - -O0: no optimization is performed, simple translation (tu use with -g for debugging)
 - -O: default value
 - -O1: basic optimizations
 - ► -02: memory-intensive optimizations
 - -O3: more aggressive optimizations, it can alter the instruction order (see floating point section)
- Some compilers have -fast option (On plus more)

Intel compiler: -03 option

icc (or ifort) -03

- Automatic vectorization (use of packed SIMD instructions)
- Loop interchange (for more efficient memory access)
- Loop unrolling (more instruction level parallelism)
- Prefetching (for patterns not recognized by h/w prefetcher)
- Cache blocking (for more reuse of data in cache)
- Loop peeling (allow for misalignment)
- Loop versioning (for loop count; data alignment; runtime dependency tests)
- Memcpy recognition (call Intel's fast memcpy, memset)
- Loop splitting (facilitate vectorization)
- Loop fusion (more efficient vectorization)
- Scalar replacement (reduce array accesses by scalar temps)
- Loop rerolling (enable vectorization)
- Loop reversal (handle dependencies)

From source code to executable

- Executable (i.e. istructions performed by CPU) is very very different from what you think writing a code
- Example: matrix-matrix production

```
do j = 1, n
    do k = 1, n
        do i = 1, n
            c(i,j) = c(i,j) + a(i,k)*b(k,j)
            end do
    end do
end do
```

- Computational kernel
 - load from memory three numbers
 - perform un product and one sum
 - store back the result

Hands-on: download code

Examples at the same place

https://hpc-forge.cineca.it/files/CoursesDev/public/2015/... ...Debugging_and_Optimization_of_Scientific_Applications/Rome/

Compilers_codes.tar

Libraries_codes.tar

FloatingPoints_codes.tar

SCAPA ands-on: compiler optimization flags

- ► Matrix-Matrix product, 1024×1024, double precision
- main loop cache friendly
- code in matrixmul directory (both C & Fortran)
- ▶ to load compiler: (module load profile/advanced):
 - GNU -> gfortran, gcc: module load gnu
 - Intel -> ifort, icc: module load intel
 - PGIi -> pgf90, pgcc: module load pgi
 - You can load one compiler at time, module purge to remove previous compiler

	GNU	Intel	PGI	GNU	Intel	PGI
flags	seconds	seconds	seconds	GFlops	GFlops	GFlops
-O0						
-01						
-02						
-O3						
-O3 -funroll-loops						
-fast				—		CINEC
	•					1994

Hands-on: Solution

- ► Matrix-Matrix product, 1024×1024, double precision
- 2 esa-core XEON 5645 Westmere CPUs@2.40GHz
- Fortran results

	GNU	Intel	PGI	GNU	Intel	PGI
flags	seconds	seconds	seconds	GFlops	GFlops	GFlops
default	7.78	0.76	3.49	0.27	2.82	0.61
-00	7.82	8.87	3.43	0.27	0.24	0.62
-01	1.86	1.45	3.42	1.16	1.49	0.63
-02	1.31	0.73	0.72	1.55	2.94	2.99
-03	0.79	0.34	0.71	2.70	6.31	3.00
-O3 -funroll-loops	0.65			3.29		
-fast		0.33	0.70		6.46	3.04

- Open question:
 - Why this behaviour?
 - Which is he best compiler?

Matmul: performance

- ► Size 1024×1024, duble precision
- ► Fortran core, cache friendly
- Tested using:
 - FERMI: IBM Blue Gene/Q system, single-socket PowerA2 with 1.6 GHz, 16 core
 - PLX: 2 esa-core XEON 5650 Westmere CPUs 2.40 GHz

FERMI - xlf

Option	seconds	Mflops
-00	65.78	32.6
-02	7.13	301
-03	0.78	2735
-04	55.52	38.7
-05	0.65	3311

Option	seconds	MFlops
-00	8.94	240
-01	1.41	1514
-02	0.72	2955
-O3	0.33	6392
-fast	0.32	6623

► Why ?

Compiler: report

- What happens at different optimization level?
 - Why performance degradation using -O4?
- Hint: use report flags to investigate
- ► Using IBM -qreport flag for -O4 level shows that:
 - The compiler understant matrix-matrix pattern (it is smart) ad perform a substitution with external BLAS function
 - (___**xl_dgemm**)
 - But it is slow because it doesn't belong to IBM optimized BLAS library (ESSL)
 - At -05 level it decides not to use external library
- As general rule of thumb performance increase as the optimization level increase ...
 - ... but it's bettet to check!!!

Take a look to assembler

Very very old example (IBM Power3) but usefull

Matrix Multiply inner loop code with -qnoopt

38 instructions, 31.4 cycles per iteration

_L1:	
lwz	r3,160(SP)
lwz	r9,STATIC_BSS
lwz	r4,24(r9)
subfi	r5,r4,-8
lwz	r11,40(r9)
mullw	r6,r4,r11
lwz	r4,36(r9)
rlwinm	r4,r4,3,0,28
add	r7,r5,r6
add	r7,r4,r7
lfdx	fp1,r3,r7
lwz	r7,152(SP)
lwz	r12,0(r9)
subfi	r10,r12,-8
lwz	r8,44(r9)
mullw	r12,r12,r8
add	r10,r10,r12
add	r10,r4,r10
lfdx	fp2,r7,r10

lwz	r7,156(SP)
lwz	r10,12(r9)
subfi	r9,r10,-8
mullw	r10,r10,r11
rlwinm	r8,r8,3,0,28
add	r9,r9,r10
add	r8,r8,r9
lfdx	fp3,r7,r8
fmadd	fp1,fp2,fp3,fp1
add	r5,r5,r6
add	r4,r4,r5
stfdx	fp1,r3,r4
lwz	r4,STATIC_BSS
lwz	r3,44(r4)
addi	r3,1(r3)
stw	r3,44(r4)
lwz	r3,112(SP)
addic.	r3,r3,-1
stw	r3,112(SP)
bgt	L1

Load, store and floating point

Matrix Multiply inner loop code with -qnoopt

necessary instructions

L1:	
lwz	r3,160(SP)
lwz	r9,STATIC_BSS
lwz	r4,24(r9)
subfi	r5,r4,-8
lwz	r11,40(r9)
mullw	r6,r4,r11
lwz	r4,36(r9)
rlwinm	r4,r4,3,0,28
add	r7,r5,r6
add	r7,r4,r7
lfdx	fp1,r3,r7
lwz	r7,152(SP)
lwz	r12,0(r9)
subfi	r10,r12,-8
lwz	r8,44(r9)
mullw	r12,r12,r8
add	r10,r10,r12
add	r10,r4,r10
lfdx	fp2,r7,r10

lwz	r7,156(SP)
lwz	r10,12(r9)
subfi	r9,r10,-8
mullw	r10,r10,r11
rlwinm	r8,r8,3,0,28
add	r9,r9,r10
add	r8,r8,r9
lfdx	fp3,r7,r8
fmadd	fp1,fp2,fp3,fp1
add	r5,r5,r6
add	r4,r4,r5
stfdx	fp1,r3,r4
lwz	r4,STATIC_BSS
lwz	r3,44(r4)
addi	r3,1(r3)
stw	r3,44(r4)
lwz	r3,112(SP)
addic.	r3,r3,-1
stw	r3,112(SP)
bgt	L1

Loop control instructions

Matrix Multiply inner loop code with -qnoopt

necessary instructions loop control

r3,160(SP)
r9,STATIC_BSS
r4,24(r9)
r5,r4,-8
r11,40(r9)
r6,r4,r11
r4,36(r9)
r4,r4,3,0,28
r7,r5,r6
r7,r4,r7
fp1,r3,r7
r7,152(SP)
r12,0(r9)
r10,r12,-8
r8,44(r9)
r12,r12,r8
r10,r10,r12
r10,r4,r10
fp2,r7,r10

lwz	r7,156(SP)
lwz	r10,12(r9)
subfi	r9,r10,-8
mullw	r10,r10,r11
rlwinm	r8,r8,3,0,28
add	r9,r9,r10
add	r8,r8,r9
lfdx	fp3,r7,r8
fmadd	fp1,fp2,fp3,fp1
add	r5,r5,r6
add	r4,r4,r5
stfdx	fp1,r3,r4
lwz	r4,STATIC_BSS
lwz	r3,44(r4)
addi	r3,1(r3)
stw	r3,44(r4)
lwz	r3,112(SP)
addic.	r3,r3,-1
stw	r3,112(SP)
bat	L1

r

Data addressing

Matrix Multiply inner loop code with -qnoopt

ecessary in	structions	loop control
L1:		
lwz	r3,160(SP)
lwz	r9,STATIC	BSS
lwz	r4,24(r9)	
subfi	r5,r4,-8	
lwz	r11,40(r9)
mullw	r6,r4,r11	
lwz	r4,36(r9)	

rlwinm r4,r4,3,0,28

r7,r5,r6

r7,r4,r7

fp1,r3,r7

r7,152(SP)

r10,r10,r12

r10,r4,r10

fp2,r7,r10

r12,0(r9) subfi r10,r12,-8 r8,44(r9)

mullw r12,r12,r8

add

add

lwz

lwz

lwz

add

add

lfdx

lfdx

lwz	r7,156(SP)
lwz	r10,12(r9)
subfi	r9,r10,-8
mullw	r10,r10,r11
rlwinm	r8,r8,3,0,28
add	r9,r9,r10
add	r8,r8,r9
lfdx	fp3,r7,r8
fmadd	fp1,fp2,fp3,fp1
add	r5,r5,r6
add	r4,r4,r5
stfdx	fp1,r3,r4
lwz	r4,STATIC_BSS
lwz	r3,44(r4)
addi	r3,1(r3)
stw	r3,44(r4)
lwz	r3,112(SP)
addic.	r3,r3,-1
stw	r3,112(SP)
bat	L1

addressing code

?????

- Memory addressing operations are predominant (30/37)
- ► Hint:
 - the loop access to contigous memory locations
 - memory address can be computed in easy way from the first location adding a constant
 - use one single memory address operation to address more memory locations
- A (smart) compiler can perform all in automatic way

Optimization/1

Matrix Multiply inner loop code with -O3 -qtune=pwr4

L1:		
fmadd	fp6,fp12,fp13,fp6 👞	
lfdux	fp12,r12,r7	
lfd	fp13,8(r11)	
fmadd	fp7,fp8,fp9,fp7 +	unrolled by 8
lfdux	fp8,r12,r7	
lfd	fp9,16(r11)	
lfdux	fp10,r12,r7	///
lfd	fp11,24(r11)	//
fmadd	fp1,fp12,fp13,fp1	/
lfdux	fp12,r12,r7	dot product accumulated in
lfd	fp13,32(r11)	Quaterlassiant parts (fro) fro7)
fmadd	fp0,fp8,fp9,fp0	o interieaved parts (ipu-ip7)
lfdux	fp8,r12,r7	(combined after loop)
lfd	fp9,40(r11)	(
fmadd	fp2,fp10,fp11,fp2	
lfdux	fp10,r12,r7	
lfd	fp11,48(r11)	
fmadd	fp4,fp12,fp13,fp4	3 instructions 1.6 cycles per iteration
lfdux	fp12,r12,r7	O lag da and 4 free dd nan itantian
lfd	fp13,56(r11)	2 loads and 1 fmadd per iteration
fmadd	fp3,fp8,fp9,fp3	
lfdux	fp8,r12,r7	
lfdu	fp9,64(r11)	
fmadd	fp5,fp10,fp11,fp5	
bdnz	L1	

Optimization/2

Matrix multiply inner loop code with -O3 -qhot -qtune=pwr4

_L1:		
fmadd	fp1, fp4, fp2, fp1	
fmadd	fp0, fp3, fp5, fp0	
lfdux	fp2,r29,r9	unroll-and-jam 2x2
lfdu	fp4, 32(r30)	inner unrell by A
fmadd	fp10, fp7, fp28, fp10	inner unroli by 4
fmadd	fp7, fp9, fp7, fp8	interchange "i" and "i" loons
lfdux	fp26,r27,r9	interchange i and j loops
lfd	fp25,8(r29)	
fmadd	fp31, fp30, fp27, fp31	
fmadd	fp6, fp11, fp30, fp6	
lfd	fp5,8(r27)	
lfd	fp8,16(r28)	
fmadd	fp30,fp4,fp28,fp29 🖌	
fmadd	fp12,fp13,fp11,fp12	
lfd	fp3,8(r30)	
lfd	fp11,8(r28)	
fmadd	fp1, fp4, fp9, fp1	
fmadd	fp0,fp13,fp27,fp0	
lfd	fp4,16(r30)	
lfd	fp13,24(r30)	2 instructions 1.0 cycles per
fmadd	fp10,fp8,fp25,fp10 🖡	2 manucuons, 1.0 cycles per
fmadd	fp8,fp2,fp8,fp7	iteration
lfdux	fp9,r29,r9	
lfdu	fp7,32(r28)	balanced: 1 load and 1 fmadd
fmadd	fp31, fp11, fp5, fp31	
fmadd	fp6, fp26, fp11, fp6	per iteration
lfdux	fp11,r27,r9	
lfd	fp28,8(r29)	
fmadd	fp12, fp3, fp26, fp12	
fmadd	fp29, fp4, fp25, fp30	
lfd	fp30,-8(r28)	
lfd	fp27,8(r27)	
bdnz	L1	

Instruction to be performed

- Instruction to be performed for the statement
 - c(i, j) = c(i, j) + a(i, k) * b(k, j)
- -O0: 24 instructions
 - 3 load/1 store, 1 floating point multiply+add
 - flop/instructions 2/24 (i.e. 8% if peak performance)
- -O2: 9 instructions (more efficent data addressing)
 - 4 load/1 store, 2 floating point multiply+add
 - flop/instructions 4/9 (i.e. 44% if peak performance)
- -O3: 150 instructions (unrolling)
 - ► 68 load/34 store, 48 floating point multiply+add
 - flop/instructions 96/150 (i.e. 64% if peak performance)
- -O4: 344 instructions (unrolling&blocking)
 - 139 load/74 store, 100 floating point multiply+add
 - flop/instructions 200/344 (i.e. 54% if peak performance)

Who does the dirty work?

- option -fast (ifort on PLX) produce a ~ 30x speed-up respect to option -00
 - many different (and complex) optimizations are done ...
- Hand-made optimizations?
- The compiler is able to do
 - Dead code removal: removing branch

Redudant code removal

```
integer, parameter :: c=1.0
f=c*f
```

But coding style can fool the compiler

Loop counters

- Always use the correct data type
- ► If you use as loop index a real type means to perform a implicit casting real → integer every time ...
- I should be an error according to standard, but compilers sometimes are sloppy...

```
real :: i, j, k
....
do j=1, n
do k=1, n
do i=1, n
c(i, j)=c(i, j)+a(i, k)*b(k, j)
enddo
enddo
enddo
```

Time in seconds

compiler/level	integer	real		
(PLX) gfortran -O0	9.96	8.37		
(PLX) gfortran -O3	0.75	2.63		
(PLX) ifort -O0	6.72	8.28		
(PLX) ifort -fast	0.33	1.74		
(PLX) pgif90 -O0	4.73	4.85		
(PLX) pgif90 -fast	0.68	2.30		
(FERMI) bgxlf -O0	64.78	104.10		
(FERMI) bgxlf -O5	0.64	12.38		

Compilers limitations

- A compiler can do a lot of work ... but it is a program
- It is easy to fool it!
 - loop body too complex
 - loop values not defined a compile time
 - to much nested if structure
 - complicate indirect addressing/pointers

index reordering

- ► For simple loops there's no problem
 - ... using appropriate optimization level

```
do i=1,n
    do k=1,n
        do j=1,n
            c(i,j) = c(i,j) + a(i,k)*b(k,j)
        end do
    end do
end do
```

Time in seconds

	j-k-i	i-k-j
(PLX) ifort -O0	6.72	21.8
(PLX) ifort -fast	0.34	0.33

SuperComputing Applications and Innovation

index reordering/2

- also at higher optimization levels
- solution: always write cache friendly loops, if possible

Time in seconds

Otimization level	j-k-i	i-k-j
(PLX) ifort -O0	10	11.5
(PLX) ifort -fast	1.	2.4

Cache & subroutine


```
do i=1, nwax+1
    do k=1,2*nwaz+1
        call diffus (u 1, invRe, qv, rv, sv, K2, i, k, Lu 1)
        call diffus (u_2, invRe, qv, rv, sv, K2, i, k, Lu_2)
    end do
 end do
 subroutine diffus (u_n, invRe, qv, rv, sv, K2, i, k, Lu_n)
   do j=2, Ny-1
     Lu_n(i, j, k) = invRe*(2.d0*qv(j-1)*u_n(i, j-1, k) - (2.d0*rv(j-1))
                 +K2(i,k) +u_n(i,j,k) + 2.d0 + sv(j-1) + u_n(i,j+1,k)
   end do
 end subroutine
```

▶ non unitary access (stride MUST be ~ 1)

Cache & subroutine/2

- "same" results as the the previous one
- stride = 1
- Sometimes compiler can perform the transformations, but inlining option must be activated

- means to substitue the functon call with all the instruction
 - no more jump in the program
 - help to perform interpocedural analysis
- the keyword inline for C and C++ is a "hint" for compiler
- Intel (n: 0=disable, 1=inline functions declared, 2=inline any function, at the compiler's discretion)

-inline-level=n

GNU (n: size, default is 600):

```
-finline-functions
```

► It varies from compiler to compiler, read the manpage ...

SCAICommon Subexpression Elimination

- Reusing common Subexpression for intermediate results:
 A= B+C+D
 E= B+F+C
- ▶ 4 load, 2 store, 4 sums
 A=(B+C) + D
 E=(B+C) + F
- 4 load, 2 store, 3 sums
- WARNING: with floating point arithmetics results can be different
- "Scalar replacement" if you access to a vector location many times
 - compilers can do that (at some optimization level)

Functions & Side Effects

- Functions returns a values but
 - sometimes global variables are modified
 - I/O operations can prduce side effects
- ► side effects can "stop" compiler to perform inlining
- Example (no side effect):

```
function f(x)
    f=x+dx
end
```

SO f(x)+f(x)+f(x) it is equivalent to 3 * f(x)

Example (side effect):

```
function f(x)
    x=x+dx
    f=x
end
```

SO f(x)+f(x)+f(x) it is different from 3 + f(x)

CSE & function

- reordering function calls can produce different results
- It is hard for a compiler understand is there's side effects
- Example: 5 calls to functons, 5 products:

```
x=r*sin(a)*cos(b);
y=r*sin(a)*sin(b);
z=r*cos(a);
```

Example: 4 calls to functons, 4 products, 1 tempory variable:

```
temp=r*sin(a)
x=temp*cos(b);
y=temp*sin(b);
z=r*cos(a);
```

Correct if there's no side effect!

CSE: limitations

- Core loop too wide:
 - Compiler is able to handle a fixed number of lines: it could not realize that there's room for improvement
- Functions:
 - there is a side effect?
- CSE mean to alter order of operations
 - enabled at "high" optimization level (-qnostrict per IBM)
 - use parentheis to "inhibit" CSE
- "register spilling": when too much intermediate values are used

What can do a compiler?


```
do k=1.n3m
   do j=n2i,n2do
      jj=my_node*n2do+j
      do i=1.n1m
         acc =1./(1.-coe*aciv(i)*(1.-int(forclo(nve,i,j,k))))
         aci(jj,i)= 1.
         api(jj,i)=-coe*apiv(i)*acc*(1.-int(forclo(nve,i,j,k)))
         ami(jj,i)=-coe*amiv(i)*acc*(1.-int(forclo(nve,i,j,k)))
         fi(jj,i)=gcap(i,j,k)*acc
     enddo
   enddo
enddo
do i=1,n1m
   do j=n2i,n2do
      jj=my_node*n2do+j
      do k=1,n3m
         acc =1./(1.-coe*ackv(k)*(1.-int(forclo(nve,i,j,k))))
         ack(ii,k) = 1.
         apk(jj,k) = -coe * apkv(k) * acc*(1.-int(forclo(nve,i,j,k)))
         amk(jj,k) = -coe \star amkv(k) \star acc \star (1.-int(forclo(nve,i,j,k)))
         fk(jj,k) = qcap(i,j,k) * acc
      enddo
   enddo
enddo
```


....this


```
do k=1.n3m
   do j=n2i,n2do
      jj=my node*n2do+j
      do i=1,n1m
         temp = 1.-int(forclo(nve,i,j,k))
         acc =1./(1.-coe*aciv(i)*temp)
         aci(jj,i) = 1.
         api(jj,i)=-coe*apiv(i)*acc*temp
         ami(jj,i)=-coe*amiv(i)*acc*temp
         fi(jj,i)=gcap(i,j,k)*acc
      enddo
   enddo
enddo
do i=1,n1m
   do j=n2i,n2do
      jj=my_node*n2do+j
      do k=1.n3m
         temp = 1.-int(forclo(nve,i,j,k))
         acc =1./(1.-coe*ackv(k)*temp)
         ack(jj,k) = 1.
         apk(jj,k)=-coe*apkv(k)*acc*temp
         amk(jj,k)=-coe*amkv(k)*acc*temp
         fk(jj,k) = qcap(i,j,k) * acc
      enddo
   enddo
enddo
```


... but not that!!! (20% faster)


```
do k=1.n3m
   do j=n2i,n2do
      do i=1,n1m
         temp_fact(i,j,k) = 1.-int(forclo(nve,i,j,k))
      enddo
   enddo
enddo
do i=1,n1m
   do j=n2i,n2do
      jj=my node*n2do+j
      do k=1, n3m
         temp = temp_fact(i,j,k)
         acc =1./(1.-coe*ackv(k)*temp)
         ack(jj,k) = 1.
         apk(jj,k)=-coe*apkv(k)*acc*temp
         amk(jj,k)=-coe*amkv(k)*acc*temp
         fk(jj,k) = gcap(i,j,k) * acc
      enddo
   enddo
enddo
! the same for the other loop
```


Array syntax

- ▶ in place 3D-array translation (512³)
- Explixcit loop (Fortran77): 0.19 seconds
 - CAVEAT: the loop order is "inverse" in order not to overwirte data

```
do k = nd, 1, -1
    do j = nd, 1, -1
    do i = nd, 1, -1
        a03(i,j,k) = a03(i-1,j-1,k)
        enddo
    enddo
enddo
```

- Array Syntax (Fortran90): 0.75 seconds
 - ► According to the Standard → store in an intermediate array to avoid to overwrite data

a03(1:nd, 1:nd, 1:nd) = a03(0:nd-1, 0:nd-1, 1:nd)

Array syntax with hint: 0.19 seconds

a03(nd:1:-1,nd:1:-1,nd:1:-1) = a03(nd-1:0:-1, nd-1:0:-1, nd:1:-1

Ottimizzazione Report/1

- A report of optimization performed can help to find "problems"
- Intel

```
-opt-report[n] n=0 (none), 1 (min), 2 (med), 3 (max)
-opt-report-file<file>
-opt-report-phase<phase>
-opt-report-routine<routine>
```

one or more *.optrpt file are generated

It is this memcopy necessary?

Ottimizzazione Report/2

- There's no equivalent flag for GNU compilers
 - Best solution:

```
-fdump-tree-all
```

- dump all compiler operations
- very hard to understand
- PGI compilers

```
-Minfo
-Minfo=accel,inline,ipa,loop,opt,par,vect
```

Info at standard output

Give hints to compiler

- Loop size known at compile-time o run-time
 - Some optimizations (like unrolling) can be inhibited

```
real a(1:1024,1:1024)
real b(1:1024,1:1024)
real c(1:1024,1:1024)
read(*,*) i1,i2
read(*,*) j1,j2
read(*,*) k1,k2
do i = i1, i2
do k = k1, k2
do i = i1, i2
c(i, j) = c(i, j) + a(i, k) * b(k, j)
enddo
enddo
enddo
```

 Time in seconds (Loop Bounds Compile-Time o Run-Time)

flag	LB-CT	LB-RT
(PLX) ifort -O0	6.72	9
(PLX) ifort -fast	0.34	0.75

WARNING: compiler dependent...

Static vs. Dynamic allocation

- Static allocation gives more information to compilers
 - but the code is less flexible
 - recompile every time is really boring

```
integer :: n
parameter(n=1024)
real a(1:n,1:n)
real b(1:n,1:n)
real c(1:n,1:n)
```

```
real, allocatable, dimension(:,:) :: a
real, allocatable, dimension(:,:) :: b
real, allocatable, dimension(:,:) :: c
print*,'Enter matrix size'
read(*,*) n
allocate(a(n,n),b(n,n),c(n,n))
```


Static vs. Dynamic allocation/2

- for today compilers there's no big difference
 - Matrix-Matrix Multiplication (time in seconds)

	static	dynamic
(PLX) ifort -O0	6.72	18.26
(PLX) ifort -fast	0.34	0.35

- With static allocation data are put in the "stack"
 - at run-time take care of stacksize (e.g. sementation fault)
 - using bash: to check

ulimit -a

using bash: to modify

ulimit -s unlimited

Dynamic allocation using C/1

- Using C matrix \rightarrow arrays of array
 - with static allocation data are contiguos (columnwise)

double A[nrows][ncols];

- with dynamic allocation
 - "the wrong way"

```
/* Allocate a double matrix with many malloc */
double** allocate_matrix(int nrows, int ncols) {
    double **A;
    /* Allocate space for row pointers */
    A = (double**) malloc(nrows*sizeof(double*));
    /* Allocate space for each row */
    for (int ii=1; ii<nrows; ++ii) {
        A[ii] = (double*) malloc(ncols*sizeof(double));
    }
    return A;
}</pre>
```


Dynamic allocation using C/2

allocate a linera array

```
/* Allocate a double matrix with one malloc */
double* allocate_matrix_as_array(int nrows, int ncols) {
    double *arr_A;
    /* Allocate enough raw space */
    arr_A = (double*) malloc(nrows*ncols*sizeof(double));
    return arr_A;
}
```

using as a matrix (with index linearization)

```
arr_A[i*ncols+j]
```

- MACROs can help
- also use pointers

```
/* Allocate a double matrix with one malloc */
double** allocate_matrix(int nrows, int ncols, double* arr_A) {
    double**A;
    /* Prepare pointers for each matrix row */
    A = new double*(nrows);
    /* Initialize the pointers */
    for (int ii=0; ii<nrows; ++ii) {
        A[ii] = &(arr_A[ii*ncols]);
    }
    return A;
}</pre>
```


Aliasing & Restrict

- Aliasing: when two pointers point at the same area
- Aliasing can inhibit optimization
 - you cannot alter order of operations
- C99 standard introduce restrict keyword to point out that aliasing is not allowed

void saxpy(int n, float a, float *x, float* restrict y)

 C++: l'aliasing not allowed between pointer to different type (strict aliasing)

Scale for the second for the second for the second for the second second

For a CPU different operations could present different latencies

- Sum: few clock cycles
- Product: few clock cycles
- Sum+Product: few clock cycles
- Division: many clock cycle (O(10))
- ► Sin,Cos: many many clock cycle (O(100))
- exp,pow: many many clock cycle (O(100))
- ► I/O operations: many many many clock cycles (O(1000 - 10000))

Input/Output

- Handled by the OS
 - system calls
 - pipeline goes dry
 - cache coerency can be destroyed
 - it is very slow
- ► Golden Rule #1: NEVER mix computing with I/O operations
- Golden Rule #2: NEVER read/write a single data, pack them in a block

Different I/O

do k=1,n	; do $j=1,n$; do i=1,n	L formattad I/C
enddo	; enddo	; enddo	: Iormatted I/t
do k=1,n write(69) enddo	; do j=1,n a(i,j,k) ; enddo	; do i=1,n ; enddo	! binary I/O
do k=1,n write(69) enddo	; do j=1,n (a(i,j,k),i=: ; enddo	1,n)	! by colomn
do k=1,n write(69) enddo	((a(i,j,k),i=	=1),n,j=1,n)	! by matrix
write(69)	(((a(i,j,k),	i=1,n),j=1,n),k=1,n)	! dump1
write(69)	a		! dump2

Different I/O: some figures

	seconds	Kbyte
formatted	81.6	419430
binary	81.1	419430
by colunm	60.1	268435
nt matrix	0.66	134742
dump (1)	0.94	134219
dump (2)	0.66	134217

WARNING: the filesystem used could affect performance (e.g. RAID)...

- Read/write operations are slow
- Read/write format data are very very slow
- ALWAYS Read/write binary data
- ► Golden Rule #1: NEVER mix computing with I/O operations
- Golden Rule #2: NEVER read/write a single data, pack them in a block
- ► For HPC is possibile use:
 - ► I/O libraries: MPI-I/O, HDF5, NetCDF,...

Vector units

- We are not talking of vector machine
- Vector Units performs parallel floating/integer point operations on dedicate SIMD units simultanee
 - Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX
- Example: summing 2 arrays of 4 elements in one single instruction

c(0) = a(0) + b(0) c(1) = a(1) + b(1) c(2) = a(2) + b(2)c(3) = a(3) + b(3)

8[1]	not used	not used	not used
C[1]	not used	not used	not used

vectorization

SIMD - evolution

- SSE: 128 bit register (Intel Core AMD Opteron)
 - 4 floating/integer operations in single precision
 - 2 floating/integer operations in double precision
- AVX: 256 bit register (Intel Sandy Bridge AMD Bulldozer)
 - 8 floating/integer operations in single precision
 - 4 floating/integer operations in double precision
- MIC: 512 bit register (Intel Knights Corner 2013)
 - 16 floating/integer operations in single precision
 - 8 floating/integer operations in double precision

. . .

Vectorization issues

- Vectorization is a key issue for performance
- To be vectorized single loop iteration must be independent: no data dependence
- coding style can inhibit vectorization
- Some issues for vectorization:
 - Countable
 - Single entry-single exit (no break or exit)
 - Straight-line code (no branch)
 - Only internal loop can be vectorized
 - no function call (unless math or inlined)
- WARNING: due to floating point arithmetic results could differ

Algorithm & Vectorization

- Different algorithm for the same problem could be vectorazable or not
 - Gauss-Seidel: data dependencies, cannot be vectorized

```
for( i = 1; i < n-1; ++i )
for( j = 1; j < m-1; ++j )
a[i][j] = w0 * a[i][j] +
w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);</pre>
```

Jacobi: no data dependence, can be vectorized

```
for( i = 1; i < n-1; ++i )
for( j = 1; j < m-1; ++j )
b[i][j] = w0*a[i][j] +
    w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);
for( i = 1; i < n-1; ++i )
for( j = 1; j < m-1; ++j )
    a[i][j] = b[i][j];</pre>
```


Optimization & Vectorization

- "coding tricks" can inhibit vectorization
 - can be vectorized

for(i = 0; i < n-1; ++i){
 b[i] = a[i] + a[i+1];
}</pre>

cannot be vectorized

```
x = a[0];
for( i = 0; i < n-1; ++i ){
    y = a[i+1];
    b[i] = x + y;
    x = y;
}
```

- You can help compiler's work
 - removing unnecessary data dependencies
 - using directives for forcing vectorization

Directives

- You can force to vectorize when the compiler doesn't want using directive
- they are "compiler dependent"
 - Intel Fortran: !DIR\$ simd
 - Intel C: #pragma simd
- Example: data dependency found by the compiler is apparent, cause every time step inow is different from inew

```
do k = 1,n
!DIR$ simd
    do i = 1,1
...
    x02 = a02(i-1,k+1,inow)
    x04 = a04(i-1,k-1,inow)
    x05 = a05(i-1,k , inow)
    x06 = a06(i , k-1,inow)
    x11 = a11(i+1,k+1,inow)
    x13 = a13(i+1,k-1,inow)
    x14 = a14(i+1,k , inow)
    x15 = a15(i , k+1,inow)
    x19 = a19(i , k , inow)
    rho =+x02+x04+x05+x06+x11+x13+x14+x15+x19
...
    a05(i,k,inew) = x05 - omega*(x05-e05) + force
    a06(i,k,inew) = x06 - omega*(x06-e06)
```


Hands-on: Vectorization

- Compare performances w/o vectorization simple_loop.f90 using PGI and Intel compilers
 - -fast, to inibhit vectorization use -Mnovect (PGI) or -no-vec (Intel)
- Program vectorization_test.f90 contains 18 different loops
 - Which can be vectorized?
 - check with PGI compiler with reporting flag -fast -Minfo
 - check with Intel compiler with reporting flag
 - -fast -opt-report3 -vec-report3
 - check with GNU compiler with reporting flag
 - -ftree-vectorizer-verbose=n
 - Any idea to force vectorization?

Hands-on: Vectorization/2

	PGI	Intel
Vectorized time		
Non-Vectorized time		

# Loop	# Description	Vect/Not	PGI	Intel
1	Simple			
2	Short			
3	Previous			
4	Next			
5	Double write			
6	Reduction			
7	Function bound			
8	Mixed			
9	Branching			
10	Branching-II			
11	Modulus			
12	Index			
13	Exit			
14	Cycle			
15	Nested-I			
16	Nested-II			
17	Function			
18	Math-Function			

Hands-on: Vectorization Results

	PGI	Intel
Vectorized time	0.79	0.52
Non-Vectorized time	1.58	0.75

# Loop	Description	PGI	Intel
1	Simple	yes	yes
2	Short	no: unrolled	yes
3	Previous	no: data dep.	no: data dep.
4	Next	yes	yes: how?
5	Double write	no: data dep.	no: data dep.
6	Reduction	yes	? ignored
7	Function bound	yes	yes
8	Mixed	yes	yes
9	Branching	yes	yes
10	Branching-II	ignored	yes
11	Modulus	no: mixed type	no: inefficient
12	Index	no: mixed type	yes
13	Exit	no: exits	no: exits
14	Cycle	? ignored	yes
15	Nested-I	yes	yes
16	Nested-II	yes	yes
17	Function	no: function call	yes
18	Math-Function	yes	yes

Handmade Vectorization

- It is possible to insert inside the code vectorized function
- You have to rewrite the loop making 4 iteration in parallel ...

Non-portable tecnique...

Automatic parallelization

- Some compilers are able to exploit parallelism in an automatic way
- Shared Memory Parallelism
- Similar to OpenMP Paradigm without directives
 - Usually performance are not good ...
- ► Intel:

```
-parallel
-par-threshold[n] - set loop count threshold
-par-report{0|1|2|3}
```

► IBM:

-qsmp	la abilita automaticamente
-qsmp=openmp:noauto	per disabilitare la
	parallelizzazione automatica

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Static and Dynamic libraries

- you have to link with -L<library_directory> -l<library_name>
- ► Static library:
 - ▶ *.a
 - all symbols are included in the executable at linking
 - if you built a new library that use an other external libray it doesn't contains the other symbols: you have to explicit linking the library
- Dynamic Library:
 - ▶ *****.so
 - Symbols are resolved at run-time
 - you have to set-up where find the requested library at run-time (i.e. setting LD_LIBRARY_PATH environment variable)
 - Idd <exe_name> gives you info about dynamic librariy requested

Scientific Libraries

- A (complete?) set of function implementing different numeric algorithms
- ► A set of basic function (e.g. Fasr Fourier Transform, ...)
- A set of low level function (e.g. scalar products or random number generator), ma anche algoritmi piú complicati (trasformata di Fourier o diagonalizzazione di matrici)
- (Usually) Faster than hand made code (i.e. sometimes written in assembler)
- Proprietary or OpenSource
- Take care at link between library & compilers

Pros & Cons

- Pros:
 - helps to moudularize the code
 - portability
 - efficient
 - ready to use
- Cons:
 - some details hidden (e.g. Memory requirements)
 - you don't have complete control ...

Which library?

- It is hard to have a complete overview of Scientific libraries
 - many different libraries
 - still evolving ...
 - ... especially for "new architectures" (e.g GPU, MIC)
- Main libraries used in HPC
 - Linibear Algebra
 - ► FFT
 - I/O libraries
 - Parallel Computing
 - Mesh decomposition
 - ▶ ...

Linear Algebra

- Different parallelization paradigm
 - Shared memory (i.e. multi-threaded) or/and Distributed Memory
- Shared memory
 - BLAS
 - GOTOBLAS
 - LAPACK/CLAPACK/LAPACK++
 - ATLAS
 - PLASMA
 - SuiteSparse
 - ▶ ...
- Distributed Memory
 - Blacs (only decomposition)
 - ScaLAPACK
 - PSBLAS
 - Elemental
 - ▶ ...

- BLAS: Basic Linear Algebra Subprograms
 - it is one of the first library developed for HPC (1979, vector machine)
 - it includes basic operations between vectors, matrix and vector, matrix and matrix
 - it is used by many other high level libraries
- It is divided into 3 different levels
 - BLAS lev. 1: basic subroutines for scalar-vector operations (1977-79, vector machine)
 - BLAS lev. 2: basic subroutines for vector-matrix operations (1984-86)
 - BLAS lev. 3: subroutine for matrix-matrix operations (1988)

- It apply to real/complex data, in single/double precision
- Old Fortran77 style
- Level 1: scalar-vector operations (O(n))
 - *SWAP vector swap
 - *COPY vector copy
 - *SCAL scaling
 - *NRM2 L2-norm
 - *AXPY sum: a*X+Y (X,Y are vectors)
- Level 2: vector-matrix operations (O(n²))
 - *GEMV product vector/matrix (generic)
 - *HEMV product vector/matrix (hermitian)
 - *SYMV product vector/matrix (simmetric)

- ► Level 3: matrix-matrix operations (O(n³))
 - *GEMM product matrix/matrix (generic)
 - *HEMM product matrix/matrix (hermitian)
 - *SYMM product matrix/matrix (simmetric)
- GOTOBLAS
 - optimized (using assembler) BLAS library for different supercomputers. Develped by Kazushige Goto, now at Texas Advanced Computing Center, University of Texas at Austin).

LAPACK & Co.

- ► LAPACK: Linear Algebra PACKage
 - Linear algebral solvers (linear systems of equations, Ordinary Least Square, eigenvalues, ...)
 - evolution of LINPACK e EISPACK
- ATLAS: Automatically Tuned Linear Algebra Software
 - BLAS and LAPACK (but only some subroutine) implementations
 - Automatic optization of Software paradigm
- PLASMA: Parallel Linear Algebra Software for Multi-core Architectures
 - Similare to LAPACK (less subroutines) developed to be efficient on multicore systems.
- SuiteSparse
 - Sparse Matrix

Linear Algebra/2

- Eigenvalues/Eigenvectors
 - EISPACK: with specialized version for matrix fo different kinf (real/complex, hermitia, simmetrich, tridiagonal, ...)
 - ARPACK: eigenvalus for big size problems. Parallel version use BLACs and MPI libraries.
- Distributed Memory Linear Algebra
 - BLACS: linear algebra oriented message passing interface
 - ScaLAPACK: Scalable Linear Algebra PACKage
 - Elemental: framework per algebra lineare densa
 - PSBLAS: Parallel Sparse Basic Linear Algebra Subroutines
 - ▶ ...

Input/Output Libraries

- ► I/O Libraries are extremely important for
 - ▶ interoperability: C/Fortran, Little Endian/Big Endian, ...
 - visualizzazion
 - Sub-set data analysis
 - metadata
 - I/O parallelo
- HDF5: "is a data model, library, and file format for storing and managing data"
- NetCDF: "NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data"
- VTK: "open-source, freely available software system for 3D computer graphics, image processing and visualization"

Other Libraries

- MPI: Message Passing Interface
 - De facto standard for Distributed Memory Parallelization (MPICH/OpenMPI)
- Mesh decomposition
 - METIS e ParMETIS: "can partition a graph, partition a finite element mesh, or reorder a sparse matrix"
 - Scotch e PT-Scotch: "sequential and parallel graph partitioning, static mapping and clustering, sequential mesh and hypergraph partitioning, and sequential and parallel sparse matrix block ordering"

Other Scientific computing libraries

► Trilinos

- object oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems
- A two-level software structure designed around collections of packages
- A package is an integral unit developed by a team of experts in a particular algorithms area
- ► PETSc
 - It is a suite of data structures and routines for the (parallel) solution of applications modeled by partial differential equations.
 - It supports MPI, shared memory pthreads, and GPUs through CUDA or OpenCL, as well as hybrid MPI-shared memory pthreads or MPI-GPU parallelism.

Specialized Libraries

- MKL: Intel Math Kernel Library
 - Major functional categories include Linear Algebra, Fast Fourier Transforms (FFT), Vector Math and Statistics. Cluster-based versions of LAPACK and FFT are also included to support MPI-based distributed memory computing.
- ► ACML: AMD Core Math Library
 - Optimized functions for AMD processors. It includes BLAS, LAPACK, FFT, Random Generators ...
- GSL: GNU Scientific Library
 - ► The library provides a wide range of mathematical routines such as random number generators, special functions and least-squares fitting. There are over 1000 functions in total with an extensive test suite.
- ESSL (IBM): Engineering and Scientific Subroutine library
 - BLAS, LAPACK, ScaLAPACK, Sparse Solvers, FFT e may other. The Parallel version uses MPI

How to call a library

- first of all the sintax should be correct (read the manual!!!)
- always check for the right version
- sometimes for proprietary libraries linking could be "complicated"
- ▶ e.g. Intel ScaLAPACK

```
mpif77 <programma> -L$MKLROOT/lib/intel64 \
    -lmkl_scalapack_lp64    -lmkl_blacs_openmpi \
    -lmkl_intel_lp64    -lmkl_intel_thread    -lmkl_core \
    -liomp5  -lpthread
```


Interoperability

- Many libreries are written using C, many others using Fortran
- This can produce some problems
 - type matching: C int is not granted to be the same with Fortran integer
 - symboli Match: Fortran e C++ "alter" symbol's name producing object file (e.g. Fortran put an extra _)
- Brute force approach
 - hand-made match all types and add _ to match all librarie's objects.
 - nm <object_file> lists all symbols
- Standard Fortran 2003 (module iso_c_binding)
 - The most important library gives you Fortran2003 interface
- In C++ command extern "C"

Interoperability/2

- To call libraries from C to Fortran and viceversa
- Example: mpi written using C/C++:
 - Old Style: include "mpif.h"
 - new style: use mpi
 - the two approach are not fully equivalent: using the module implies also a compile-time check type!
- Example: fftw written using C
 - legacy:include "fftw3.f"
 - modern:

use iso_c_binding
include 'fftw3.f03'

- Example: BLAS written using Fortran
 - legacy: call dgemm_ insted of dgemm
 - modern: chiamare cblas_dgemm
- Standardization still lacking...
 - Read the manual ...

BLAS: Interoperability/1

Take a look at "netlib" web site

http://www.netlib.org/blas/

- BLAS was written in Fortran 77, some compilatori gives you interfaces (types check, F95 features)
 - Using Intel e MKL

use mk195_blas

BLAS:Interoperability/2

- ► C (legacy):
 - add underscore to function's name
 - Fortran: argoments by reference, it is mandatory to pass pointers
 - ► Type matching (compiler dependent): probably double, int, char → double precision, integer, character
- C (modern)
 - ▶ use interface cblas: GSL (GNU) or MKL (Intel)
 - include header file #include <gsl.h> Or #include<mkl.h>

http://www.gnu.org/software/gsl/manual/html_node/GSL-CBLAS-Library.html

Hands-on: BLAS

► make an explicit call to DGEMM routine (BLAS).

- ▶ DGEMM It perform double precision matrix-matrix multiplication
- DGEMM : http://www.netlib.org/blas/dgemm.f

C := alpha*op(A)*op(B) + beta*C,

- Fortran: GNU, use acml:
 - gfortran64 (Serial)
 - gfortran64_mp (multi-threaded)

```
module load profile/advanced
module load gnu/4.7.2 acml/5.3.0--gnu--4.7.2
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACML_HOME/gfortran64/lib/
gfortran -03 -L$ACML_HOME/gfortran64/lib/ -lacml matrixmulblas.F90
```

- Fortran: Intel, use mk1:
 - sequential (Serial)
 - parallel (multi-threaded)

```
module load intel
module load mkl
ifort -03 -mkl=sequential matrixmulblas.F90
```


Hands-on: BLAS/2

- C: Intel (MKL with cblas)
 - include header file #include<mkl.h>
 - If y -mkl=sequential @ -mkl=parallel

module load profile/advanced module load intel/cs-xe-2013--binary icc -03 -mkl=sequential matrixmulblas.c

- C: GNU (GSL with cblas)
 - include l'header file #include <gsl/gsl_cblas.h>

```
module load profile/advanced
module load gnu/4.8.0 gsl/1.15--gnu-4.8.0
gcc -03 ~L$GSL_HOME/lib -lgslcblas matrixmulblas.c -I$GSL_INC
```

- Compare with performance obtained with -03/-fast
- Write the measured GFlops for a matrix of size 4096x4096

GNU -03	Intel -fast	GNU-ACML/GSL seq	Intel-MKL seq
—	Intel -fast -parallel	GNU-ACML par	Intel-MKL par
_		—	

Hands-on: solutions

► Fortran:

call DGEMM('n','n',N,N,N,1.d0,a,N,b,N,0.d0,c,N)

► C (cblas):

C (legacy):

GNU -03	Intel -fast	GNU-ACML/GSL seq	Intel-MKL seq
1.5	6.3	5.3/1.2	9.1
	Intel -fast -parallel	GNU-ACML par	Intel-MKL par
	75	61	75

Which performance can I reach?

A factor 100x!!!!!

SuperComputing Applications and Innovation

**** CINECA

Compilers and Code optimization

Scientific Libraries

Floating Point Computing

Why talking about data formats?

- The "numbers" used in computers are different from the "usual" numbers
- Some differences have known consequences
 - size limits
 - numerical stability
 - algorithm robustness
- Other differences are often misunderstood/not known
 - portability
 - exceptions
 - surprising behaviours with arithmetic

Bits and Integers

Computers handle bits (0/1)

You have a range

$$-2^{r-1} \le n \le 2^{r-1} - 1$$

- Two common sizes
 - 32 bit: range $-2^{31} \le n \le 2^{31} 1$
 - 64 bit: range $-2^{63} \le n \le 2^{63} 1$
- Languages allow for declaring different flavours of integers
 - select the type you need compromizing on avoiding overflow and saving memory
- Is it difficult to have an integer overflow?
 - consider a cartesian discretization mesh (1536 × 1536 × 1536) and a linearized index i

 $0 \le i \le 3623878656 > 2^{31} = 2147483648$

Bits and Integers/2

- Fortran "officially" does not let you specify the size of declared data
 - you request kind and the language do it for you
 - in principle very good, but interoperability must be considered with attention
- C standard types do not match exact sizes, too
 - look for int, long int, unsigned int, ...
 - char is an 8 bit integer
 - ► unsigned integers available, doubling the maximum value 0 ≤ n ≤ 2^r - 1

Bits and Reals

- Note: From now on, some examples will consider base 10 numbers just for readability
- Representing reals using bits is not natural
- Fixed size approach
 - select a fixed point corresponding to comma
 - e.g., with 8 digits and 5 decimal places 36126234 gets interpreted as 361.26234
- Cons:
 - ▶ limited range: from 0.00001 to 999.99999, spanning 10⁸
 - only numbers having at most 5 decimal places can be exactly represented
- Pros:
 - constant resolution, i.e. the distance from one point to the closest one (0.00001)

Floating point approach

Scientific notation:

 $n=(-1)^s\cdot m\cdot\beta^e$

$$0.0046367 = (-1)^0 \cdot 4.6367 \cdot 10^{-3}$$

- Represent it using bits reserving
 - one digit for sign s
 - "p-1" digits for significand (mantissa) m
 - "w" digits for exponent e

Exponent and Mantissa

- Exponent
 - unsigned biased exponent
 - $e_{min} \leq e \leq e_{max}$
 - e_{min} must be equal to $(1 e_{max})$
- Mantissa
 - precision *p*, the digits x_i are $0 \le x_i < \beta$
 - "hidden bit" format used for normal values: 1.xx...x

IEEE Name	Format	Storage Size	W	р	e _{min}	e _{max}
Binary32	Single	32	8	24	-126	+127
Binary64	Double	64	11	53	-1022	+1023
Binary128	Quad	128	15	113	-16382	+16383

- ► Cons:
 - only "some" real numbers are floating point numbers (see later)
- Pros:
 - constant relative resolution (relative precision), each number is represented with the same *relative error* which is the distance from one point to the closest one divided by the number (see later)
 - ► wide range: "normal" positive numbers from 10^{e_{min}} to 9,999..9 · 10^{e_{max}}
- The representation is unique assuming the mantissa is

$$1 \le m < \beta$$

i.e. using "normal" floating-point numbers

Resolution

- The distance among "normal" numbers is not constant
- E.g., $\beta = 2$, p = 3, $e_{min} = -1$ and $e_{max} = 2$:
 - 16 positive "normalized" floating-point numbers

е	=	-1	->	1/2	;	m	=	1	+	[0:1/4:2/4:3/4] ==	=>	[4/8:5/8:6/8:7/8]
е	=	0	->	1	;	m	=	1	+	[0:1/4:2/4:3/4] ==	=>	[4/4:5/4:6/4:7/4]
е	=	+1	->	2	;	m	=	1	+	[0:1/4:2/4:3/4] ==	=>	[4/2:5/2:6/2:7/2]
е	=	+2	->	4	;	m	=	1	+	[0:1/4:2/4:3/4] ==	=>	[4/1:5/1:6/1:7/1]

Relative Resolution

- What does it mean "constant relative resolution"?
- Given a number $N = m \cdot \beta^e$ the nearest number has distance

$$\boldsymbol{R} = \beta^{-(p-1)}\beta^{\boldsymbol{e}}$$

- ▶ E.g., given $3.536 \cdot 10^{-6}$, the nearest (larger) number is $3.537 \cdot 10^{-6}$ having distance $0.001 \cdot 10^{-6}$
- The relative resolution is (nearly) constant (considering m ≃ β/2)

$$rac{R}{N}=rac{eta^{-(
ho-1)}}{m}\simeq 1/2eta^{-
ho}$$

Intrinsic Error

- WARNING: not any real number can be expressed as a floating point number
 - because you would need a larger exponent
 - or because you would need a larger precision
- The resolution is directly related to the intrinsic error
 - if p = 4, 3.472 may approximate numbers between 3.4715 and 3.4725, its intrinsic error is 0.0005
 - the instrinsic error is (less than) $(\beta/2)\beta^{-p}\beta^{e}$
 - the relative intrinsic error is

$$\frac{(\beta/2)\beta^{-p}}{m} \leq (\beta/2)\beta^{-p} = \varepsilon$$

► The intrinsic error ε is also called "machine epsilon" or "relative precision"

Measuring error

When performing calculations, floating-point error may propagate and exceed the intrinsic error

real value	=	3.14145
correctly rounded value	=	3.14
current value	=	3.17

- The most natural way to measure rounding error is in "ulps", i.e. units in the last place
 - e.g., the error is 3 ulps
- Another interesting possibility is using "machine epsilon", which is the relative error corresponding to 0.5 ulps

relative error = 3.17-3.14145 = 0.02855machine epsilon = 10/2*0.001 = 0.005relative error = 5.71ε

Handling errors

- Featuring a constant relative precision is very useful when dealing with rescaled equations
- Beware:
 - 0.2 has just one decimal digit using radix 10, but is periodic using radix 2
 - periodicity arises when the fractional part has prime factors not belonging to the radix
 - by the way, in Fortran if a is double precision, a=0.2 is badly approximated (use a=0.2d0 instead)
- Beware overflow!
 - you think it will not happen with your code but it may happen (mayby for intermediate results ...)
 - exponent range is symmetric: if possibile, perform calculations around 1 is a good idea

Types features

IEEE Name	min	max	ε	С	Fortran
Binary32	1.2E-38	3.4E38	5.96E-8	float	real
Binary64	2.2E-308	1.8E308	1.11E-16	double	real(kind(1.d0))
Binary128	3.4E-4932	1.2E4932	9.63E-35	long double	real(kind=)

- ► There are also "double extended" type and parametrized types
- Extended and quadruple precision devised to limit the round-off during the double calculation of trascendental functions and increase overflow
- Extended and quad support depends on architecture and compiler: often emulated and so really slow
- Decimal with 32, 64 and 128 bits are defined by standards, too
- FPU are usually "conformant" but not "compliant"
- To be safe when converting binary to text specify 9 decimals for single precision and 17 decimal for double

Error propagation

- ► Assume p = 3 and you have to compute the difference 1.01 · 10¹ - 9.93 · 10⁰
- To perform the subtraction, usually a shift of the smallest number is performed to have the same exponent
- First idea: compute the difference exactly and then round it to the nearest floating-point number

 $x = 1.01 \cdot 10^1$; $y = 0.993 \cdot 10^1$

$$x - y = 0.017 \cdot 10^1 = 1.70 \cdot 10^{-2}$$

Second idea: compute the difference with p digits

$$x = 1.01 \cdot 10^1$$
 ; $y = 0.99 \cdot 10^1$

$$x - y = 0.02 \cdot 10^1 = 2,00 \cdot 10^{-2}$$

the error is 30 ulps!

A possibile solution: use the guard digit (p+1 digits)

 $x = 1.010 \cdot 10^{1}$ $y = 0.993 \cdot 10^{1}$ $x - y = 0.017 \cdot 10^{1} = 1.70 \cdot 10^{-2}$

► Theorem: if x and y are floating-point numbers in a format with parameters and p, and if subtraction is done with p + 1 digits (i.e. one guard digit), then the relative rounding error in the result is less than 2 ε.

Cancellation

- When subtracting nearby quantities, the most significant digits in the operands match and cancel each other
- There are two kinds of cancellation: catastrophic and benign
 - benign cancellation occurs when subtracting exactly known quantities: according to the previous theorem, if the guard digit is used, a very small error results
 - catastrophic cancellation occurs when the operands are subject to rounding errors
- For example, consider b = 3.34, a = 1.22, and c = 2.28.
 - the exact value of $b^2 4ac$ is 0.0292
 - ▶ but b² rounds to 11.2 and 4ac rounds to 11.1, hence the final answer is 0.1 which is an error by 70ulps
 - the subtraction did not introduce any error, but rather exposed the error introduced in the earlier multiplications.

Cancellation/2

- ► The expression x² y² is more accurate when rewritten as (x y)(x + y) because a catastrophic cancellation is replaced with a benign one
 - replacing a catastrophic cancellation by a benign one may be not worthwhile if the expense is large, because the input is often an approximation
- Eliminating a cancellation entirely may be worthwhile even if the data are not exact
- Consider second-degree equations

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

- if $b^2 >> ac$ then $b^2 4ac$ does not involve a cancellation
- ▶ but, if b > 0 the addition in the formula will have a catastrophic cancellation.
- ► to avoid this, multiply the numerator and denominator of x_1 by $-b \sqrt{b^2 4ac}$ to obtain $x_1 = (2c)/(-b \sqrt{b^2 4ac})$ where CINECA no catastrophic cancellation occurs

Rounding and IEEE standards

- ► The IEEE standards requires correct rounding for:
 - addition, subtraction, mutiplication, division, remainder, square root
 - conversions to/from integer
- ► The IEEE standards recommends correct rounding for:

• e^x , $e^x - 1$, 2^x , $2^x - 1$, $\log_{\alpha}(\phi)$, $1/\sqrt{(x)}$, sin(x), cos(x), tan(x),....

Remember: "No general way exists to predict how many extra digits will have to be carried to compute a transcendental expression and round it correctly to some preassigned number of digits" (W. Kahan)

Special values

- Zero: signed
- Infinity: signed
 - overflow, divide by 0
 - ► Inf-Inf, Inf/Inf, $0 \cdot Inf \rightarrow NaN$ (indeterminate)
 - Inf op $a \rightarrow$ Inf if a is finite
 - a / Inf \rightarrow 0 if a is finite
- NaN: not a number!
 - Quiet NaN or Signaling NaN
 - ▶ e.g. √a with a < 0</p>
 - NaN op a \rightarrow NaN or exception
 - NaNs do not have a sign: they aren't a number
 - The sign bit is ignored
 - NanS can "carry" information

Zero and Denormals

- Considering positve numbers, the smallest "normal" floating point number is n_{smallest} = 1.0 · β^{e_{min}}
- In the previous example it is 1/2

- At least we need to add the zero value
 - there are two zeros: +0 and -0
- When a computation result is less than the minimum value, it could be rounded to zero or to the minimum value

Zero and Denormals/2

- Another possibility is to use denormal (also called subnormal) numbers
 - ► decreasing mantissa below 1 allows to decrease the floating point number, e.g. 0.99 · β^emin, 0.98 · β^emin, ..., 0.01 · β^emin
 - subnormals are linearly spaced and allow for the so called "gradual underflow"
- Pro: k/(a − b) may be safe (depending on k) even is a − b < 1.0 · β^{e_{min}}
- Con: performance of denormals are significantly reduced (dramatic if handled only by software)
- Some compilers allow for disabling denormals
 - Intel compiler has -ftz: denormal results are flushed to zero
 - automatically activated when using any level of optimization!

Walking Through

Double precision: w=11 ; p=53

0x00000000000000000 +zero 0x00000000000000000 smallest subnormal . . . 0x000ffffffffffff largest subnormal 0x0010000000000000 . . . 0x001ffffffffffff smallest normal 0x00200000000000000 2 X smallest normal . . . 0x7feffffffffffff largest normal 0x7ff00000000000000 +infinity

Walking Through

0x7ff000000000000	NaN
0x7fffffffffff	NaN
0x800000000000000	-zero
0x8000000000000000	negative subnormal
0x800fffffffffff	'largest' negative subnormal
0x801000000000000	'smallest' negative normal
0xfff000000000000	-infinity
0xfff000000000000	NaN
0xfffffffffffff	NaN

Error-Free Transformations

- An error-free transformation (EFT) is an algorithm which determines the rounding error associated with a floating-point operation
- E.g., addition/subtraction

 $a + b = (a \oplus b) + t$

where \oplus is a symbol for floating-point addition

- Under most conditions, the rounding error is itself a floating-point number
- An EFT can be implemented using only floating-point computations in the working precision

EFT for Addition

FastTwoSum: compute a + b = s + t where

 $|a| \ge |b|$ $s = a \oplus b$

EFT for Addition/2

- ▶ No requirements on *a* or *b*
- Beware: avoid compiler unsafe optimizations!

Summation techniques

Condition number

- If C_{sum} is "not too large", the problem is not ill conditioned and traditional methods may suffice
- But if it is "too large", we want results appropriate to higher precision without actually using a higher precision
- But if higher precision is available, consider to use it!
 - beware: quadruple precision is nowadays only emulated

Traditional summation

$$s=\sum_{i=0}^n x_i$$

```
double Sum( const double* x, const int n ) {
    int i;
    for ( i = 0; i < n; i++ ) {
        Sum += x[ i ];
    }
    return Sum;
}</pre>
```

Traditional Summation: what can go wrong?

- catastrophic cancellation
- magnitude of operands nearly equal but signs differ
- Ioss of significance
- small terms encountered when running sum is large
- the smaller terms don't affect the result
- but later large magnitude terms may reduce the running sum

Kahan summation

- Based on FastTwoSum and TwoSum techniques
- Knowledge of the exact rounding error in a floating-point addition is used to correct the summation
- Compensated Summation

- Many variations known (Knutht, Priest,...)
- Sort the values and sum starting from smallest values (for positive numbers)
- Other techniques (distillation)
- Use a greater precision or emulate it (long accumulators)
- Similar problems for Dot Product, Polynomial evaluation,...

Exceptions (IEEE 754-2008)

- Underflow
 - Absolute value of a non zero result is less than the minimum value (i.e., it is subnormal or zero)
- Overflow
 - Magnitude of a result greater than the largest finite value
 - ► Result is ±∞
- Division by zero
 - a/b where a is finite and non zero and b=0
- Inexact
 - Result, after rounding, is not exact
- Invalid
 - an operand is sNaN, square root of negative number or combination of infinity

Exception in real life ...

Gentile [

ecco il tuo saldo punti aggiornato:

Il tuo saldo punti disponibile al 06/07/2012 è di	NaN
di cui qualificanti per conquistare lo status successivo	0

Prosegui nella raccolta. Un mondo di premi ti aspetta!

Informationi

Handling exceptions

- Let us say you may produce a NaN
- What do you want to do in this case?
- First scenario: go on, there is no error and my algorithm is robust
- E.g., the function maxfunc compute the maximum value of a scalar function f(x) testing each function value corresponding to the grid points g(i)

call maxfunc(f,g)

- to be safe I should pass the domain of f but the it could be difficult to do
- I may prefer to check each grid point g(i)
- if the function is not defined somewhere, I will get a NaN (or other exception) but I do not care: the maximum value will be correct

Handling exceptions/2

- Second scenario: ops, something went wrong during the computation...
- (Bad) solution: complete your run and check the results and, if you see NaN, throw it away
- (First) solution: trap exceptions using compiler options (usually systems ignore exception as default)
- Some compilers allow to enable or disable floating point exceptions
 - Intel compiler: -fpe0: Floating-point invalid, divide-by-zero, and overflow exceptions are enabled. If any such exceptions occur, execution is aborted.
 - GNU compiler:

-ffpe-trap=zero, overflow, invalid, underflow

- very useful, but the performance loss may be material!
- use only in debugging, not in production stage

Handling exceptions/3

- (Second) solution: check selectively
 - ► each *N*_{check} time-steps
 - the most dangerous code sections
- Using language features to check exceptions or directly special values (NaNs,...)
 - the old print!
 - Fortran (2003): from module ieee_arithmetic, ieee_is_nan(x), ieee_is_finite(x)
 - C: from <math.h>, isnan or isfinite, from C99 look for fenv.h
 - do not use old style checks (compiler may remove them):

```
int IsFiniteNumber(double x) {
    return (x <= DBL_MAX && x >= -DBL_MAX);
}
```


Floating-point control

- Why doesn't my application always give the same answer?
 - inherent floating-point uncertainty
 - we may need reproducibility (porting, optimizing,...)
 - accuracy, reproducibility and performance usually conflict!
- Compiler safe mode: transformations that could affect the result are prohibited, e.g.
 - x/x = 1.0, false if $x = 0.0, \infty$, NaN
 - x y = -(y x) false if x = y, zero is signed!
 - ► *x* − *x* = 0.0 ...
 - ► *x* * 0.0 = 0.0 ...

Floating-point control/2

- An important case: reassociation is not safe with floating-point numbers
 - (x + y) + z = x + (y + z): reassociation is not safe
 - compare

-1.0+1.0e-13+1.0 = 1.0-1.0+1.0e-13 = 1.0e-13+1.0-1.0

- a * b/c may give overflow while a * (b/c) does not
- Best practice:
 - select the best expression form
 - promote operands to the higher precision (operands, not results)

Floating-point control/3

- Compilers allow to choose the safety of floating point semantics
- GNU options (high-level):

-f[no-]fast-math

- It is off by default (different from icc)
- Also sets abrupt/gradual underflow
- Components control similar features, e.g. value safety

(-funsafe-math-optimizations)

For more detail

http://gcc.gnu.org/wiki/FloatingPointMath

Floating-point control/4

Intel options:

-fp-model <type>

- fast=1: allows value-unsafe optimizations (default)
- fast=2: allows additional approximations
- precise: value-safe optimizations only
- strict: precise + except + disable fma
- Also pragmas in C99 standard

#pragma STDC FENV_ACCESS etc

Endianness

Which is the ordering of bytes in memory? E.g.,

-1267006353 ===> 1011010001111011000010001101111

- ► Big endian: 10110100 01111011 00000100 01101111
- Little endian: 01101111 00000100 01111011 10110100
- Other exotic layouts (VAX,...) nowadays unusual
- Limits portability
- Possibile solutions
 - conversion binary to text and text to binary
 - compiler extensions(Fortran):
 - Intel: -convert big_endian | little_endian
 - PGI: -Mbyteswapio
 - Intel: F_UFMTENDIAN (variabile di ambiente)
 - explicit reoredering
 - conversion libraries

C and Fortran data portability

- ► For C Standard Library a file is written as a stream of byte
- In Fortran file is a sequence of records:
 - each read/write refer to a record
 - there is record marker before and after a record (32 or 64 bit depending on file system)
 - remember also the different array layout from C and Fortran
- Possible portability solutions:
 - read Fortran records from C
 - perform the whole I/O in the same language (usually C)
 - use Fortran 2003 access=' stream'
 - use I/O libraries

How much precision do I need?

- Single, Double or Quad?
 - maybe single is too much!
 - computations get (much) slower when increasing precision, storage increases and power supply too
- Famous story
 - Patriot missile incident (2/25/91) . Failed to stop a scud missile from hitting a barracks, killing 28
 - System counted time in 1/10 sec increments which doesn't have an exact binary representation. Over time, error accumulates.
 - The incident occurred after 100 hours of operation at which point the accumulated errors in time variable resulted in a 600+ meter tracking error.
- Wider floating point formats turn compute bound problems into memory bound problems!

How much precision do I need?/2

- Programmers should conduct mathematically rigorous analysis of their floating point intensive applications to validate their correctness
- Training of modern programmers often ignores numerical analysis
- Useful tricks
 - Repeat the computation with arithmetic of increasing precision, increasing it until a desired number of digits in the results agree
 - Repeat the computation in arithmetic of the same precision but rounded differently, say Down then Up and perhaps Towards Zero, then compare results
 - Repeat computation a few times in arithmetic of the same precision but with slightly different input data, and see how widely results vary

Interval arithmetic

- A "correct" approach
- Interval number: possible values within a closed set

 $\mathbf{X} \equiv [\mathbf{X}_L, \mathbf{X}_R] := \{ \mathbf{X} \in \mathbb{R} | \mathbf{X}_L \le \mathbf{X} \le \mathbf{X}_R \}$

- ▶ e.g., 1/3=0.33333 ; 1/3 ∈ [0.3333,0.3334]
- Operations
 - ► Addition x + y = [a, b] + [c, d] = [a + c, b + d]
 - ► Subtraction x + y = [a, b] + [c, d] = [a -d, b -c]
 - ▶ ...
- Properties are interesting and can be applied to equations
- Interval Arithmetic has been tried for decades, but often produces bounds too loose to be useful
- A possible future
 - chips supporting variable precision and uncertainty tracking
 - runs software at low precision, tracks accuracy and reruns computations automatically if the error grows too large.

References

- N.J. Higham, Accuracy and Stability of Numerical Algorithms 2nd ed., SIAM, capitoli 1 e 2
- D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM C.S., vol. 23, 1, March 1991 http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- ▶ W. Kahan http://www.cs.berkeley.edu/ wkahan/
- Standards: http://grouper.ieee.org/groups/754/

Hands-on: Compensated sum

The code in summation.cpp/f90 initializes an array with an ill-conditioned sequence of the order of

100,-0.001,-100,0.001,....

- Simple and higher precision summation functions are already implemented
- Implement Kahan algorithm in C++ or Fortran
- Compare the accuracy of the results

Hands-on: C++ Solution


```
REAL TYPE summation kahan( const REAL TYPE a[].
                         const size t n values )
 REAL_TYPE s = a[0];
                               // sum
 REAL TYPE t = 0;
                               // correction term
 for( int i = 1; i < n_values; i++ ) {</pre>
     REAL_TYPE y = a[ i ] - t; // next term "plus" correction
     REAL_TYPE z = s + y; // add to accumulated sum
     t = (z - s) - y;
                            // t <- -(low part of y)
                               // update sum
     s = z;
 return s;
```

Summation simple : 35404.9609375000000000 Summation Kahan : 35402.8515625000000000 Summation higher : 35402.8554687500000000

Hands-on: Fortran Solution


```
function sum kahan(a,n)
    integer :: n
    real(my_kind) :: a(n)
    real(my_kind) :: s,t,y,z
    s=a(1)
                       I SUM
   t=0._my_kind
                      ! correction term
   do i=1.n
      y = a(i) - t ! next term "plus" correction
      z = s + y ! add to accumulated sum
      t = (z-s) - y ! t < - -(low part of y)
                      ! update sum
      s = z
   enddo
    sum kahan = s
end function sum kahan
```

 Summation simple:
 7293.98193359375000

 Summation Kahan:
 7294.11230468750000

 Summation Higher:
 7294.10937500000000

