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What is R 
•  R is “GNU S” — A language and environment for data 
manipulation, calculation and graphical display 

– similar to the award-winning S system, which was developed at Bell 
Laboratories by John Chambers et al. 

– a suite of operators for calculations on arrays (in particular matrices) 
– a large, coherent, integrated collection of intermediate tools for interactive 

data analysis 
– a collection of graphical facilities for data analysis and to display either 

directly at the computer or on hardcopy 
– a well-developed programming language which includes conditionals, 

loops, user defined recursive functions and input and output facilities 

•  The core of R is an interpreted computer language 
– It allows branching and looping as well as modular programming using 

functions 
– Most of the user-visible functions in R are written in R, calling upon a 

smaller set of internal primitives 
– It is possible for the user to interface to procedures written in C, C++ or 

FORTRAN languages for efficiency, and also to write additional primitives 



R Console and evaluation 
•  In R, the “<-” symbol is the assignment operator (newest 

R versions also support “=“): 
      > x <- 5 

 The R grammar determines whether an expression is 
complete or not: 
 > x <-     # Incomplete expression 

•  The “#” character indicates a comment. 
•  When a complete expression is typed in the prompt, it is 

evaluated and the result of the evaluated expression is 
then returned. The result may be auto-printed 

    > print(x) 
    > x 



 
Objects 

 •  R has six basic or “atomic” classes of objects 
–  character 
–  numeric (real numbers) 
–  integer 
–  complex 
–  factor 
–  logical (True/False) 

•  The most basic object is a vector 
–  A vector can only contain objects of the same class 
–  BUT: The one exception is a list, which is represented as a vector but 

can contain objects of different classes (indeed, that’s usually why we 
use them) 

•  Empty vectors can be created with the vector() function. 



 
Attributes 

 •  R objects can have attributes 
–  names, rownames, colnames, dimnames 
–  dimensions (matrices) 
–  class 
–  length (vectors and lists) 
–  other user-defined attributes/metadata 

•  Attributes of an object can be accessed using the 
attributes() function. 



Vectors 
•  The c() function can be used to create vectors of objects. 

 > x <- c(0.5, 0.6) ## numeric 
 > x <- c(TRUE, FALSE) ## logical 
 > x <- c("a", "b", "c") ## character 
 > x <- 9:29 ## integer 

•  Using the vector() function 
 > x <- vector("numeric", length = 10) 
[1] 0 1 2 3 4 5 6 



Coercion 

•  When different objects are mixed in a vector, coercion 
occurs so that every element in the vector is of the same 
class. 

•  Objects can be explicitly coerced from one class to 
another using the as.*() functions, if available. 
 > x <- 0:6 
 > class(x) 
 [1] "integer" 
 > as.numeric(x) 

•  Nonsensical coercion results in NAs. 



Lists 
•  Lists are a special type of vector that can contain 

elements of different classes. Lists are a very important 
data type in R and should be examined carefully. 
> x <- list(1, "a", TRUE, 1 + 4i) 



Matrices 
•  Matrices are vectors with a dimension attribute. The 

dimension attribute is itself an integer vector of length 2 
(nrow, ncol) 
> m <- matrix(nrow = 2, ncol = 3) 

•  Matrices are constructed column-wise, so entries can be 
thought of starting in the “upper left” corner and running 
down the columns. 
 > m <- matrix(1:6, nrow = 2, ncol = 3) 

•  Matrices can be created by column-binding or row-
binding with cbind() and rbind(). 
 > x <- 1:3 
 > y <- 10:12 
 > cbind(x, y) 



Factors 
•  Factors are used to represent categorical data. Factors 

can be unordered or ordered 
•  Using factors with labels is better than using integers 

because factors are self-describing 
•  The order of the levels can be set using the levels 

argument to factor(). This can be important in linear 
modelling because the first level is used as the baseline 
level 
 > x <- factor(c("yes", "yes", "no", "yes", "no"), levels = c("yes", "no")) 



Missing values 
•  Missing values are denoted by NA or NaN for undefined 

mathematical operations 
•  is.na() is used to test objects if they are NA 
•  is.nan() is used to test for NaN 
•  NA values have a class also, so there are integer NA, 

character NA, etc. 
•  A NaN value is also NA but the converse is not true 

 > x <- c(1, 2, NA, 10, 3) 
 > is.na(x) 
 [1] FALSE FALSE TRUE FALSE FALSE 



Data Frames 
•  Used to store tabular data 
•  Can be considered as a special type of list where every 

element of the list has to have the same length 
•  Each element of the list can be thought of as a column 

and the length of each element of the list is the number 
of rows 

•  Unlike matrices, they can store different classes of 
objects in each column 

•  Data frames also have special attributes called names 
and row.names 

•  Data frames are usually created by calling read.table() 
or read.csv() 

•  Can be converted to a matrix by calling data.matrix() 



 
Reading and writing data 

 •  There are a few principal functions reading data into R 
–  read.table(), read.csv(): tabular data 
–  readLines(): lines of a text file 
–  source(): R code files (inverse of dump) 
–  dget(): R code files (inverse of dput) 
–  load(): saved workspaces 
–  unserialize(): single R objects in binary form 

•  There are analogous functions for writing data to files 
–  write.table() 
–  writeLines() 
–  dump() 
–  dput() 
–  save() 
–  serialize() 



 
read.table (1) 

 •  read.table() is one of the most used functions for 
reading data. The most important arguments are: 
–  file: the name of a file, or a connection 
–  header: (logical) indicates if the file has a header line 
–  sep: a string indicating how the columns are separated 
–  colClasses: a character vector indicating the class of each column 
–  nrows: the number of rows in the dataset 
–  comment.char: a character string indicating the comment character 
–  skip: the number of lines to skip from the beginning 
–  stringsAsFactors: should character variables be coded as factors? 
–  quote: the set of quoting characters 



read.table (2) 
•  For small and moderately sized datasets, the function 

may be called without specifying any other argument 
    > data <- read.table(”example.txt") 

•  R will automatically: 
–  skip lines that begin with a # (such setting may be modified) 
–  figure out how many rows the file has 
–  assign a type to each column of the table 

•  read.csv() is identical to read.table, but the default 
separator is a comma. 



Reading larger datasets (1) 
•  With much larger datasets, the following precautions will 

make life easier and prevent R from choking. 
–  Make a rough calculation of the memory required to store the dataset. If 

the dataset is larger than the available RAM, no further stops can be 
executed. 

–  Set comment.char = "" if there are no commented lines in the file 
–  Set quote = “” 

•  Hint: always read the help pages! 
–  Example: ?read.table 
–  Once a R package is loaded, it will be possible to read the help 

page of every function contained in such package 



Reading larger datasets (2) 
•  Know your system 

–  In general, when using R with larger datasets, it’s useful to know a few 
things about the system used. 

–  How much memory is available? 
–  What other applications are in use? 
–  Are there other users logged into the same system? 
–  What operating system? 
–  Is the OS 32 or 64 bit? 

•  Calculating Memory Requirements 
–  Having a data frame with 1,500,000 rows and 120 columns, with 

numeric data. Roughly, how much memory is required to store this data 
frame? 

–   1,500,000 × 120 × 8 bytes/numeric = 1440000000 bytes =  
      = 1440000000 /2^20 bytes/MB = 1,373.29 MB = 1.34 GB 



Subsetting (1) 
 •  Some operators can be used to extract subsets of R 

objects: 
–  [ always returns an object of the same class as the original: it can be 

used to select more than one element  
–  [[ is used to extract elements of a list or a data frame; it can only be 

used to extract a single element and the class of the returned object will 
not necessarily be a list or a data frame 

–  $ is used to extract elements of a list (or data frame) by name 

•  Examples: 
     > x <- c("a", "b", "c", "c", "d", "a") 
     > x[1] 
     [1] "a” 
     > x[2] 
     [1] "b” 
     > x[1:4] 
     [1] "a" "b" "c" "c" 



Subsetting (2) 
•  Subsetting a list: an example 
     > x <- list(foo = 1:4, bar = 0.6) 

 > x[1] 
 $foo 
 [1] 1 2 3 4 
 > x[[1]] 
 [1] 1 2 3 4 
 > x$bar 
 [1] 0.6 
 > x[["bar"]] 
 [1] 0.6 
 > x["bar"] 
 $bar 
 [1] 0.6 



Subsetting (3) 
•  Matrices can be subsetted with [i,j] type indices: 

 > x <- matrix(data=1:6, nrow=2, ncol=3) 
 > x[1, 2] 
 [1] 3 
 > x[2, 1] 
 [1] 2 

•  If the index is missing, the entire row (column) will be 
selected 
> x[1, ] 
[1] 1 3 5 
> x[, 2] 
[1] 3 4 

 



Removing missing values  
•  Missing values (NAs) can be easily removed 

 > x <- c(1, 2, NA, 4, NA, 5) 
 > bad <- is.na(x) 
 > x[!bad] 
 [1] 1 2 4 5 



Grouped expressions 
•  R is an expression language in the sense that its only 

command type is a function or expression which returns 
a result. 

•  Commands may be grouped in braces 
•  {expr 1, . . . , expr m} 
•  The value of the group is the result of the last expression 

in the group evaluated 



if() statement 
•  The language includes a conditional construction: 
      if (expr 1) {expr 2}  
      else {expr 3} 
•  (expr 1) must evaluate to a logical value  
•  A vectorized version of such construct is the ifelse() 

function: this has the form ifelse(condition, yes=a, no=b) 
•  NB: else{} branch is optional 



Repetitive executions (1) 
•  for() loop:   for(name in (expr 1)) {expr 2} 

where: name is the loop variable, expr 1 is a vector 
expression (often a sequence like 1:20), and expr 2 is 
often a grouped expression with its sub-expression. expr 
2 is repeatedly evaluated as name ranges through the 
values in the vector result of expr 1 

 

•  Other looping constructs are the repeat{} statement and 
the while() statement. The break statement can be used 
to terminate any loop, possibly abnormally. This is the 
only way to terminate repeat{} loops. The next statement 
can be used to discontinue one particular cycle and skip 
to the “next”. 



Repetitive executions (2) 
•  for(): 
      > for(i in 1:10) { print(i*i) } 

•  repeat{}: 
     > i<-1 
       > repeat{ print(i*i);  if(i>10) break; i<-i+1 } 

•  while(): 
     >  i<-1 
     >  while(i<10) { print(i*i); i<-i+1 } 

•  Hint: run these codes in your R console and look for 
the differences! 

 

 



The apply() family 
•  Useful when similar tasks need to be performed multiple 

times for all elements of a list or for all rows (columns) 
of an array 

•  May be easier and much faster than for() loops 
•  Such tasks can be easily speeded up 



lapply() 
•  lapply(li, function) 
•  To each element of the list li, the function function is 

applied 
•  The result is a list whose elements are the individual 

function results 
 > li = list("klaus","martin","georg") 
 > lapply(li, toupper) 
 > [[1]] 
 > [1] "KLAUS" 
 > [[2]] 
 > [1] "MARTIN" 
 > [[3]] 
 > [1] "GEORG" 



apply() 
•  apply( arr, margin, fun ) 
•  Apply the function fun along some dimensions of the 

array arr, according to margin (1=rows, 2=columns), and 
return a vector or array of the appropriate size 

> x 
     [,1] [,2] [,3] 
[1,]    5    7    0 
[2,]    7    9    8 
[3,]    4    6    7 
[4,]    6    3    5 
> apply(x, 1, sum) 
[1] 12 24 17 14 
> apply(x, 2, sum) 
[1] 22 25 20  



Using R on PICO 
•  R can be used within HPC environments 

–  PBS Batch jobs: running R using qsub batch instructions 
–  Interactive PBS Batch jobs: interactive qsub 
–  Graphical sessions: R & Rstudio via RCM 

•  Some examples will be given using PICO 
–  One of Cineca’s HPC clusters 
–  Made of 74 nodes of different types 

•  54 Compute nodes 
•  4 Visualization nodes 
•  2 Login nodes 
•  14 other nodes 

–  1080 cores available for computational tasks (Batch jobs only) 
–  http://www.hpc.cineca.it/content/pico-user-guide 



  
Parallel Computing with R 

•  Under some circumstances, a R job can be speeded up 
•  Several ways of parallelization are available 
•  Such methods can be divided in two broad categories: 

–  lapply-based (shared memory and distributed memory) 
–  foreach-based (shared memory and distributed memory) 

•  Parallel jobs with R & MPI-based R packages 
–   parallel, doParallel, foreach, doMC 
–   Rmpi,doMPI,foreach  
–   Rmpi,snow,snowfall  



Parallelization parameters 
•  How many cores? 

–  If Rstudio is launched via RCM, only the cores of the visualization node 
in use can be exploited (up to 20) 

•  How many nodes? 
–  If a qsub (Batch or Interactive) job is submitted, more than a single 

computing node can be exploited 
–  The job will be queued and scheduled as any PBS Batch job 

•  How much memory? 
•  Careful! If too many resources are requested, the 

priority of the process launched will be lowered 

 



Parallelization (qsub jobs) 
•  How to manage parallelization in qsub jobs? 

–  The resources needed can be directly specified within the code: 
•  Number of nodes 
•  Number of processors per node 
•  Memory needed 
•  Maximum job time 

–  The number of cores to exploit must also be specified within the R code 
by using the built-in functions of the R packages mentioned before 



qsub jobs: examples (1) 
•  PBS Interactive job: 
 qsub -A cin_staff  -I -l select=1:ncpus=10:mpiprocs=10:mem=15GB -q parallel       
-- /bin/bash 
 module load autoload profile/advanced 
 module load autoload r 
 module load autoload openmpi 
 R --vanilla < kmeans_distMem_kddcup.R 
 



qsub jobs: examples (2) 
•  PBS Batch job: 
#!/bin/bash 
#PBS -A cin_staff             
#PBS -l walltime=1:00:00 
#PBS -l select=1:ncpus=10:mpiprocs=10:mem=15GB 
#PBS -o job.out 
#PBS -e job.err 
#PBS -q parallel 
module load profile/advanced 
module load autoload openmpi 
module  load autoload r 
R --vanilla < kmeans_distMem_kddcup.R > kmeans_kddcup_output.txt 
 



PBS keywords 
•  #PBS -N jobname # name of the job 
•  #PBS -o job.out   # redirect stdout (output file) 
•  #PBS -e job.err   # redirect stderr (error file) 
•  #PBS -l walltime=1:00:00     # hh:mm:ss 
•  #PBS -q <queue-name>  # chosen queue 
•  #PBS -A <my_account>    # name of the account 
•  #PBS -l select=1:ncpus=10:mem=15gb:mpiprocs=10    

–  select = number of chunks requested 
–  ncpus = number of cpus per chunk requested 
–  mpiprocs = number of mpi processes 
–  mem = RAM memory per chunk 



PICO login  
•  Via SSH client: 

–  Open a SSH client 
–  Press ENTER 
–  Connect to Remote Host: 

•  Host Name: login.pico.cineca.it 
•  User Name: the personal User Name 
•  Port Number: the default one 
•  Authentication Method: <Profile Settings> 

–  Enter the given Password 

•  Via SSH connection (Unix only!): 
–  ssh <username>@login.pico.cineca.it  
–  Enter the given password 

•  Via Secure Shell Plugin for Google Chrome 


