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Introduction

Since most of serial applications may have several parallel

solutions a methodological approach could be useful to evaluate

the range of available strategies, to provide mechanisms for

evaluating alternatives, and to reduce the cost of backtracking

from bad choices.



Introduction

The first step in developing parallel software is to understand the

problem that you wish to solve in parallel looking at all the

phases that can exploit parallelism.

If you are starting with an existing serial program, this

necessitates understanding the existing code too.

Before spending time in an attempt to develop a parallel

solution, determine whether or not the problem is one that can

actually be parallelized.



Taxonomy

Order is from less to most expensive in terms of time and 

parallelization complexity:

�Trivial parallelism (embarassing parallel)

�Automatic parallelization ( compiler directives)

� community software (code reuse)

� community libraries (code reuse)

� custom code OpenMP (SMP exploitation)

� custom code MPI (perhaps with MPI I/O)

� custom code Hybrid (MPI & OpenMP)

�Accelerators: GPUs; languages: CUDA & OpenCL

� custom code Hybrid (MPI, OpenMP,CUDA,OpenCL)
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Methodological approach

• Ian Foster strategy:
� Partitioning:

� The computation that is to be performed and the data operated on by this computation are
decomposed into small tasks.

� Communication:

� The communication required to coordinate task execution is determined, and appropriate
communication structures and algorithms are defined.

� Agglomeration:

� The task and communication structures defined in the first two stages, if necessary, are
combined into larger tasks to improve performance or to reduce development costs.

� Mapping:

� Each task is assigned to a processor in a manner that attempts to satisfy the competing goals of
maximizing processor utilization and minimizing communication costs. Mapping can be
specified statically or determined at runtime by load-balancing algorithms.

Serial 

problem

Partitioning Communication Agglomeration Mapping



Partitioning

There are two basic ways to partition computational work among parallel tasks: domain

decomposition and functional decomposition.

Domain decomposition:

� In this type of partitioning, the data associated with a problem (input, output, intermediate

values) is decomposed. Each parallel task then works on a portion of of the data.

� Good rules of thumb are to focus first on the largest data structure or on the data structure

that is accessed most frequently.

� Different phases of the computation may operate on different data structures or demand

different decompositions for the same data structures. In this case, we treat each phase

separately and then determine how the decompositions and parallel algorithms developed for

each phase fit together.

Fig. 1 Courtesy of Ning Li. Numerical

Algorithms Group (NAG) 

Fig. 3 Courtesy of Jaun Alonso. Standford

University

Fig. 2 Courtesy of Todd Ringler. 

Los Alamos National Laboratory



Partitioning
Functional decomposition

� In this approach, the initial focus is on the computation that is to be performed rather than on the data

manipulated by the computation.

� If we are successful in dividing this computation into disjoint tasks, we proceed to examine the data

requirements of these tasks.

Signal processing Atmospheric model

Fig. 4 Courtesy of Blaise Barney, Lawrence Livermore National Laboratory



Communication

Some types of problems can be decomposed and executed in parallel with virtually no

need for tasks to communicate. These types of problems are often called

embarrassingly parallel

Most of parallel applications are not quite so simple, and do require tasks to share

data with each other. There are a number of important factors to consider when

designing your program's inter-task communications:

� Inter-task communication virtually always implies overhead.

� Machine cycles and resources that could be used for computation are instead used to

package and transmit data.

� Communications frequently require some type of synchronization between tasks, which can

result in tasks spending time "waiting" instead of doing work.

� Sending many small messages can cause latency to dominate communication overheads.

Often it is more efficient to package small messages into a larger message, thus increasing

the effective communications bandwidth.

� Synchronous vs. asynchronous communications. Asyncronous communications are generally

better because interleaving computation with communication could be a great benefit.



Agglomeration

Domain and functional decomposition is a non trivial task which is exposed to the 

communication limit beetween processes.

Communication cost among processes is one of the major limits to functional and 

domain decomposition.

When communication exceeds computation time the parallel performance of the code 

is compromised and agglomeration of subdomains could be useful.

In (Fig. 5), a computation on an 8x8 grid is partitioned into 64 tasks, each responsible for a single point, while in (Fig. 6) the same

computation is partitioned on a 2x2 grid into 4 tasks, each responsible for 16 points.

In (Fig. 5), 256 communications are required, 4 per task; these transfer a total of 256 data values. In (Fig. 6), only 16 communications

are required, and only 64 data values are transferred.

Fig. 5 Courtesy of Ian Foster. Argonne National Laboratory Fig. 6 Courtesy of Ian Foster. Argonne National Laboratory



Mapping

� The goal of mapping techniques is normally to minimize total execution 

time. We use two strategies to achieve this goal: 

� We place tasks that are able to execute concurrently on different processors, so as to 

enhance concurrency. 

� We place tasks that communicate frequently on the same processor or node, so as to 

increase locality. 

� Most common mapping techniques

� Static mapping: many algorithms developed using domain decomposition techniques 

feature a fixed number of equal-sized tasks and structured local and global 

communication. In such cases, an efficient mapping is straightforward. 

� Dynamic mapping: in more complex domain decomposition-based algorithms with 

variable amounts of work per task and/or unstructured communication patterns, 

efficient agglomeration and mapping strategies may not be obvious. Hence, we may 

employ load balancing algorithms that seek to identify efficient agglomeration and 

mapping strategies, typically by using heuristic techniques. The time required to execute 

these algorithms must be weighed against the benefits of reduced execution time. The 

most complex problems are those in which either the number of tasks or the amount of 

computation or communication per task changes dynamically during program execution. 



Methodological approach

• Identify the program's hotspots
– Know where most of the real work is being done. The majority of 

scientific and technical programs usually accomplish most of their 

work in a few places. 

– Profilers and performance analysis tools can help here 

– Focus on parallelizing the hotspots and ignore those sections of the 

program that account for little CPU usage



Methodological approach

• Identify bottlenecks in the program 
– Are there areas that are disproportionately slow, or cause 

parallelizable work to halt or be deferred? For example, I/O is usually 

something that slows a program down. 

– May be possible to restructure the program or use a different 

algorithm to reduce or eliminate unnecessary slow areas



Methodological approach

• Identify inhibitors to parallelism

– One common class of inhibitor is data dependence.

• Investigate other algorithms if possible
– This may be the single most important consideration when designing a 

parallel application



Methodological approach

• Respect/be aware of standards

�Programming: ANSI C, ISO C90/99, FORTRAN ISO 90 etc

�Numerical: IEEE-754, IEEE 754-2008

� System: POSIX compliance



Methodological approach

• Respect/be aware of scientific data formats

�HDF5 & BioHDF (this can help in Visualization, too)

�NetCDF

�GRIB, FITS, CERNLIB, XMDF et al



Methodological approach

• Do Fault Tolerance and Verification & 

Validation

• Do checkpointing

� Save the intermediate application states

• Documentation

�Very important to ensure software quality
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