
Tools and techniques for
optimization and debugging

Fabio Affinito
October 2015

Profiling

Why?

Parallel or serial codes are usually quite complex
and it is difficult to understand what is the
most time consuming part.

Profiling is a prerequisite to optimization.

You don’t want to spend time to optimize a
function where usually your application
spends 0.0001% of the runtime!

Which?

There are a lot of different tools. Some of them are
suitable for serial applications (they identify the most
compute-intensive parts), some other for parallel
computations (they identify conflicts, parallel
bottlenecks, load unbalance, etc.).

There are free and proprietary tools. You can choice
which to use depending on their availability (usually
computer facilities offer licenses for many proprietary
tools).

Time

Time is a CL tool available on every Linux/UNIX
platform;

It provides time of execution and some other
useful information;

It is extremely simple, but it can provide as well
some insight on your system exploitation.

Time

time ./a.out

9.29user 6.19system 0:15.52elapsed 99%CPU (0avgtext+0avgdata 18753424maxresident)k
0inputs+0outputs (0major+78809minor)pagefaults 0swaps

User time: time spent by the CPU for the execution of the code
System time: time spent by the CPU for system calls
Elapsed time: time actually spent for the execution of your code
The percentuage of CPU used by the process.
Number of page faults
Number of swaps

Time

time ./a.out

9.29user 6.19system 0:15.52elapsed 99%CPU (0avgtext+0avgdata 18753424maxresident)k
0inputs+0outputs (0major+78809minor)pagefaults 0swaps

Looking at this example we can notice:
-User time is close to the system time
-CPU is used 99%
-There’s no I/O
-No page faults
-18753424 is the total data area used (actually this is buggy, should 1/4)
-System time + CPU time = Elapsed time

Time

time ./a.out

9.29user 6.19system 0:15.52elapsed 99%CPU (0avgtext+0avgdata 18753424maxresident)k
0inputs+0outputs (0major+78809minor)pagefaults 0swaps

We rerun the same code, but reducing the number of alloc/dealloc operations (that
require the execution of syscalls)

time ./a.out

2.28user 0.38system 0:02.67elapsed 99%CPU (0avgtext+0avgdata 9378352maxresident)k
0inputs+0outputs (0major+3153minor)pagefaults 0swaps

Time

If our application is multi-thread (i.e. parallel), we would expect that the CPU time
will be a multiple of the elapsed time.

time ./a.out

12973.38user 1915.82system 20:55.80elapsed 1185%CPU (0avgtext+0avgdata
2597648maxresident)k
19608inputs+10649880outputs (147major+223489935minor)pagefaults 0swaps

Top

top provides a dynamic
monitoring of every
process running on a
given machine (or
node);

gprof

gprof is an open source profiler provided by the GNU
toolchain

The analysis provided by gprof is more deep with respect
to the time command:

- it is at the function/subroutine grain level

- it has a very low “impact” on the real performances

- it provides information about the graph of
dependencies inside our code

gprof

gprof makes use of both “sampling” and
“instrumentation”

sampling = it checks in fixed intervals the time
execution and advancement of the code

instrumentation = it adds instructions to the
original code, in order to track the execution
of such parts of code

gprof

To use gprof, you need to compile the program
with the –pg flag

Then you run your code normally and at the end
you check the measures with

gcc mycode.c –pg –o myexe
./myexe

gprof myexe

gprof

If the execution ends without problem a
gmon.out file is generated (and eventually
overwritten).

Flat profile

gprof can produce a flat
profile. Let’s see a simple
example starting from a
code:

We would expect that the
function b is 4 times more
long than function a

#include <stdio.h>
int a(void) {
int i=0,g=0;
while(i++<100000){

g+=i;
} return g;

}
int b(void) {
int i=0,g=0;
while(i++<400000){

g+=i;
}return g;

}
int main(int argc, char** argv){
int iterations;
if (argc != 2){

printf("Usage %s <No of
Iterations>\n", argv[0]);
exit(-1);
}
else
iterations = atoi(argv[1]);
printf("No of iterations =

%d\n", iterations);
while(iterations--){

a();
b();

}
}

Flat profile

/usr/bin/time ./Main\ example.exe 10000
No of iterations = 10000

3.22user 0.00system 0:03.23elapsed 99%CPU (0avgtext+0avgdata 1760maxresident)k
0inputs+0outputs (0major+131minor)pagefaults 0swaps
gcc -O Main\ example.c -o Main\ example_gprof.exe -pg
[lanucara@louis ~]$ /usr/bin/time ./Main\ example_gprof.exe 10000
No of iterations = 10000

3.33user 0.00system 0:03.34elapsed 99%CPU (0avgtext+0avgdata 2064maxresident)k
0inputs+8outputs (0major+150minor)pagefaults 0swaps
gprof ./Main\ example_gprof.exe > Main\ example.gprof
Flat profile:
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls us/call us/call name
81.43 2.73 2.73 10000 272.78 272.78 b
19.60 3.38 0.66 10000 65.67 65.67 a

Flat profile

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
81.43 2.73 2.73 10000 272.78 272.78 b
19.60 3.38 0.66 10000 65.67 65.67 a

- time in %
- cumulative time spent by function and

ancestors (in sec)
- time spent by the function (in sec)
- number of function calls
- average time for every function call (us)
- average time cumulative per function

call and children functions
- function name

Flat profile

We want to introduce a new function:

and we put it inside b()

int cinsideb(int d) {
{
}
return d;

}

int b(void) {
int i=0,g=0;
while(i++<400000){

g+=cinsideb(i);
}return g;

}

Flat profile

Let’s check the new flat profile

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
44.72 3.28 3.28 10000 327.78 604.55 b
37.76 6.05 2.77 4000000000 0.00 0.00 cinsideb
18.53 7.40 1.36 10000 135.86 135.86 a

Tree profile

In addition to the flat profile, the tree profile
provides information about the relation
caller/callee.

Tree profile

gprof: limitations

- gprof sometimes doesn’t provide data about library
functions (cfr. MKL, etc.)

- gprof has a quite coarse granularity: it doesn’t dig into
a function (that in some cases can be also very large..)

- sometimes the overhead due to gprof can be very
relevant (always compare execution times with and
without gprof)

- measured times comparable to the “sampling time”
are not reliable

Temporize

Sometimes, it can be necessary to manually insert code in our
application in order to measure what is the time really
spent by a given function.

There are a lot of ad-hoc functions or language primitives. For
example:

- etime(), dtime() for Fortran77
- cputime(), system_clock(), date_and_time() for Fortran90
- clock() for C/C++
- etc

Temporize

Temporize

PAPI

PAPI = Performance Application Programming Interface is
a set of function (APIs) designed in order to profile a
code at a very fine level.

One of the aim of the PAPI is the portability, i.e. the
possibilty of being ran on most actual architectures
(x86, GPUs, Intel MIC, etc.)

PAPI can access the hardware counters: special-purpose
registers that provide informations about the CPU
behavior

PAPI

PAPI provides 2 levels of interface:

- High level interface: a library that provides informations about
a given set of events (PAPI Preset Events)

- Low level interface: it provides information more specific about
the hardware. It is much more complex and difficult to use.

PAPI events

Most interesting events (among the PAPI Preset Events) are:
- PAPI_TOT_CYC: total number of CPU cycles
- PAPI_TOT_INS: number of completed instructions
- PAPI_FP_INS: number of floating point instructions
- PAPI_L1_DCA: accesses in L1 cache
- PAPI_L1_DCM: cache misses in L1
- PAPI_SR_INS: number of store instructions
- PAPI_TLB_DM: TLB misses
- PAPI_BR_MSP: conditional branches mispredicted

PAPI example

PAPI high level functions

PAPI also provides a set of useful high level functions:
- PAPI_num_counters : number of available hw counters
- PAPI_flips : floating point instruction rate
- PAPI_flops : floating point operation rate
- PAPI_ipc : instructions per cycle
- PAPI_read_counters : read and reset the counters
- PAPI_start_counters : start counting hw events
- PAPI_stop_counters : stop counters and return the count

SCALASCA

gprof and PAPI provide information about the serial
performance of a given application.

We can use also gprof in order to profile a parallel
application, but the results are often very difficult to
understand.

SCALASCA is a tool developed by F. Wolf and coworkers in the
JSC and it is a good tool to check the scalability and
efficiency of parallel software, also when going on a large
scale.

Open source and available at www.scalasca.org

SCALASCA

It provides 2 different analysis:

- “Summary” provides a fine level profiling but
in an “aggregate” way

- “Tracing” is a profiling more local to a process.
It provides much more information but it can
be expensive in terms of storage

SCALASCA

Profiling with SCALASCA needs 3 steps:

1) compilation and instrumentation of the code
scalasca –instrument mpiifort –openmp mycode.f90 –o myapp.x

1) execution
scalasca –analyze mpirun –np 1024 ./myapp.x

2) analysis
scalasca –examine epik_XXXXX

SCALASCA

Profiling with SCALASCA needs 3 steps:

1) compilation and instrumentation of the code
skin –instrument mpiifort –openmp mycode.f90 –o myapp.x

1) execution
scan –analyze mpirun –np 1024 ./myapp.x

2) analysis
square –examine epik_XXXXX

SCALASCA - Cube

SCALASCA - Cube

SCALASCA - Cube

SCALASCA - Cube

SCALASCA - Cube

SCALASCA - Cube
Summary mode Tracing mode

Conclusions

- Profiling is a necessary preliminar steps before
the optimization

- Optimize the serial code before
- One single tool is not enough
- One single data set is not enough
- Consider the overhead induced by the profiler
- Use tools made available from your HPC centre

