
Numerical libraries

Exercises

M.Cremonesi

May 2015

Library installation

As a beginning effort try download and install LAPACK from
NETLIB:

• Download from http://www.netlib.org/lapack/lapack-
3.5.0.tgz

• Configure make.inc (just copy make.inc.example for GNU
compilers)

• cd SRC

• Run make

• cd ../lapacke

• Run make

• cd ../BLAS/SRC

• Run make

E1 – exercise – Matrix Multiply

It should be straightforward, although usually rather inefficient
to implement a matrix multiplication routine. Try doing it and
later add an alternative implementation that uses the BLAS
routine:

FUNCTION DDOT(N,X,INCX,Y,INCY) RESULT(XtY)

REAL(8) :: XtY ! Y transpose

INTEGER, INTENT(IN) :: N, INCX, INCY

REAL(8), DIMENSION(:), INTENT(IN) :: X,Y

END FUNCTION DDOT

Source code: MatrMult

E2 – example - Rotation

Wallace Givens was a researcher at Argonne National Laboratory when he

introduced the so called Givens rotation algorithm, a rotation in the plane

that is useful for transforming matrices in linear algebra computations.

The BLAS library contains routines to compute plane rotations and we could

use them with the goal of rotating geometrical figures.

As an example, given a matrix PLANE(:,:) that represents a rectangle in a bi-

dimensional plane and a set of points within the rectangle that defines a

figure, at first we compute the angular parameters of the rotation, given by c

= cos(θ) and s = sin(θ), then we calculate the result of the rotation applied to

the figure.

The routine IntData2pgm() will help to visualize the rotated figure.

Source code: Rotation

Matrix norms

Consider F to be the space of Real or Complex numbers and

Fm,n the space of matrices with MxN elements belonging to F.

A matrix norm is a function ||.|| : Fm,n -> F with the following

properties:

• ||A|| = 0 iff A = 0

• ||A|| >= 0

• ||x.A|| = |x|.||A||

• ||A+B|| <= ||A|| + ||B||

With: A, B ∈ Fm,n ; x ∈ F

Matrix norms

It follows that (A, B ∈ Fm,n ; x, y ∈ F):

• |x|.||A||’ <= |x|.||A||’’ <= |y|.||A||’ [equivalence of matrix norm]

• ||.|| : Fm,n -> F is a continuous function

Relevant norms:

||A||1 = Max1<=j<=NSum1<=i<=M|Ai,j| [max abs sum col elements]

||A||
∞
= Max1<=i<=MSum1<=j<=N|Ai,j| [max abs sum row elements]

||A||2 = SQRT(Sum1<=i<=M,1<=j<=N|A
2
i,j|) [sqrt(sum squares)]

Condition number

A system of linear equations is solved when a vector x ∈ F n is found

such that A.x = b for given A ∈ F n,n and b ∈ F n .

Suppose that A.y = b+e for a given e: ||e|| << ||b||

It follows that ||y-x|| = ||A-1.e|| and

||y-x|| / ||x|| ||A-1.e|| / ||A-1.b||

_________________ = ______________________ = ||A-1||.||A|| = K(A)

||e|| / ||b|| ||e|| / ||b||

Condition number

K(A) is the condition number with respect to the inversion of

the matrix A or simply the condition number of A.

The value of the condition number depends on the used norm

but, since matrix norms are equivalent, the order of

magnitude of the condition numbers are similar.

The condition number gives a hint of how accurate is the

solution of a linear system or how fast the solution varies as

rhs values change.

E3 – exercise - Condition number

It can be demonstrated that 1 <= K(A) <= ∞

The nearest K(A) is to 1 the more precise is the solution.

As an exercise a program could be written that calculates the

condition number of a real NxN matrix A.

To do this the function DGECON of the LAPACK library can be

used. Other useful functions are: DGETRF (LAPACK), DASUM

(BLAS)

Example code: CondNumber

E3 – exercise - Condition number

FUNCTION DASUM(N, X, INCX) RESULT(S)

! Sum of absolute values of a vector

INTEGER, INTENT(IN) :: N, INCX

REAL(8), DIMENSION(N), INTENT(IN) :: X

REAL(8) :: S

END FUNCTION DASUM

E3 – exercise - Condition number

SUBROUTINE DGETRF (M, N, A, LDA, IPIV, INFO)

! Matrix factorization

INTEGER, INTENT(IN) :: M, N, LDA

REAL(8), dimension(LDA, N), INTENT(IN OUT) :: A

INTEGER, dimension(*), INTENT(OUT) ::IPIV

INTEGER, INTENT(OUT) :: INFO

END SUBROUTINE DGETRF

E3 – exercise - Condition number
SUBROUTINE DGECON (NORM, N, A, LDA, ANORM, RCOND, WORK, &

& IWORK, INFO)

! Reciprocal of the condition number of a general real matrix A

CHARACTER(1), INTENT(IN) :: NORM ! May be “1” or “I”

INTEGER, INTENT(IN) :: LDA, N

REAL(8), DIMENSION(LDA, N), INTENT(IN) :: A

REAL(8), INTENT(IN) :: ANORM

REAL(8), INTENT(OUT) :: RCOND

REAL(8), DIMENSION(4*N), INTENT(IN OUT) :: WORK

INTEGER, DIMENSION(N), INTENT(IN OUT) :: IWORK

INTEGER, INTENT(OUT) :: INFO

END SUBROUTINE DGECON

E4 – example – Linear equation

Let us take into consideration the following equation in the

[(1,1), (1,2), (2,2), (2,1)] 2D-square:

∂2F(x,y)/ ∂x2 + ∂2F(x,y)/ ∂y2 = x + y

The exact solution is F(x,y) = (x3 + y3) / 6

Let us pretend we do not know the exact solution but we know

the values of the function on the perimeter of the square only

and we are interested in computing the value of the function

in a sufficient number of points within the square.

A finite difference approach could be easily implemented.

E4 – example – Linear equation

∂2F(x,y)/ ∂x2 approximated by [F(x+dx,y) + F(x-dx,y) – 2 * F(x,y)] / dx2

∂2F(x,y)/ ∂x2 + ∂2F(x,y)/ ∂y2 => [F(x+dx,y) + F(x-dx,y) + F(x,y+dy) +

+ F(x,y-dy) – 4 * F(x,y)] / dx2

-41

1

1

1

dy

dx

dy

dx

E4 – example – Linear equation

• Divide the square in NxN grid cells

• Inner points represent the unknown values. LA = (N-1)*(N-1)

• A(LA,LA) matrix (finite difference coefficients) and B(LA) RHS

vector (rhs x+y value and peripheral values) can be generated.

E4 – example – Linear equation

• The program could be designed as follow:

• Memorize inner point coords in Points(LA,2) vector

• Build A(LA,LA) matrix

• Build B(LA) = (x+y)/(dx*dy)-p; p = sum values peripheral points

• Factorize matrix: A => L.U

• Solve the system

• Compare computed solution to exact known solution

• Source code: LinearEquation

E5 – exercise – Band matrix

In the previous example a matrix has been generated to solve
a PDE equation in a 2D-square. Grid points that are related
each other can be quite far in the generated matrix => A is a
band matrix

E5 – exercise – Band matrix

• Matrix A(LA,LA), LA=(N-1)*(N-1) of former example should

have lower and upper bands with length N.

• Try modifying the source code in order to use Lapack

routines DGBTRF and DGBTRS for band matrices.

• Source code: BandMatrix

E5 – exercise – Band matrix

SUBROUTINE DGBTRF(M, N, KL, KU, AB, LDAB, IPIV, INFO)

! Band matrix factorization

INTEGER, INTENT(IN) :: M, N ! Rows and columns

INTEGER, INTENT(IN) :: KL, KU ! Number of lower and

! upper bands

REAL(8), DIMENSION(LDAB, N), INTENT(IN OUT) :: AB

INTEGER, INTENT(IN) :: LDAB ! LDAB >= 2*KL+KU+1

INTEGER, DIMENSION(*), INTENT(OUT) ::IPIV

INTEGER, INTENT(OUT) :: INFO

END SUBROUTINE DGBTRF

E5 – exercise – Band matrix

lapack_int LAPACKE_dgbtrf (int matrix_order, // input

lapack_int m, // input: Rows

lapack_int n, // input: Columns

lapack_int kl, // input: Number of lower bands

lapack_int ku, // input: Number of upper bands

double * ab, // input/output: Matrix ab[ldab,n]

lapack_int ldab, // input: LDAB >= 2*KL+KU+1

lapack_int * ipiv // output

)

E5 – exercise – Band matrix

SUBROUTINE DGBTRS(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, &

& B, LDB, INFO)

! Solve a system of equation with band matrix

CHARACTER(1) , INTENT(IN) :: TRANS ! “N” = no transpose

INTEGER, INTENT(IN) :: N, KL, KU ! Matrix order and bands

INTEGER, INTENT(IN) :: NRHS ! Right hand sides

REAL(8), DIMENSION(LDAB, N), INTENT(IN) :: AB

INTEGER, INTENT(IN) :: LDAB ! LDAB >= 2*KL+KU+1

INTEGER, DIMENSION(*), INTENT(IN) ::IPIV

REAL(8), DIMENSION(LDB,NRHS), INTENT(IN OUT) :: B

INTEGER, INTENT(IN) :: LDB

INTEGER, INTENT(OUT) :: INFO

END SUBROUTINE DGBTRS

E5 – exercise – Band matrix

lapack_int LAPACKE_dgbtrs (int matrix_order, // input

char trans, // input: “N” = no transpose

lapack_int n, // input: Matrix order

lapack_int kl, // input: Lower bands

lapack_int ku, // input: Upper bands

lapack_int nrhs, // input: Right hand sides

const double * ab, // input: Matrix ab[ldab,n]

lapack_int ldab, // input: LDAB >= 2*KL+KU+1

const lapack_int * ipiv, // input

double * b, // input-output: matrix b[ldb,nrhs]

lapack_int ldb // input

)

