
Tools and techniques for
optimization and debugging

Fabio Affinito
October 2015

Fundamentals of computer architecture

Serial architectures

Introducing the CPU

It’s a complex, modular object, made
of different units...

We want to understand how it works.

Before consider all the features, we
will start with a very important
abstraction.

Von Neumann architecture

Elements are:

- I/O devices
- a Central Processing Unit
- a memory

Things are more complicated

CPU is organized in different units, each of
them is specialized in a specific kind of
operation (depending on the type of
operand)

Memory is hierarchically structured, from
main memory to registers.

Operations can be performed
simultaneously and not in a prefixed order

What’s inside a core?

Putting things together

a single
node/mother board

one or more sockets

multi cores

each core has multiple functional units

eventually each functional unit can work with vector registers

What about the performance?

The performance of a computer depends on several
factors:
- clock frequency
- access bandwith to the memory
- number of cores
- efficiency of functional units
- vector registers (SIMD)
- quality of the software

Clock frequency

The clock frequency defines the most
elementary step for the CPU. Any given
operation performed by the CPU can require
one or more than one clock cycle.

In order to not waste performance, it is essential
that the CPU has always work to do. This can
be enforced using a proper pipelining.

Pipelining

An instruction pipeline is a technique used in the design of computers to increase their
instruction throughput (the number of instructions that can be executed in a unit of
time). The basic instruction cycle is broken up into a series called a pipeline. Rather
than processing each instruction sequentially (one at a time, finishing one instruction
before starting the next), each instruction is split up into a sequence of steps so
different steps can be executed concurrently (at the same time) and in parallel (by
different circuitry).

(from Wikipedia)

Pipelining

If the flux of instructions to the CPU
is high enough, the pipelining
ensures that the processor is always
busy and that there are not stall
cycles.

In-order vs out-of-order

To increase the efficiency of the
processor, sometimes it could be useful to
interchange the order of the execution of the
instructions (preserving the semantics). Processor
that are able to do so, are called “out-of-order”
(OOO) processors.

If this feature is not present, the processor is called
“in-order”

Memory hierarchies

Typically, a large memory is also very slow. It is totally
inefficient to operate directly to the main memory.

100 to 1000 cycles can be necessary to move data from
the memory to the CPU

Caches are smaller portions of memory that are
accessible in very fast way.

Registers are very very small memories, but they are
directly accessible by the functional units.

Memory hierarchies

- larger = slower

- closer = faster

registers

L1 cache

L2 cache

L3 (?) cache

main memory (RAM)

non volatile memory
(disk, tapes, etc)

LARGER

FASTER

Memory performance

Two of the crucial factor affecting memory
performance are:

- Latency: how long does it take to retrieve a
data from the memory?

- Bandwith: how many data can be moved
from/to the memory? what is the data rate
that can be sustained?

Memory subsystem in detail

Registers: Highest bandwidth, lowest latency
memory that a modern processor can access.

They are built inside the CPU
They can contain a very small amount of data.
Specialized according to the kind of data

(integers, floats, logical)
Functional units can operate directly (and

exclusively) on data contained on registers

Memory subsystem in detail

x86 registers

A bit of assembly

Assembly code, describes the data movement and data operations
acting on the registers.

For example:

mov eax, [ebx] ; Move the 4 bytes in memory at the address contained in EBX into EAX

mov WORD PTR [ebx], 2 ; Move the 16-bit integer representation of 2 into the 2 bytes starting at the address in EBX

32bit vs 64bit

Registers contain also the addresses in which
data are stored in memory.

Historically first registers were 32-bit wide. This
meant that the largest address contained in a
register was 232-1= 4096MB

Hence, 32-bits architectures cannot address a
memory larger than 4GB

Data caches

Data caches are necessary to “fill the gap” between
the main memory (large and slow) and the
registers (small and fast).

Different levels of caches do exist.

L1 is the closest to the registers, L2 (and eventually
L3) are larger than L1 but slower.

L2 is typically 10 to 100 times larger than L1

Data caches

Caches are organized in lines.

A cache line is the smallest unit of data that can
be moved btw the main memory and the
cache (or btw different levels of cache).

A cache line is made of N (N=8, 16) sequentially
stored words

Multi-core systems

In the begin we had the single core – single CPU. Performance
depended mostly on the clock frequency. The increase of
the clock frequency became soon not sustainable (power
consumptions scales with the square of the clock
frequency).

Number of computing units began to increase (power
consumption scales linearly). At the same time, the density
also increased. This was known as multi-core era.

Then number of cores grew again (from 2-4 to 8-16 per
chip, and even more for GPUs). This is knows as many-core
era.

Multi-core and caches

Node-board contains more than one socket, each of them
containing in turn more than one core (multi-core
nodes).

A multicore, usually, shares the main memory and the L2
caches.

The L1 cache is usually not shared among different cores

Cache coherency problem: conflicting access to
duplicated cache line

Examples

Typical values of latency and bandwith (AMD Opteron):

Examples

Cache access

Data can be stored in
- main memory
- L2/L1 caches

and this is unknown “a priori” to the programmer.
Data is fetched into the registers from the highest

level where it can be found. If the data is not
found in a given level, it will be searched in the
lowest one.

Cache access

Access is transparent to the programmer...

... adopting a set of measures, you can make it
better.

Cache access

- if you access two data that are stored far
apart, then it is likely that those data are not
kept together into the cache

- if you use an element twice, don’t wait too long
between the two events

- if you loop over data, try to take chunks of less
than cache size

Data locality

When you write a code, try to keep the same variable
as long as possible in the registers or in the cache.
For example, y[i]:

for (i=0; i<m; i++){
for (j=0; j<n; j++){

y[i]=y[i]+a[i][j]*x[j];
}

}

Hits, misses, thrashing

- Cache hit: the data needed in the registers is found in
the cache

- Cache miss: the data is not found in the cache, so it
should be searched in the next level cache or in the
memory

- Cache trashing: two needed data elements are not
contained in the same cache line. In order to load the
second one, the cache must be emptied and reloaded.
This affects badly the performances.

Cache mapping

There is a need for a correspondance (or mapping)
between the cache and next closer level of
memory.

There are 3 types of mapping:

- direct

- set associative

- fully associative

Direct mapping

A given block from the main memory can be placed
only in a given place in the cache.

Direct mapping

Double a[8192], b[8192];
for (i=0; i<n; i++){

a[i]=b[i];
}

-Example: cache size 64k = 216 bytes = 8192 words
- a[0] and b[0] are exactly one whole cache apart. When
use direct mapping, they are mapped to the same cache
location
- Cache line is 4 words, so:
- b[0], b[1], b[2], b[3] are loaded
- when a[0], a[1], a[2], a[3] are loaded the first 4 values of
b are thrashed
- but then b[1] is requested, so b[0], b[1], b[2], b[3] are
loaded again
- a[1] is requested so a[0], a[1], a[2], a[3] are loaded and
b[0], b[1], b[2], b[3] are thrased....

Fully associative

A block from main memory can be mapped to any location in the
cache. It requires a lookup table.

Fully associative

It looks as the ideal solution where any memory
location can be associated with any cache line but it
has a cost proihibitive.

Set associative
It is a compromise between full associative and direct mapped

caches. In a n-way set associative cache, a block from the
main memory can be placed in n (where n is at least 2)
locations of the cache.

Set associative

- Direct-mapped caches are 1-way set
associative caches

- In a k-way set associative cache, each memory
region can be associated with k cache lines

- Fully associative is k-way with k equal to the
number of cache lines

Intel Woodcrest caches

- L1
- 32 KB
- 8-way set associative
- 64 byte line size

- L2
- 4 MB
- 8-way set associative
- 64 byte line size

TLB

- Translation Look-aside Buffer
- Maps between logical space and actual memory addresses
- Memory is organized in ‘small pages’ of few KB in size
- Memory requests go through the TLB, normally very fast
- Pages that are not tracked through the TLB can be found in

the ‘page table’: much slower
- Jumping between more pages than those contained in the

TLB has a strong performance penalty
- Again “data locality” is a must!

Prefetch

- Hardware can be able to detect if you
regularly load the same stream of data:

- “prefetch stream”

- Prefetching can be also suggested by software
instructions

Vector registers
Vector registers are registers able to contain more than a single

data. Then, the processing unit can perform a single
instruction on multiple data (SIMD). They can be exploited
only with a set of assembly instructions (SSE, AVX, AVX2..)

Vectorization

Usually, loops can benefit by SIMD operations, but only
under some condition (no loop
dependencies, numerable loops, etc.) that are checked
by the compiler. If such conditions are satisfied, the
compiler can generate SIMD assembly code
(containing, for example, AVX instructions).

Vectorization is a factor that strongly contribute to
enhance the peak performance of a processor.

Peak performance vs actual performance

The peak performance is given by:
- clock
- number of processing units
- memory bandwith
- vector registers

But only if all this features are exploited at the best. Actual
algorithms can only exploit a part of those possibilities (for
example for cache misses or CPU stalls). This is what gives
the actual performance.

Data reuse

One of the factors affecting the performance is the data
transfer rate:

High performance if data items are used multiple times

Example: vector addition x(i)=x(i)+y(i) needs 1 operation
and 3 memory accesses

Example: inner product s = s + x(i)*y(i) needs 2 operations
and 2 memory accesses (keeping s in the registers)

Data reuse

Matrix-matrix multiplication: 2N3 operations, 2N2 data

for (i=0; i<n; i++){
for (j=0; j<n; j++){

s=0;
for (k=0; k<n; k++){
s=s+a[i][k]*b[k][j];

}
c[i][j]=s;

}
}

Can we improve this
algorithm?

Data reuse

- Matrix-matrix multiplication: 2N3 operations, 2N2 data

- Since the number of of data is less than the number of
operations, in principle, data should be reused, overcoming
the problems due to bandwith/cpu speed

- But typically the naive implemenation is totally inefficient

- This is a good reason to use libraries when possible
(MKL, Lapack, etc)

Reuse analysis

Matrix-vector multiplication
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {

y[i]=y[i]+a[i][j]*x[j]
}

}

y(i) behaves as a scalar, but the y
array is loaded twice and fills a cache
line!

Reuse analysis

Matrix-vector multiplication
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {

y[i]=y[i]+a[i][j]*x[j]
}

}

y(i) behaves as a scalar, but the y
array is loaded twice and fills a cache
line!

for (i=0; i<m; i++) {
s=0;
for (j=0; j<n; j++) {

s = s+ a[i][j]*x[j];
}
y[i] = s;

}

now s is a scalar and can be kept in
the registers

Reuse analysis

Matrix-vector multiplication
for (j=0; j<n; j++) {
for (i=0; i<m; i++) {

y[i]=y[i]+a[i][j]*x[j]
}

}

x[j] is reused but there are a lot more
of multiple load/store of y[i]

Reuse analysis

Matrix-vector multiplication
for (j=0; j<n; j++) {
for (i=0; i<m; i++) {

y[i]=y[i]+a[i][j]*x[j]
}

}

x[j] is reused but there are a lot more
of multiple load/store of y[i]

for (j=0; j<n; j++) {
t=x[j]
for (i=0; i<m; i++) {

y[i]=y[i]+a[i][j]*t
}

}

different behavior if matrix is stored
by rows (row-major) or by columns
(column-major): C and Fortran differ!

Reuse analysis

Matrix-vector multiplication
for (i=0; i<m; i+=2) {
s1=0.; s2=0.;
for (j=0; j<n; j++) {

s1 = s1 + a[i][j]*x[j];
s2 = s2 + a[i+1][j]*x[j];

}
y[i] = s1; y[i+1] = s2;

}

Loop tiling:
•x is loaded m/2 times rather than m
•Register usage for y as before
•Loop overhead half less
•Pipelined operations exposed
•Prefetch streaming

Data locality

High performance computing requires to take
care of data locality:

- Temporal locality: group references to the
same item close together

- Spatial locality: group references to nearby
memory items close together

Temporal locality

Use an item, use it again before it is flushed
away from registers or from the cache:

- Use item

- Use a small amount of other data

- Use item again

Temporal locality

for (loop=0; loop<10; loop++){
for (i=0; i<N; i++){

... = .. x[i]...
}

}

Long time between different
uses of x...

Temporal locality

for (loop=0; loop<10; loop++){
for (i=0; i<N; i++){

... = .. x[i]...
}

}

Long time between different
uses of x...

for (i=0; i<N; i++){
for (loop=0; loop<10; loop++){

... = .. x[i]...
}

}

Loop interchange: here x is
reused.

Spatial locality

- Use items close together

- Cache lines: try to use all the elements
contained in a cache line before this is
thrashed

- TLB: don’t make jumps larger than 512 words
too many times

Cache size

for (i=0; i<NRUNS; i++){
for (j=0; j<size; j++){

array[j]=2.3*array[j]+1.2;
}

}

L1

L2

Credits: VictorEijkhout

Cache blocking

for (i=0; i<NRUNS; i++){
blockstart = 0;
for (b=0; b<size/l1size; b++){

for (j=0; j<l1size; j++){
array[blockstart+j]=2.3*array[blockstart+j]+1.2;

}
}

}

The cache-blocking techniques permit to arrange
data in order to properly fit the cache size

Cache line utilization

for (i=0; n=0; i<L1WORDS; i++; n+=stride)
array[n]= 2.3*array[n]+1.2;

The amount of data doesn’t change
but the stride access does.

Increasing the stride: more lines of
cache are loaded, more slow
execution

Credits: VictorEijkhout

Fundamentals of computer architecture

Parallel architectures

Basic concepts

Use multiple computing units in order to
accelerate the computation or to extend
domain of a problem.

for (i=0; i<N; i++)
a[i]=b[i]+c[i]

Ideally, each processing unit can work
on one (or more) array element

Basic concepts

Basic concepts

- Spread operations over many processors

- If n operations take time t on 1 processor,

- Does it always become t/p on p processors?

s = sum (x[i], i=0,n-1)

Basic concepts

Basic concepts

- Spread operations over many processors

- If n operations take time t on 1 processor,

- Does it always become t/p on p processors?

s = sum (x[i], i=0,n-1)
N operations can be done with N/2
processors, in total time log2N

Can we do faster?

Some theory...

- Best case: P processes give Tp=T1/P
- Speedup is defined as SP=T1/Tp < P
- Superlinear speedup is not possible, in theory, but

sometimes happens in practice
- Perfect speedup can be reached in “embarassingly parallel

applications” where processes are independent
- Less than optimal can be due to overhead, sequential

parts, interdependencies...
- Efficiency is defined as Ep=Sp/P

Amdahl’s Law

Some parts of the code can not be parallel, so they
ultimately become a bottleneck

Amdahl’s law states that the serial part of a code
pose a constraint on the maximum parallel
efficiency of the code.

For instance, if 5% of your application is serial, you
cannot get a speedup over 20. No matter how
many processors you use.

Flynn taxonomy

Flynn‘s(1966) taxonomy is a first way to classify parallel computers into one of
four types:

– (SISD) Single instruction, single data
- Your desktop (if it is at least 5 years old, maybe…)

– (SIMD) Single instruction, multiple data:
- all the machines based on vector registers
- GPUs

– (MISD) Multiple instruction, single data
- never covered

– (MIMD) Multiple instruction, multiple data
- Nearly all of today’s parallel machines

Memory models

Top500 list is dominated by clusters and MPPs:
so the most successful model was the MIMD

A much more useful way to classify is according
to memory models:

- shared memory

- distributed memory

Memory models

- Shared memory: all the processors share the
same memory address space
- OpenMP: directive based programming

- PGAS languages (UPC, Titanium, X10...)

- Distributed memory: every processors has a
private memory address space
- MPI: Message Passing Interface

Memory models

Shared memory: UMA and NUMA
- UMA: Uniform Memory Access. Each processor has uniform

access time to the memory (also known as SMP)

- NUMA: Non-Uniform Memory Access. Time for memory
access depends on location of data.

Interconnects

What is the actual shape of an interconnection
network? Mesh? Ring? Something more
elaborate?

Topologies

- Completely connected
topology: each processor has
direct access to every other
processor

- Star connected topology:
middle processor is the
central processor. Every
other processor is connected
to it.

Topologies

Linear array

Ring

Mesh (2D array)

Topologies

Torus (2D ring..)

Hubs and crossbars

- Hubs/buses: every processor shares the
communication link

- Crossbar switches: every processor connects to the
switch which routes the communications to their
destinations

Fat trees

- Multiple switches
- Each level has the same

number of links in as out
- Increasing the number of

links at each level
- Gives full bandwith

between the links

- Added latency the higher
you go

Practical issues

- Latency: how long does it take to start sending
a “message”? (ms or us)

- Bandwith: what data rate can be sustained
once the message is started? (MB/s or GB/s)
- Both point-to-point and aggregate bandwith are

quantities of interest

- Multiple wires, multiple latencies, same bw

Summary

- Every computer is a parallel computer now
- Good serial computing skills are central prerequisite to good

parallel computing
- Clusters and MPPs are at large similar to desktops, laptops, etc.
- Focus on:

- (multiple?) Processing units
- Memory hierarchies (registers, caches, main memory)
- Internal interconnect

- Good hardware is wasted without good programming practise

