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Hadoop 

Apache Hadoop is an open-source software framework 

written in Java for distributed storage and distributed 

processing of very large data sets on computer clusters 

built from commodity hardware. All the modules in Hadoop 

are designed with a fundamental assumption that hardware 

failures (of individual machines, or racks of machines) are 

commonplace and thus should be automatically handled in 

software by the framework. 

The core of Apache Hadoop consists of a storage part 

(Hadoop Distributed File System (HDFS)) and a processing 

part (MapReduce). 

 



Hadoop 

Hadoop splits files into large blocks and distributes them 

amongst the nodes in the cluster. To process the data, 

Hadoop MapReduce transfers packaged code for nodes to 

process in parallel, based on the data each node needs to 

process. This approach takes advantage of data locality 

(nodes manipulating the data that they have on hand) to 

allow the data to be processed faster and more efficiently 

than it would be in a more conventional supercomputer 

architecture that relies on a parallel file system where 

computation and data are connected via high-speed 

networking. 



Hadoop Core Components 

• HDFS –Hadoop Distributed File System(Storage) 
– Distributed across “nodes” 

– Natively redundant 

– Name Node tracks locations. 

• MapReduce (Processing)  
– Splits a task across processors 

– “near” the data & assembles results 

– Self-Healing, High Bandwidth 

– Clustered storage 

– JobTracker manages the TaskTrackers 

 



Hadoop Core Components 



HDFS Architecture 

• NameNode 
– master of the system 

– maintains and manages the blocks which are present on the DataNodes 

• DataNodes 
– slaves which are deployed on each machine and provide the actual 

storage 

– responsible for serving read and write requests for the clients 

 



NameNode Metadata 
• Metadata in Memory 

– The entire Metadata is in main memory 

– No demand paging of FS meta-data 

• Types of Metadata 
– List of files 

– List of Blocks for each file 

– List of DataNode for each block 

– File attributes, e.g. access time, replication factor 

• A Transaction Log 
– Records file creations, file deletions etc. 

• Secondary NameNode:  
– Not a hot standby for the NameNode 

– Connects to NameNodeevery hour* 

– Housekeeping, backup of NameNode metadata 

– Saved metadata can build a failed NameNode 

 



JobTracker and TaskTracker 

• JobTracker 
– Manages MapReduce jobs, distribute individual tasks (map/reduce) to 

machines running the…  

• TaskTracker  
– Instantiates and monitors individual Map and Reduce tasks 

– When a TaskTracker receives a request to run a task, it instantiates a 

separate JVM for that task 

• Can run multiple tasks at the same time depending on the hardware 

resources 



JobTracker 
• JobTracker takes care of: 

–  task status: (idle, in-progress, completed) 

–  scheduling idle tasks as resources (managed by taskTrackers) become 

available 

– gathering location and size of each intermediate file produced by the Map 

tasks 

– sending this info to the reducer tasks 

•  JobTracker pings taskTrackers periodically to detect 

failures:  
– if a Map failure occurs:  

• Map tasks completed or in-progress are reset to idle 

•  Reduce tasks are notified when the map task is rescheduled on 

another taskTracker  

– if Reduce failure occurs:  

• Only in-progress tasks are reset to idle – JobTracker failure 

•  MapReduce task is aborted and client is notified 



Hadoop MapReduce 
• MapReduce is an high-level programming model and 

implementation for largescale parallel data processing.  

• A MapReduce program consists of two functions (inspired 

by primitives of functional programming language): 
– MAP function:  

•  Input: (input key, value) 

•  Output: bag of (intermediate key, value) 

–  REDUCE function: 

•  Input: (intermediate key, bag of values) 

•  Output: bag of output (values)  

• System executes the program in two steps:  
– the MAP function is applied in parallel to all (input key, value) pairs in the 

input file 

–  the system will group all pairs with the same intermediate key (“shuffle”), 

and passes the bag of values to the REDUCE function 



Word count example 



Word count example 



Importing data in Hadoop 

Copy Commands 
•put:Copy file(s) from local file system to destination file system. It can 

also read from “stdin” and writes to destination file system. 

•hadoop dfs–put iris.txt hdfs://<target Namenode> 

 

•copyFromLocal: Similar to “put” command, except that the source is 

restricted to a local file reference. 

•hadoop dfs–copyFromLocal iris.txt hdfs://<target Namenode> 

 

•distcp: Distributed Copy to move data between clusters, used for 

backup and recovery. 

•hadoop distcphdfs://<source NN> hdfs://<target NN> 

•   



Sqoop 

•Apache Sqoop(TM) is a tool designed for efficiently transferring bulk 

data between Apache Hadoop and structured data stores such as 

relational databases. 

 

• Imports individual tables or entire databases to HDFS. 

• Generates Java classes to allow you to interact with your imported 

data. 

• Provides the ability to import from SQL databases straight into your 

Hive data warehouse 



Apache Spark 

• Apache Spark is a fast and general engine for large-scale 

data processing. 

• Apache Spark is a multi-purpose platform for use cases 

that span investigative, as well as operational analytics. 

• Apache Spark is an execution engine that broadens the 

type of computing workloads Hadoop can handle, while 

also tuning the performance of the big data framework. 

• Apache Spark has numerous advantages over Hadoop's 

MapReduce execution engine, in both the speed with 

which it carries out batch processing jobs and the wider 

range of computing workloads it can handle. 

 

 



Apache Spark Features 
• Spark has a number of features that make it a compelling cross over 

platform for investigative as well as operational analytics: 

• Spark comes with a Machine-Learning Library, MLlib 

• Being Scala-based, Spark embeds in any JVM-based operational system, 

but can also be used interactively in a way that will feel familiar to R and 

Python users. 

• For Java programmers, Scala still presents a learning curve. But at least, 

any Java library can be used from within Scala. 

• Spark’s RDD (Resilient Distributed Dataset) abstraction resembles 

Crunch’s PCollection, which has proved a useful abstraction in Hadoop 

that will already be familiar to Crunch developers.(Crunch can even be 

used on top of Spark.) 

• Spark imitates Scala’s collections API and functional style, which is a boon 

to Java and Scala developers,but also some what familiar to developers 

coming from Python. Scala is also a compelling choice for statistical 

computing. 



Spark vs. MapReduce 



Apache Spark Architecture 

• Spark solves similar problems as Hadoop MapReduce 

does but with a fast in memory approach and a clean 

functional style API. With its ability to integrate with 

Hadoop and inbuilt tools for interactive query 

analysis(Shark), large-scale graph processing and 

analysis(Bagel), and real-time analysis(Spark 

Streaming), it can be interactively used to quickly 

process and query big datasets. 

• Fast Data Processing with Spark covers how to write 

distributed mapreduce style programs with Spark. 



MapReduce issues 
• MapReduce let users write parallel computations using a 

set of high-level operators without having to worry about: 

– distribution – fault tolerance • abstractions for 

accessing a cluster’s computational resources  

• • but lacks abstractions for leveraging distributed 

memory 

•  between two MR jobs writes results to an external stable 

storage system, e.g., HDFS ! Inefficient for an important 

class of emerging applications:  

• • iterative algorithms – those that reuse intermediate 

results across multiple computations – e.g. Machine 

learning and graph algorithms • interactive data mining – 

where a user runs multiple ad-hoc queries on the same 

subset of the data 



Improving over MapReduce 

• Not relying on a rigid map-then-reduce format, its 

engine can execute a more general directed acyclic 

graph (DAG) of operators. Spark can pass them directly 

to the next step in the pipeline in situations where 

MapReduce must write out intermediate results to the 

distributed filesystem. 

• It extends this capability with a rich set of 

transformations that enable users to express 

computation more naturally. It has a strong developer 

focus and streamlined API that can represent complex 

pipelines in a few lines of code. 



Improving over MapReduce 

• Spark extends its predecessors with in-memory 

processing. Its Resilient Distributed Dataset (RDD) 

abstraction enables developers to materialize any point 

in a processing pipeline into memory across the cluster.  

• Hadoop workloads are typically centered around the 

concept of doing batch jobs on large amounts of data, 

and typically it’s not used for interactive querying. Spark, 

in contrast, has the ability to chainsaw through large 

amounts of data, store pared-down views of the data in 

structures called Resilient Distributed Datasets (RDDs), 

and do interactive queries with sub-second response 

times. 

 



MLlib 

• MLlib is a Spark subproject providing machine learning 

primitives: 
– initial contribution from AMPLab, UC Berkeley 

– shipped with Spark since version 0.8 

• MLlib’s goal is to make practical machine learning (ML) 

scalable and easy. Besides new algorithms and 

performance improvements that we have seen in each 

release, a great deal of time and effort has been spent on 

making MLlib easy.  



Why MLlib 

• It is built on Apache Spark, a fast and general engine for 

large-scale data processing.  

• Run programs up to 100x faster than Hadoop 

MapReduce in memory, or 10x faster on disk. 

• MLlib provides APIs in three languages: Python, Java, 

and Scala, along with user guide and example code, to 

ease the learning curve for users coming from different 

backgrounds 



MLlib Algorithms 

• classification: logistic regression, naive Bayes, 

decision tree, ensemble of trees (random forests) 

• regression: generalized linear regression (GLM)  

• collaborative filtering: alternating least squares 

(ALS) 

• clustering: k-means, gaussian mixture, power 

iteration clustering, latent Dirichelt allocation 

• decomposition: singular value decomposition 

(SVD), principal component analysis, singular 

value decompostion 

• … 



Examples with MLlib 

• Clustering 
– KDD 99 cup 

• Decision tree 
– covtype 



KDD Cup 99 data 

This is the data set used for The Third International 

Knowledge Discovery and Data Mining Tools Competition, 

which was held in conjunction with KDD-99 The Fifth 

International Conference on Knowledge Discovery and 

Data Mining. The competition task was to build a network 

intrusion detector, a predictive model capable of 

distinguishing between ``bad'' connections, called 

intrusions or attacks, and ``good'' normal connections. This 

database contains a standard set of data to be audited, 

which includes a wide variety of intrusions simulated in a 

military network environment. 



Covtype data 

• The data set used in this chapter is the well-known Covtype data set, 

available online as a compressed CSV-format data file, covtype.data.gz, 

and accompanying info file, covtype.info. 

• The data set records the types of forest covering parcels of land in 

Colorado, USA. Each example contains several features describing each 

parcel of land, like its elevation, slope, distance to water, shade, and soil 

type, along with the known forest type covering the land. The forest cover 

type is to be predicted from the rest of the features, of which there are 54 in 

total. 

• This data set has been used in research, and even a Kaggle competition. It 

is an interesting data set to explore in this chapter because it contains both 

categorical and numeric features. There are 581,012 examples in the data 

set, which does not exactly qualify as big data, but is large enough to be 

manageable as an example and still highlight some issues of scale. 

 

http://bit.ly/1KiJRfg
https://www.kaggle.com/c/forest-cover-type-prediction

