
Debugging

Andrew Emerson, Paride Dagna and others

SCAI, Cineca

29/10/2014 1
Intro to HPC programming: tools and

techniques

Contents

• Introduction

• Before using the debugger
– compiler options

– analysing core files on BG/Q

• Preparing for the debugger
– IBM BG/Q– IBM BG/Q

– Other architectures

• Debugging a serial program with gdb

• Parallel Program debugging with gdb, PMPI and
Totalview

29/10/2014 2Intro to HPC programming: tools and techniques

Introduction

• One of the most widely used methods to find out the reason of a
strange behaviour in a program is the insertion of “printf” or
“write” statements in the supposed critical area.

• However this kind of approach has a lot of limits and requires
frequent code recompiling and becomes hard to implement for
complex programs, above all if parallel. Moreover sometimes the
error may not be obvious or hidden. error may not be obvious or hidden.

• Debuggers are very powerful tools able to provide, in a targeted
manner, a high number of information facilitating the work of the
programmer in research and in the solution of instability in the
application.

• For example, with simple debugging commands you can have your
program run to a certain line and then pause. You can then see
what value any variable has at that point in the code.

29/10/2014 3Intro to HPC programming: tools and techniques

Debugging process

The debugging process can be divided into four main
steps:

1. Start your program.

2. Make your program stop on specified conditions.

3. Examine what has happened, when your program has
stopped.stopped.

4. Change things in your program, or its compilation, so
you can experiment with correcting the effects of one
bug and go on to learn about another.

29/10/2014 4Intro to HPC programming: tools and techniques

Before starting the debugger

• Before starting the debugger, check your compiler documentation
to see what compile or run-time checks are available.

• Some compiler options to try

– switch down the optimisation level (e.g. from –O3). High or
“aggressive” optimisations can cause code changes and introduce
bugs.

– turn on compiler options such as –C or –check-bounds to look for
incorrect array indices.incorrect array indices.

– for xlf try options such as –qflttrap=enable:zerodivide

– use options for uninitialised variable detection, etc.

• For performance reasons many run-time checks are switched off by
default. Remember to switch them off again when debugging is
complete.

• If possible also worth using a different compiler to see if the
problem persists, or more useful error or warning messages are
obtained.

29/10/2014 5Intro to HPC programming: tools and techniques

Debugging on the IBM
BG/Q

• Because of its particular architecture (cannot
login directly on the compute nodes) debugging
is more complex on BG/Q.

• IBM provides a number of utilities which can be
used without invoking a debugger.

• For further information check out the Cineca HPC • For further information check out the Cineca HPC
user guide:

http://www.hpc.cineca.it/sites/default/files
/Debug%20guide_0.pdf

29/10/2014 6Intro to HPC programming: tools and techniques

IBM BG/Q

• Sometimes it may happen that an unsuccessful job generates a
segmentation fault message where the chain of stack frames is
reported.

• addr2line is an utility that allows to get information from
this file about where the job crashed, using the syntax:

• addr2line –e ./myexe 0x400ab9

[[P90:05046] *** Process received signal ***

[P90:05046] Signal: Segmentation fault (11)[P90:05046] Signal: Segmentation fault (11)

[P90:05046] Signal code: Address not mapped (1)

[P90:05046] Failing at address: 0x7fff54fd8000

[P90:05046] [0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x10060) [0x7f8474777060]

[P90:05046] [1] /lib/x86_64-linux-gnu/libc.so.6(+0x131b99) [0x7f84744f7b99]

[P90:05046] [2] /usr/lib/libmpi.so.0(ompi_convertor_pack+0x14d) [0x7f84749c75dd]

[P90:05046] [3] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x1de8) [0x7f846fe14de8]

[P90:05046] [4] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0xd97e) [0x7f8470c6c97e]

[P90:05046] [5] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x8900) [0x7f8470c67900]

[P90:05046] [6] /usr/lib/openmpi/lib/openmpi/mca_btl_sm.so(+0x4188) [0x7f846fe17188]

[P90:05046] [7] /usr/lib/libopen-pal.so.0(opal_progress+0x5b) [0x7f8473f330db]

[P90:05046] [8] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x6fd5) [0x7f8470c65fd5]

[P90:05046] [9] /usr/lib/libmpi.so.0(PMPI_Send+0x195) [0x7f84749e1805]

[P90:05046] [10] nr2(main+0xe1) [0x400c55]

[P90:05046] [11] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xed) [0x7f84743e730d]

[P90:05046] [12] nr2() [0x400ab9]

[P90:05046] *** End of error message ***

29/10/2014 7Intro to HPC programming: tools and techniques

IBM BG/Q – core files

• By default Fermi IBM BG/Q produces text

core files but not necessarily very readable

29/10/2014 8Intro to HPC programming: tools and techniques

IBM BG/Q core files

• Blue Gene core files are lightweight text files.

• Hexadecimal addresses in section STACK describe
function call chain until program exception.

• It’s the section delimited by tags: +++STACK / —STACK,
in particular the “Saved Link Reg” column.

• These should be passed to the addr2line command or..• These should be passed to the addr2line command or..

29/10/2014 9Intro to HPC programming: tools and techniques

IBM BG/Q core files

• .. use some handy scripts.
module load superc
a2l-translate corefile
addr2line –e <exe> < core.t0

29/10/2014 10Intro to HPC programming: tools and techniques

Most popular debuggers

• Some debuggers are distributed with the
compiler suite:
– Commercial

• Portland pgdbg

• Intel idb

– Free
Gnu gdb• Gnu gdb

• There are also some powerful, commercial
debuggers from independent vendors:
– DDT (Allinea)

– Totalview (Rogue Wave Software)

– Valgrind (particularly for Memory problems)

29/10/2014 11Intro to HPC programming: tools and techniques

Debugger capabilities

• The purpose of a debugger is to allow you to see what is going
on “inside” another program while it executes or what another
program was doing at the moment it crashed.

• Using specific commands, debuggers allow real-time
visualization of variable values, static and dynamic memory state
(stack, heap) and registers state.

• Common errors include:• Common errors include:

• pointer errors

• array indexing

• memory allocation

• argument and parameter mismatches

• communication deadlocks in parallel programming

• I/O

• ...

29/10/2014 12Intro to HPC programming: tools and techniques

Compiling rules for
debugging

• In order to debug a program effectively, the debugger needs debugging
information which is produced compiling the program with the “-g” flag.

• This debugging information is stored in the object files fused in the
executable; it describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the
executable code.

• Opimization should be at –O0, -O1 or –O2 level.

• GNU compiler:

• gcc/g++/gfortran –g [other flags] source –o executable

• INTEL compiler:

• icc/icpc/ifort –g [other flags] source –o executable

• BGQ - IBM compiler

• bgxlc/bgxlc++/bgxlf90 –g –qfullpath qkeepparm source –o executable

29/10/2014 13Intro to HPC programming: tools and techniques

Execution

• The standard way to run the debugger is:

• debugger executable name or

• debugger exe corefile

• Otherwise it’s possible to first run the debugger and then point to the
executable to debug:

GNU gdb:

gdbgdb

> file executable

• It’s also possible to debug an already-runnnig program started outside the
debugger attaching to the process id of the program.

• Syntax:

• GNU gdb:

gdb

> attach process_id

gdb attach process_id
29/10/2014 14Intro to HPC programming: tools and techniques

GDB command list

run: start debugged program

list: list specified function or line. Two arguments with comma
between specify starting and ending lines to list.

list begin,end
break <line> <function> : set breakpoint at specified line
or function, useful to stop execution before a critical point.

break filename:line
break filename:functionbreak filename:function

It’s possible to insert a boolean expression with the sintax:

break <line> <function> condition
With no <line> <function>, uses current execution address of
selected stack frame. This is useful for breaking on return to a stack
frame.

29/10/2014 15Intro to HPC programming: tools and techniques

GDB command list /2

• clear <line> <func> : Clear breakpoint at specified line or
function.

• delete breakpoints [num] : delete breakpoint number
“num”. With no argument delete all breakpoints.

• If : Set a breakpoint with condition; evaluate the condition each
time the breakpoint is reached, and stop only if the value is
nonzero. Allowed logical operators: > , < , >= , <= , ==

• Example :• Example :

break 31 if i >= 12

• condition <num> < expression> : As the “if” command
associates a logical condition at breakpoint number “num”.

• next <count>: continue to the next source line in the current
(innermost) stack frame, or count lines.

29/10/2014 16Intro to HPC programming: tools and techniques

GDB command list/3

continue: continue program being debugged, after signal or
breakpoint

where : print backtrace of all stack frames, or innermost “count”
frames.

step : Step program until it reaches a different source line. If used
before a function call, allow to step into the function. The debugger
stops at the first executable statement of that function

step count : executes count lines of code as the nextstep count : executes count lines of code as the next
command

finish : execute until selected stack frame or function returns
and stops at the first statement after the function call. Upon return,
the value returned is printed and put in the value history.

set args : set argument list to give program being debugged when
it is started. Follow this command with any number of args, to be
passed to the program.

set var variable = <EXPR>: evaluate expression EXPR and
assign result to variable variable, using assignment syntax
appropriate for the current language
29/10/2014 17Intro to HPC programming: tools and techniques

GDB Command list/4

search <expr>: search for an expression from last line listed

reverse-search <expr> : search backward for an expression from
last line listed

display <exp>: Print value of expression exp each time the program
stops.

print <exp>: Print value of expression exp

This command can be used to display arrays:

displays elementprint array[num_el]displays element num_el

print *array@len displays the whole array

watch <exp>: Set a watchpoint for an expression. A watchpoint stops
execution of your program whenever the value of an expression changes.

info locals: print variable declarations of current stack frame.

show values <number> : shows number elements of value history
around item number or last ten.

29/10/2014 18Intro to HPC programming: tools and techniques

GDB command list/5

• backtrace <number,full> : shows one line per frame, for

many frames, starting with the currently executing frame (frame

zero), followed by its caller (frame one), and on up the stack. With
the number parameter print only the innermost number frames.

With the full parameter print the values of the local variables also.

– #0 squareArray (nelem_in_array=12, array=0x601010) at

variable_print.c:67

– #1 0x00000000004005f5 in main () at variable_print.c:34– #1 0x00000000004005f5 in main () at variable_print.c:34

• frame <number> : select and print a stack frame.

• up <number> : allow to go up number stack frames

• down <number> : allow to go up number stack frames

• info frame : gives all informations about current stack frame

• detach: detach a process or file previously attached.

• quit: quit the debugger

29/10/2014 19Intro to HPC programming: tools and techniques

Using Core dumps for
Postmortem Analysis

•In computing, a core dump, memory dump, or storage dump consists
of the recorded state of the working memory of a computer
program at a specific time, generally when the program has
terminated abnormally.

• Core dumps are often used to assist in diagnosing
and debugging errors in computer programs.

• In most Linux Distributions core file creation is disabled by default for
a normal user but it can be enabled using the following command :
• In most Linux Distributions core file creation is disabled by default for
a normal user but it can be enabled using the following command :

� ulimit -c unlimited

• Once “ulimit –c” is set to “unlimited” run the program and the core
file will be created

• The core file can be analyzed with gdb using the following syntax:

� gdb -c core executable

29/10/2014 20Intro to HPC programming: tools and techniques

Debugging a serial program
– case study

Example program that:

1. constructs an array of 10 integers in the variable array1

2. gives the array to a function squareArray that executes the
square of each element of the array and stores the result
in a second array named array2 in a second array named array2

3. After the function call, it’s computed the difference
between array2 and array1 and stored in array del. The
array del is then written on standard output

4. Code execution ends without error messages but the
elements of array del printed on standard output are all
zeros.

29/10/2014 21Intro to HPC programming: tools and techniques

Debugging a serial program

#include <stdio.h>

#include <stdlib.h>

int indx;

void initArray(int nelem_in_array, int *array);

void printArray(int nelem_in_array, int *array);

int squareArray(int nelem_in_array, int *array);

int main(void) {

const int nelem = 12; const int nelem = 12;

int *array1, *array2, *del;

array1 = (int *)malloc(nelem*sizeof(int));

array2 = (int *)malloc(nelem*sizeof(int));

del = (int *)malloc(nelem*sizeof(int));

initArray(nelem, array1);

printf("array1 = "); printArray(nelem, array1);

array2 = array1;

squareArray(nelem, array2);

29/10/2014 22Intro to HPC programming: tools and techniques

Debugging a serial
program/2

for (indx = 0; indx < nelem; indx++)

{

del[indx] = array2[indx] - array1[indx];

}

printf(“La difference fra array2 e array1 e’: ");

printArray(nelem, del);

free(array1);

free(array2);free(array2);

free(del);

return 0;}

void initArray(const int nelem_in_array, int *array)

{

for (indx = 0; indx < nelem_in_array; indx++)

{

array[indx] = indx + 2;}

}

29/10/2014 23Intro to HPC programming: tools and techniques

Debugging a serial
program/3

int squareArray(const int nelem_in_array, int *array)

{

int indx;

for (indx = 0; indx < nelem_in_array; indx++)

{

array[indx] *= array[indx];}

return *array;

}}

void printArray(const int nelem_in_array, int *array)

{

printf("[");

for (indx = 0; indx < nelem_in_array; indx++)

{

printf("%d ", array[indx]); }

printf("]\n\n");

}

29/10/2014 24Intro to HPC programming: tools and techniques

Debugging a serial
program/4

• Compiling: gcc –g –o ar_diff ar_diff.c

• Execution: ./arr_diff

• Expected result:

– del = [2 6 12 20 30 42 56 72 90 110 132 156]– del = [2 6 12 20 30 42 56 72 90 110 132 156]

• Real result

– del = [0 0 0 0 0 0 0 0 0 0 0 0]

29/10/2014 25Intro to HPC programming: tools and techniques

Debugging a serial
program/5

• Run the debugger gdb -> gdb ar_diff

• Step1: possible coding error in function squareArray()

• Procedure:

– list the code with the list command and insert a breakpoint
at line 35 “break 35” where there is the call to
list the code with the list command and insert a breakpoint
at line 35 “break 35” where there is the call to
squareArray(). Let’s start the code using the command
run. Execution stops at line 35.

– Let’s check the correctness of the function squareArray()
displaying the elements of the array array2 using the
command disp, For example (disp array2[1] = 9)
produces the expected value

29/10/2014 26Intro to HPC programming: tools and techniques

Debugging a serial program

• Step2: check of the difference between the element values
in the two arrays

– For loop analysis:
#35: for (indx = 0; indx < nelem; indx++)

(gdb) next

37 del[indx] = array2[indx] - array1[indx];37 del[indx] = array2[indx] - array1[indx];

(gdb) next

35 for (indx = 0; indx < nelem; indx++)

– Visualize array after two steps in the for loop:
(gdb) disp array2[1]

array2[1]=9

(gdb) disp array1[1]

array1[1]=9

29/10/2014 27Intro to HPC programming: tools and techniques

Debugging a serial program

• As highlighted in the previous slide the values of the
elements of array1 and array2 are the same. But this is not
correct because array, array1, was never passed to the
function squareArray(). Only array2 was passed in line 38 of
our code. If we think about it a bit, this sounds very much
like a “pointer error”.

• To confirm our suspicion, we compare the memory address• To confirm our suspicion, we compare the memory address
of both arrays:

– (gdb) disp array1

– 1: array1 = (int *) 0x607460
– (gdb) disp array2

– 2: array2 = (int *) 0x607460

• We find that the two addresses are identical.

29/10/2014 28Intro to HPC programming: tools and techniques

Debugging a serial program

The error occurs in the statement: array2 = array1 because in
this way the first element in array2 points to the address of
the first element in array1.

Solution:

To solve the problem we just have to change the statement

array2 = array1;

in
for (indx = 0; index < nelem; indx++)

{

array2[k] = array1[k]

}

29/10/2014 29Intro to HPC programming: tools and techniques

Parallel debugging

• Parallel debugging is more complex than serial because
multiple processes need to be debugged simultaneously.

• Normally debuggers can be applied to multi-threaded
parallel codes, containing OpenMP or MPI directives, or
even OpenMP and MPI hybrid solutions.

• For OpenMP, the threads of a single program are akin to
multiple processes except that they share one address multiple processes except that they share one address
space (that is, they can all examine and modify the same
variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

• GDB provides some facilities for debugging OpenMP and
MPI programs but usually a dedicated debugger such as
Totalview is employed.

29/10/2014 30Intro to HPC programming: tools and techniques

Debugging OpenMP
Applications

GDB facilities for debugging multi-threaded programs :

– automatic notification of new threads

– thread <thread_number> command to switch among threads

– info threads command to inquire about existing threads
(gdb) info threads

* 2 Thread 0x40200940 (LWP 5454) MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd280)
at serial_order_bug.f90:27

1 Thread 0x2aaaaaf7d8b0 (LWP 1553) MAIN__.omp_fn.0
(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27

thread apply <thread_number> <all> args allow to apply a command to apply a
command to a list of threads.

• When any thread in your program stops, for example, at a breakpoint, all
other threads in the program are also stopped by GDB.

• GDB cannot single-step all threads in lockstep. Since thread scheduling is
up to your debugging target’s operating system (not controlled by GDB),
other threads may execute more than one statement while the current
thread completes a single step unless you use the command :set
scheduler-locking on.

• GDB is not able to show the values of private and shared variables in
OpenMP parallel regions.

29/10/2014 31Intro to HPC programming: tools and techniques

Debugging OpenMP
Applications

• In the following OpenMP code, using the SECTIONS
directive, two threads initialize threir own array and than
sum it to the other

PROGRAM lock
INTEGER*8 LOCKA, LOCKB
INTEGER NTHREADS, TID, I,OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM
PARAMETER (N=1000000)
REAL A(N), B(N), PI, DELTA
PARAMETER (PI=3.1415926535)PARAMETER (PI=3.1415926535)
PARAMETER (DELTA=.01415926535)

CALL OMP_INIT_LOCK(LOCKA)
CALL OMP_INIT_LOCK(LOCKB)

!$OMP PARALLEL SHARED(A, B, NTHREADS, LOCKA, LOCKB) PRIVATE(TID)

TID = OMP_GET_THREAD_NUM()
!$OMP MASTER

NTHREADS = OMP_GET_NUM_THREADS()
PRINT *, 'Number of threads = ', NTHREADS

!$OMP END MASTER
PRINT *, 'Thread', TID, 'starting...'

!$OMP BARRIER

29/10/2014 32Intro to HPC programming: tools and techniques

Debug openMP applications

!$OMP SECTIONS

!$OMP SECTION

PRINT *, 'Thread',TID,' initializing A()'

CALL OMP_SET_LOCK(LOCKA)

DO I = 1, N

A(I) = I * DELTA

ENDDO

CALL OMP_SET_LOCK(LOCKB)

!$OMP SECTION

PRINT *, 'Thread',TID,' initializing B()'

CALL OMP_SET_LOCK(LOCKB)

DO I = 1, N

B(I) = I * PI

ENDDO

CALL OMP_SET_LOCK(LOCKA)

PRINT *, 'Thread',TID,' adding B() toA()'

DO I = 1, N
PRINT *, 'Thread',TID,' adding A() to B()'

DO I = 1, N

B(I) = B(I) + A(I)

ENDDO

CALL OMP_UNSET_LOCK(LOCKB)

CALL OMP_UNSET_LOCK(LOCKA)

DO I = 1, N

A(I) = A(I) + B(I)

ENDDO

CALL OMP_UNSET_LOCK(LOCKA)

CALL OMP_UNSET_LOCK(LOCKB)

!$OMP END SECTIONS NOWAIT

PRINT *, 'Thread',TID,' done.'

!$OMP END PARALLEL

END

29/10/2014 33Intro to HPC programming: tools and techniques

Debugging OpenMP
Applications

• Compiling:

gfortran –fopenmp –g –o omp_debug omp_debug.f90

• Execution:

– export OMP_NUM_THREADS=2

– ./omp_debug

– The program produces the following output before– The program produces the following output before

hanging:

Number of threads = 2

Thread 0 starting...

Thread 1 starting...

Thread 0 initializing A()

Thread 1 initializing B()

29/10/2014 34Intro to HPC programming: tools and techniques

Debugging OpenMP Applications

• In the debugger:

– List the source code from line 10 to 50:

– Insert breakpoint at beginning of parallel region and run:
list 10,50
b 20
run

2 Thread 0x40200940 (LWP 8533) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd2b0) at

openmp_bug2_nofix.f90:20

• The print statements aren’t executed so insert breakpoints
in the two sections:

thread apply 2 b 35

thread apply 1 b 49

openmp_bug2_nofix.f90:20

1 Thread 0x2aaaaaf7d8b0 (LWP 8530) MAIN__.omp_fn.0

(.omp_data_i=0x7fffffffd2b0) at

openmp_bug2_nofix.f90:20

29/10/2014 35
Intro to HPC programming: tools and

techniques

Debugging OpenMP Applications

• Restart execution:

thread apply all cont

• Execution hangs so ctrl-c and check where threads
are:are:

thread apply all where

Thread 2 (Thread 0x40200940 (LWP 8533)):

0x00000000004010b5 in MAIN__.omp_fn.0
(.omp_data_i=0x7fffffffd2b0) at
openmp_bug2_nofix.f90:29

Thread 1 (Thread 0x2aaaaaf7d8b0 (LWP 8530)):

0x0000000000400e6d in MAIN__.omp_fn.0
(.omp_data_i=0x7fffffffd2b0) at
openmp_bug2_nofix.f90:43

29/10/2014 36
Intro to HPC programming: tools and

techniques

Debugging OpenMP
Applications

• Thread number 2 is stopped at line 29 on the statement:

CALL OMP_SET_LOCK(LOCKB)

• Thread number 1 is stopped at line 43 on the statement :

CALL OMP_SET_LOCK(LOCKA)

• So it’s clear that the bug is in the calls to routines OMP_SET_LOCK that cause
execution stopping

• Looking at the order of the routine calls to OMP_SET_LOCK and
OMP_UNSET_LOCK it is clear there is an error.

• The correct order provides that the call to OMP_SET_LOCK must be
followed by the corresponding OMP_UNSET_LOCK

• Arranging the order the code finishes successfully

29/10/2014 37Intro to HPC programming: tools and techniques

Debugging MPI applications

• Even more difficult than OpenMP since in
principle could involve many thousands of tasks.

• Many MPI errors are possible including: invalid
arguments, type matching, race conditions,
deadlocks etc.

• Debugging communications is not easy. Some • Debugging communications is not easy. Some
communication-related bugs may be hidden by
MPI buffering such that they occur only for
certain numbers of tasks or program inputs.

• Generally best to use the minimum no. of tasks
necessary to reproduce the unexpected
behaviour.

29/10/2014 38Intro to HPC programming: tools and techniques

Debugging MPI Applications

• There are two common ways to use serial
debuggers such GDB to debug MPI applications

1. Attach to individual MPI processes after they are
running using the “attach” method available for
serial codes launching instances of the debugger to
attach to the different MPI processes.attach to the different MPI processes.

2. Open a debugging session for each MPI process
through the command “mpirun”.

29/10/2014 39Intro to HPC programming: tools and techniques

Debugging MPI Applications

Attach method

– Run the application in the usual way.

mpirun –np 4 executable

– From another shell, use the top command to find

the MPI processes which bind to the executable:the MPI processes which bind to the executable:

PID executable MPI

processes

29/10/2014 40Intro to HPC programming: tools and techniques

Debugging MPI Applications

• Run up to “n” instances of the debugger in “attach” mode,
where n is the number of the MPI processes of the
application. Using this method you should have to open up
to n shells.

• Referring to the previous slide we have to run four
instances of GDB:instances of GDB:
gdb attach 12513 (shell 1)

gdb attach 12514 (shell 2)

gdb attach 12515 (shell 3)

gdb attach 12516 (shell 4)

• Use debugger commands for each shell as in the serial case

29/10/2014 41Intro to HPC programming: tools and techniques

Debugging MPI Applications

• mpirun method

– This technique launches a separate window for each
MPI process in MPI_COMM_WORLD, each one
running a serial instance of GDB that will launch and
run your MPI application.

mpirun -np 2 xterm -e gdb nome_eseguibilempirun -np 2 xterm -e gdb nome_eseguibile

29/10/2014 42Intro to HPC programming: tools and techniques

Debugging MPI – case
study

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
void main(int argc, char *argv[]){

int nvals, *array, myid, i;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
nvals = atoi(argv[1]);
array = (int *) malloc(nvals*sizeof(int));
for(i=0; i<nvals/2; i++);for(i=0; i<nvals/2; i++);

array[i] = myid;
if(myid==0){
MPI_Send(array,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD);

MPI_Recv(array+nvals/2,nvals/2,MPI_INT,1,1,MPI_COMM_WORLD,&status);
}
else

{
MPI_Send(array,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD);
MPI_Recv(array+nvals/2,nvals/2,MPI_INT,0,1,MPI_COMM_WORLD,&status);
}

printf("myid=%d:array[nvals-1]=%dn",myid,array[nvals-1]);
MPI_Finalize();

29/10/2014 43Intro to HPC programming: tools and techniques

Debugging MPI Applications
– case study

• Compile: mpicc –g –o hung_comm hung.c

• Run:
– Array dimension: 100

• mpirun –np 2 ./hung_comm 100
• myid = 0: array[nvals-1] = 1

• myid = 1: array[nvals-1] = 0

– Array dimension: 1000– Array dimension: 1000
• mpirun –np 2 ./hung_comm 100

• myid = 0: array[nvals-1] = 1

• myid = 1: array[nvals-1] = 0

– Array dimension 1000
• mpirun –np 2 ./hung_comm 10000

With array dimension equal to 10000 the program hangs!

Why ?

29/10/2014 44Intro to HPC programming: tools and techniques

Debugging MPI Applications
– case study

• Debugging hints:

– use gdb and two processes

– insert breakpoint at first MPI_SEND

– set program arguments with set args

10000001000000

– when program hangs, CTRL-C and where

29/10/2014 45Intro to HPC programming: tools and techniques

MPI Run-time diagnostics
• Somtimes useful to know how the MPI tasks were created and

on which physical nodes they were created (binding).

====================== ALLOCATED NODES

===============

Data for node: Name: node102 Num slots: 4 Max slots: 0

Data for node: Name: node103ib0 Num slots: 4 Max slots:

0

===

#!/bin/bash

#PBS -l walltime=30

#PBS -l select=2:ncpus=4:mpiprocs=4

#PBS -A cin_staff
===

======================== JOB MAP

=====================

Data for node: Name: node102 Num procs: 4

Process OMPI jobid: [38452,1] Process rank: 0

Process OMPI jobid: [38452,1] Process rank: 1

Process OMPI jobid: [38452,1] Process rank: 2

Process OMPI jobid: [38452,1] Process rank: 3

Data for node: Name: node103ib0 Num procs: 4

Process OMPI jobid: [38452,1] Process rank: 4

Process OMPI jobid: [38452,1] Process rank: 5

Process OMPI jobid: [38452,1] Process rank: 6

Process OMPI jobid: [38452,1] Process rank: 7openmpi

#PBS -A cin_staff

#PBS -o out

#PBS -e err

cd $PBS_O_WORKDIR

module load autoload openmpi

mpirun --display-allocation --display-
map exe

29/10/2014 46Intro to HPC programming: tools and techniques

MPI Run-time diagnostics

#!/bin/bash

#PBS -l walltime=30

#PBS -l select=2:ncpus=4:mpiprocs=4

#PBS -A cin_staff

#PBS -o out

#PBS -e err

cd $PBS_O_WORKDIR

[0] MPI startup(): Rank Pid Node name Pin cpu

[0] MPI startup(): 0 18836 node102 {0,1,2}

[0] MPI startup(): 1 18837 node102 {3,4,5}

[0] MPI startup(): 2 18838 node102 {6,7,8}

[0] MPI startup(): 3 18839 node102 {9,10,11}

[0] MPI startup(): 4 32649 node103 {0,1,2}

[0] MPI startup(): 5 32650 node103 {3,4,5}

[0] MPI startup(): 6 32651 node103 {6,7,8}cd $PBS_O_WORKDIR

module load autoload intelmpi

export I_MPI_DEBUG=5

mpirun ./spawnexample

[0] MPI startup(): 6 32651 node103 {6,7,8}

[0] MPI startup(): 7 32652 node103 {9,10,11}

Intel mpi

Also possible via the MPI_Get_processor_name
function call

29/10/2014 47Intro to HPC programming: tools and techniques

Debugging MPI with PMPI

• MPI implementations also provide a profiling interface
called PMPI.

• In PMPI each standard MPI function (MPI_) has an
equivalent function with prefix PMPI_ (e.g. PMPI_Send,
PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI
commands to provide extra information useful for commands to provide extra information useful for
profiling or debugging.

• Not necessary to modify source code since the
customized MPI commands can be linked as a separate
library during debugging. For production the extra
library is not linked and the standard MPI behaviour is
used.

29/10/2014 48Intro to HPC programming: tools and techniques

PMPI Examples

// profiling example

static int send_count=0;

int MPI_Send(void*start,int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

{

send_count++;

return PMPI_Send(start, count, datatype, dest, tag, comm);

}

Profiling

}

! Unsafe uses of MPI_Send

! MPI_Send can be implemented as MPI_Ssend (synchronous send)

subroutine MPI_Send(start, count, datatype, dest,

tag, comm, ierr)

integer start(*), count, datatype, dest, tag, comm

call PMPI_Ssend(start, count, datatype,

dest, tag, comm, ierr)

end

Debugging

29/10/2014 49Intro to HPC programming: tools and techniques

Debugging MPI with
totalview and RCM

• Totalview is a powerful, sophisticated,
programmable tool for debugging serial or
parallel programs.

• Being a graphical tool, for best results
recommended to use a remote visualization tool
such as RCM (Remote Connection Manager), such as RCM (Remote Connection Manager),
rather than just an X-display (slow).

• It is also a commercial product, so licenses are
limited!

29/10/2014 50Intro to HPC programming: tools and techniques

Debugging MPI with
Totalview and RCM

1. Download and install RCM on workstation:
http://www.hpc.cineca.it/content/remote-
visualization-rcm

2. Launch RCM and log on to PLX/Fermi. You will
be given a Linux-style desktop.

3. Open a terminal and prepare a PBS/Loadleveler3. Open a terminal and prepare a PBS/Loadleveler
job script. Insert the DISPLAY number in the job
script. Or open an interactive PBS session (not
BG/Q).

29/10/2014 51Intro to HPC programming: tools and techniques

Debugging MPI with totalview
and RCM

• #!/bin/bash

#PBS -l walltime=00:30:00
#PBS -l select=1:ncpus=4:mpiprocs=4:mem=15gb
#PBS -N totalview
#PBS -o job.out
#PBS -e job.err
#PBS -q debug
account number (type saldo -b)
#PBS -A your_account_here#PBS -A your_account_here

module load profile/advanced
module load autoload openmpi/1.6.3--gnu--4.7.2
module load totalview/8.12.0-1

export DISPLAY=node097:1

cd $PBS_O_WORKDIR
mpirun –tv –n 4 poisson.exe

29/10/2014 52Intro to HPC programming: tools and techniques

Debugging MPI with totalview
and RCM

29/10/2014 53Intro to HPC programming: tools and techniques

Summary

• All programs have bugs.

• Parallel programs are particularly difficult because of
the need to debug multiple processes and possibly,
complex communication patterns.

• A debugging strategy should include:
– compiler options to lower side-effects of optimisation and

increase the level of compile-time and run-time checking.increase the level of compile-time and run-time checking.

– post-mortem analysis of stack traces and core files

– run-time diagnostic options

– the use of debuggers such as gdb or Totalview

– in tandem with profilers or similar tools to understand
better what the program is doing

29/10/2014 54Intro to HPC programming: tools and techniques

