
Advanced MPI

Maurizio Cremonesi

Maggio 2015

Content

Packing data

Derived data types

MPI-IO introduction

Groups of processes

Communicators

Topologies

Pack/Unpack
Example: 0301MPIexample-pack

Consider the problem of sending data of different kinds. For example, root

should broadcast the following values:

MPI_DOUBLE_PRECISION: SWV(2), Range

MPI_INTEGER: XYdots, Niter

4 calls should be issued to the broadcasting function:

CALL MPI_BCAST (SWV, 2, MPI_DOUBLE_PRECISION , 0,

MPI_COMM_WORLD, ierr)

CALL MPI_BCAST (XYdots, 1, MPI_INTEGER, 0, MPI_COMM_WORLD,

ierr)

CALL MPI_BCAST (Range, 1, MPI_DOUBLE_PRECISION, 0,

MPI_COMM_WORLD, ierr)

CALL MPI_BCAST (NITER, 1, MPI_INTEGER, 0, MPI_COMM_WORLD,

ierr)

Pack/Unpack
A better solution is possible, minimizing the use of sending/receiving

functions. The four objects:

MPI_DOUBLE_PRECISION: SWV(2), Range

MPI_INTEGER: XYdots, Niter

can be packed into a buffer for delivery and unpacked on receiving:

1. root process packs data into the buffer pckd_data, 32 bytes long:

Pos = 0

CALL MPI_PACK (SWV, 2, MPI_DOUBLE_PRECISION, &

& pckd_data, 32, pos, MPI_COMM_WORLD, ierr)

. . .

CALL MPI_PACK (Niter, 1, MPI_INTEGER, pckd_data, &

& 32, pos, MPI_COMM_WORLD, ierr)

Pack/Unpack

2. Buffered data are distributed:

CALL MPI_BCAST (pckd_data, 32, MPI_PACKED , 0, &

& MPI_COMM_WORLD, ierr)

3. receiving processes unpack data:

Pos = 0

CALL MPI_UNPACK (pckd_data, 32, pos, SWV, 2, &

& MPI_DOUBLE_PRECISION, MPI_COMM_WORLD, ierr)

. . .

CALL MPI_UNPACK (pckd_data, 32, pos, Niter, 1, &

& MPI_INTEGER, MPI_COMM_WORLD, ierr)

Pack

The MPI library enables packing different data in one buffer, that can be sent
as a whole. Communication times can thus be reduced. To gather several data
in a single buffer the function MPI_PACK may be used.

INCOUNT elements of type DATATYPE of the buffer INBUF are copied in the
buffer OUTBUF from position POSITION (in byte). On exit POSITION has the
value of the next free address.

INTERFACE

SUBROUTINE MPI_PACK(inbuf,incount,datatype,outbuf,outsize,position,comm,ierr)

INTEGER, INTENT(IN) :: INCOUNT, DATATYPE, OUTSIZE, COMM

<type>, INTENT(IN) :: INBUF(:)

<type>, INTENT(OUT) :: OUTBUF(:)

INTEGER, INTENT(INOUT) :: POSITION

INTEGER, INTENT(OUT) :: IERR

END SUBROUTINE MPI_PACK

END INTERFACE

fortran

int MPI_Pack(void *inbuf, int incount, MPI_Datatype datatype, void *outbuf,

int outsize, int *position, MPI_Comm comm); c/c++

Unpack
The function MPI_UNPACK is used by the receiving processes to extract data

from the buffer INBUF.

INTERFACE

SUBROUTINE MPI_UNPACK (inbuf, insize, position, outbuf, outcount, datatype,

comm, ierr)

INTEGER, INTENT(IN) :: INSIZE, DATATYPE, OUTCOUNT, COMM

<type>, INTENT(IN) :: INBUF(:)

<type>, INTENT(OUT) :: OUTBUF(:)

INTEGER, INTENT(INOUT) :: POSITION

INTEGER, INTENT(OUT) :: IERR

END SUBROUTINE MPI_UNPACK

END INTERFACE fortran

int MPI_Unpack(void *inbuf, int insize, int *position, void *outbuf,

int outcount, MPI_Datatype datatype, MPI_Comm comm) c/c++

Basic data types

If the data to be communicated are structured it may be convenient to define

a MPI derived data type. The basic MPI data types are:

Derived data types are defined using basic data types and formerly defined

derived data types.

MPI_INTEGER

MPI_REAL

MPI_DOUBLE_PRECISION

MPI_COMPLEX

MPI_DOUBLE_COMPLEX

MPI_LOGICAL

MPI_CHARACTER

MPI_BYTE

MPI_PACKED

fortran
MPI_CHAR

MPI_SHORT

MPI_INT

MPI_LONG

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_FLOAT

MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

c/c++

Dtype = [(typ_0 , pos_0), (typ_1 , pos_1), ..., (typ_n-1 , pos_n-1)]

Derived data types

To define a derived data type it is required:

• To specify the structure of the new data type, on the basis of previously

defined or basic data types.

• To register the new data type

The newly defined data type must be registered to MPI with the following

function:

Once committed the new data type becomes a recognized MPI data type.

interface

subroutine mpi_type_commit (mpi_mytype, cod_err)

integer, intent (in) :: mpi_mytype ! Il nome del nuovo tipo di dati

integer, intent (out):: cod_err ! codice di errore.

end subroutine mpi_type_commit

end interface fortran

int MPI_Type_commit (MPI_Datatype *mpi_mytype) c/c++

Derived data types

Whenever a defined data type is of no use any more, the following function

should be called:

Pending operations will complete normally.

interface

subroutine mpi_type_free (mpi_mytype, cod_err)

integer, intent (in) :: mpi_mytype ! Data type handler

integer, intent (out):: cod_err ! Error code

end subroutine mpi_type_commit

end interface

fortran

int MPI_Type_free (MPI_Datatype *mpi_mytype)

c/c++

fortran

c/c++

Example: 0302MPIexample-struct

Consider the problem of sending heterogeneous data contained in a

structure:

Four calls should be issued to the broadcasting function:

CALL MPI_BCAST (values%SWV, 2, MPI_DOUBLE_PRECISION , 0, &

& MPI_COMM_WORLD, ierr)

. . .

CALL MPI_BCAST (values%NITER, 1, MPI_INTEGER, 0, &

& MPI_COMM_WORLD, ierr)

TYPE input_data

REAL(8) :: SWV(2), Range

INTEGER :: XYdots, Niter

END TYPE

struct {

double SWV[2], Range;

int Xydots, Niter;

} input data;

Generic structures

A better solution is possible, minimising the communication calls.

A MPI derived data type is built from blocks of homogeneous elements. For

example, if we are interested in communicating the following data structure:

four blocks may be defined, one for each component of the structure:

Block #1: 2 doubles Block #2: 1 double

Block #3: 1 integer Block #4: 1 integer

TYPE input_data

REAL(8) :: SWV(2), Range

INTEGER :: XYdots, Niter

END TYPE

struct {

double SWV[2], Range;

int Xydots, Niter;

} input data;

Generic structures

Generic structures

The MPI representation of a generic data structure requires three arrays to be

defined:

v_len_blk – actual length of each block (in elements)

v_head – starting postion of each block (in bytes)

v_el_typ – data type of the elements in each block

It should be noted that the values in v_head must be given in bytes because

the elements of each block may be of different type with different byte

extensions.

Generic structures

The data structure can then be described in MPI using the MPI_Type_struct

function:

num_blk = 4

v_len_blk = [2,1,1,1]

v_head = [0,16,24,28]

v_el_typ = [MPI_DOUBLE_PRECISION, &

& MPI_DOUBLE_PRECISION, &

& MPI_INTEGER, MPI_INTEGER]

CALL MPI_Type_struct(num_blk, v_len_blk, v_head, &

& v_el_typ, new_type, ierr)

CALL MPI_Type_commit(new_type,ierr)

Generic structures

The function mpi_type_struct has the following interface:

int MPI_Type_struct(int num_blk, int v_len_blk[], MPI_Aint v_head[],

MPI_Datatype v_el_typ[], MPI_Datatype *new_typ) c/c++

interface

subroutine mpi_type_struct(num_blk,v_len_blk,v_head,v_el_typ,new_typ,ierr)

integer, intent(in) :: num_blk ! How many blocks

integer,intent(in),dimension(:) :: v_len_blk ! How many elements per block

integer, intent(in), dimension(:) :: v_head ! How many bytes before

! each block

integer, intent(in), dimension(:) :: v_el_typ ! Element type per block

integer, intent(out) :: new_typ ! Data type handler

integer, intent(out) :: ierr ! Error code

end subroutine mpi_type_struct

end interface fortran

Generic structures

C language structures and Fortran derived data types may be
easily mapped into MPI derived data types.

The programmer must anyhow be sure that the relative positions
of the structure components are not modified by compiler
optimizations.

Fortran derived types should contain the SEQUENCE instruction

Contiguous elements
Example: 0303MPIexample-struct_gather

Consider the problem of distributing a vector of structured data:

TYPE person

SEQUENCE

CHARACTER(80) :: Name, Surname

INTEGER, DIMENSION(3) :: Birth_date

INTEGER :: Position, Id

END TYPE person

TYPE(person), dimension(8) :: lteam, team

If we would like to distribute the team array, we could send it as a numer of

elements of type person (or whatever is called the object MPI_Datatype) or

as a global object composed of elements of type person.

Contiguous elements
An array of contiguous and homogeneous elements is the simplest derived

type to be defined. From element to element there must be no spaces.

This function defines the new data type starting from an array of num_el

elements. All the elements must be of the same (derived) data type.

interface

subroutine mpi_type_contiguous (num_el, el_type, new_type, ierr)

integer, intent(in) :: num_el ! How many elements in the array

integer, intent(in) :: el_type ! Element type

integer, intent(out) :: new_type ! New data type handler

integer, intent(out) :: ierr ! Error code

end subroutine mpi_type_contiguous

end interface
fortran

int MPI_Type_contiguous (int num_el, MPI_Datatype el_type,

MPI_Datatype *new_type)
c/c++

Contiguous elements
As an other simple example, if

is a 16 bytes data type and 3 elements of that type are filed in an array, then

Of course there is no point in El_type being a basic MPI type even if it may be

as well.

El_type = {(double, 0), (char, 8)}

New_type = {(double, 0), (char, 8)

(double, 16), (char, 24)

(double, 32), (char, 40)}

Not contiguous elements

Making things a bit more complicated, the following function is used to define

arrays with useful data separated by fixed strides. i.e. arrays may be seen as

sequences of identical blocks containing elements to be communicated and

elements to be discarded

interface

subroutine mpi_type_vector(num_blk,len_blk,blk_siz,el_typ,new_typ,errcode)

integer, intent(in) :: num_blk ! How many blocks

integer, intent(in) :: len_blk ! How many useful elements per block

integer, intent(in) :: blk_siz ! Total number of elements per block

integer, intent(in) :: el_typ ! Data type of the block elements

integer, intent(out) :: new_typ ! New data type handler

integer, intent(out) :: ierr ! Error code

end subroutine mpi_type_vector

end interface fortran

int MPI_Type_vector(int num_blk, int len_blk, int blk_siz,

MPI_Datatype el_typ, MPI_Datatype *new-typ) c/c++

Not contiguous elements

It can be noted that the size and the useful length of the blocks is

given in number of elements.

As an example if blk_size=10 and len_blk=7 and the elements are

of type MPI_INTEGER, the actual size of each block is 4 x 10 =

40 bytes. But only 4 x 7 = 28 elements are communicated and 4 x

(10-7) = 12 bytes are never sent.

More on not contiguous elements
The following function must be used to define arrays with blocks of different

dimensions. Two vectors are needed to define the lengths because each block has its

own number of useful and discarded elements.

Please note that instead of specifying the total length of each block, the starting

position of the blocks have to be passed to the function.

interface

subroutine mpi_type_indexed(num_blk,v_len_blk,v_head,el_typ,new_typ,cod_er)

integer, intent(in) :: num_blk ! How many blocks

integer, intent(in), dimension(:) :: v_len_blk ! How many elements

! in each block

integer, intent(in), dimension(:) :: v_head ! How many elements before

! each block

integer, intent(in) :: el_typ ! Data type of elements in each block

integer, intent(out) :: new_typ ! New data type handler

integer, intent(out) :: ierr ! Error code

end subroutine mpi_type_indexed

end interface fortran

int MPI_Type_indexed(int num_blk, int v_len_blk[], int v_head[],

MPI_Datatype el_typ, MPI_Datatype *new_typ) c/c++

More on not contiguous elements

As an example, if we have to describe data structured in three blocks, 3

elements parted each other and containing 5, 13 and 7 elements, the arrays

v_len_blk and v_head must be defined as follow:

The following function may be used to know the extension of a MPI (either

basic or derived) data type:

v_len_blk = (/ 5, 13, 7 /)

v_head = (/ 0, 8, 24 /)

interface

subroutine mpi_type_extent (datatype, dim, cod_err)

integer, intent(in) :: datatype ! MPI data type

integer, intent(out) :: ext ! Extension (in bytes)

integer, intent(out) :: ierr ! Error code

end subroutine mpi_type_extent

end interface fortran

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *ext) c/c++

Useful functions
The function mpi_type_hvector is similar to mpi_type_vector, but

blk_siz is given in bytes. The function mpi_type_hindexed is alike

mpi_type_indexed, but v_head is measured in bytes.

The function mpi_address returns the starting address of an object. It is

important for portability issues.

interface

subroutine mpi_address (obj, address, ierr)

integer, intent(in) :: obj ! Input object or variable

integer, intent(out) :: address ! Starting address

integer, intent(out) :: ierr ! Error code

end subroutine mpi_address

end interface

fortran

int MPI_Address(void *obj, MPI_Aint *address)

c/c++

MPI-IO basics
Example: 0304MPIexample-struct_file

The MPI derived data types may be used not only for communications but for

I/O operations also.

As an example, imagine to substitute collective file writing to the distribution

function in the previous example:

CALL MPI_File_open(MPI_COMM_WORLD, 'team.dat', &

& MPI_MODE_WRONLY+MPI_MODE_CREATE, &

& MPI_INFO_NULL, fh, ierr)

CALL MPI_File_write_ordered(fh, lteam, 1, &

& pair_type, status, ierr)

CALL MPI_File_close(fh,ierr)

fortran

c/c++

MPI-IO basics
After writing data is kept on disk and can be recovered when needed:

IF (my_rank == 0) THEN

CALL MPI_FILE_OPEN(MPI_COMM_SELF, 'team.dat', &

& MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

DO i = 1, 8

CALL MPI_File_read(fh, team(i), 1, &

& person_type, status, ierr)

ENDDO

CALL MPI_File_close(fh,ierr))

ENDIF

fortran

c/c++

MPI-IO basics

Basic MPI-IO operations are: open, seek, read, write, close

• open/close operations must be issued by all processes on the

same file (collective operations)

• MPI read/write functions are similar to send/recv

• a local pointer to the file (individual file pointer) is kept for

each process for seek, read, write operations

fortran

c/c++

Before beginning I/O operations the destination file must be connected to the

MPI system. This is afforded by the MPI_File_open function. Remember that

this function is collective: it must be called by all the processes in a

communicator.

interface

subroutine MPI_FILE_OPEN(comm, filename, amode, info, fh, ierr)

integer, intent(in) :: comm ! Communicator

character(*), intent(in) :: filename

integer, intent(in) :: amode ! Access mode

integer, intent(in) :: info ! Access details

integer, intent(out) :: fh ! File handle

intent(out) :: ierr ! Error code

end subroutine MPI_FILE_OPEN

end interface

fortran

int MPI_File_open(MPI_Comm comm, const char* filename, int amode,

MPI_Info info, MPI_File* fh)
c/c++

MPI-IO basics

Few notes about the open function:

• the function is collective; would it be the case just one process has to call

it, MPI_COMM_SELF should be used

• the filename must be the same for all involved processes

• if the MPI_Info handler is not used, MPI_INFO_NULL value can be passed

• the access mode value must be the same for all involved processes; some of the

most common mode values are:

MPI_MODE_RDONLY read only

MPI_MODE_RDWR read/write

MPI_MODE_WRONLY write only

MPI_MODE_CREATE create if not existing

MPI_MODE_DELETE_ON_CLOSE delete on closing

Mode values may be chained with + (plus, Fortran) and | (pipe, C, C++) characters

MPI-IO basics

After the destination file have been used, the MPI_File_close function should

be called. Remember that also this function is collective: it must be called by

all the processes in the communicator.

interface

subroutine MPI_FILE_CLOSE(fh, ierr)

integer, intent(in) :: fh ! File handle

intent(out) :: ierr ! Error code

end subroutine MPI_FILE_CLOSE

end interface

fortran

int MPI_File_close(MPI_File* fh) c/c++

MPI-IO basics

There are several functions for storing and recovering data to/from disk.

Some functions are blocking, while others can overlap I/O with computation.

Also operations can be collective or individually managed.

Positioning can be collectively or individually or explicitly managed.

In the previous example a writing collective function has been used to store

data. In this case the operations is automatically managed by MPI and

processes do not need to take care about data positioning in the file.

Instead data retrieving has been accomplisehd by calling a non collective

function with individual pointer.

MPI-IO basics

The MPI_File_write_ordered function can be used to store distributed data in

the process order.

interface

subroutine MPI_File_write_ordered(fh, buf, count, &

& datatype, status, ierr)

integer, intent(in) :: fh ! File handle

integer, intent(in) :: buf ! Data (actual type may vary

integer, intent(in) :: count ! Elements in buffer

integer, intent(in) :: datatype ! MPI datatype of data

integer, intent(out) :: status ! Infos

intent(out) :: ierr ! Error code

end subroutine MPI_File_write_ordered

end interface

fortran

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
c/c++

MPI-IO basics

The MPI_File_read function can be used to retrieve data individually, i.e. each

process read data indipendently by all others.

interface

subroutine MPI_File_read(fh, buf, count, datatype, &

& status, ierr)

integer, intent(in) :: fh ! File handle

integer, intent(out) :: buf ! Data (actual type may vary)

integer, intent(in) :: count ! Elements in buffer

integer, intent(in) :: datatype ! MPI datatype of data

integer, intent(out) :: status ! Infos

intent(out) :: ierr ! Error code

end subroutine MPI_File_read

end interface

fortran

int MPI_File_read(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
c/c++

MPI-IO basics

The status object returned by I/O functions may be used to control data

movements. In the example the MPI_Get_count has been used to show how

many elements have been written in each writing operation.

interface

subroutine MPI_Get_count(status, datatype, count, ierr)

integer, intent(in) :: status ! I/O infos

integer, intent(in) :: datatype ! MPI datatype of data

intent(out) :: count ! Elements moved

intent(out) :: ierr ! Error code

end subroutine MPI_Get_count

end interface

fortran

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count) c/c++

MPI-IO basics

There are many other MPI functions for saving and retrieving data on disk;

just list some of them.

Blocking, individual file pointer:

• int MPI_File_write (MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

• int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

and the collective versions:

• int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

• int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

MPI-IO basics

Blocking, shared file pointer:

• int MPI_File_write_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

• int MPI_File_read_shared(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

and the collective versions:

• int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

• int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI-IO basics

Blocking, explicit file offset:

• int MPI_File_write_at(MPI_File fh, MPI_Offset offset, ROMIO_CONST void

*buf, int count, MPI_Datatype datatype, MPI_Status *status)

• int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

and the collective versions:

• int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, ROMIO_CONST

void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

• int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf, int

count, MPI_Datatype datatype, MPI_Status *status)

Besides the cited functions there are the non-blocking versions.

Furthermore please note that MPI I/O is not formatted: data are saved on

disk as they are stored in memory.

MPI-IO basics

Groups of processes

In MPI terminology the process is the computing unit. MPI processes

behave following the MIMD model. Each process is an indipendent

unit and has its own memory space; it should be thought of as

running on its own computing machine.

Every MPI process belongs to one or more MPI group and has its

own identification number or rank. MPI ranks are always numbered

starting from 0. The 0 process is often called the master and usually

acts as the boss in master-slave programming model, but it is not

mandatory. MPI groups may be generated and destroyed but they

are otherwise static.

Groups of processes

Example: 0305MPIExample_two_groups

In this example the group related to the default communicator is

splitted in two groups using an array of indices:

numproc0 = numproc/2;

for (i = 0; i < numproc0; i++) ranks0[i] = i;

MPI_Group_incl(GlobalGroup, numproc0, ranks0, &Group0);

MPI_Group_excl(GlobalGroup, numproc0, ranks0, &Group1);

MPI_Group_size(Group1, &numproc1);

Groups of processes

Each group has its own handle but is an opaque object: the

programmer can not access its details. Proper functions must be

used to manage group properties:

At the beginning all processes belong to the default group, the one

associated to the default communicator MPI_COMM_WORLD . All

other groups must be explicitly generated. MPI processes may

belong to different groups.

call mpi_group_size(group, size, ierr)

call mpi_group_rank(group, rank, ierr)

Groups of processes

Given a communicator the following function returns the handle

of the associated group:

int MPI_Comm_group (MPI_Comm comm, MPI_Group *group) c/c++

interface

subroutine mpi_comm_group(comm,group, ierr)

integer, intent(in) :: comm

integer, intent(out) :: group, ierr

end subroutine mpi_comm_group

end interface fortran

Managing groups of processes

The following function enables generating a new group on the

basis of an existing group. The process with rank RANKS(I) in

the old group is given rank I in the new group:

int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)c/c++

interface

subroutine mpi_group_incl(group, n, ranks, newgroup, ierr)

integer, intent(in) :: group, n, ranks

integer, intent(out) :: newgroup, ierr

end subroutine mpi_group_incl

end interface fortran

Managing groups of processes
Example:

if GROUP contains 8 processes (numbered from 0 to 7) and the array has values

RANKS(1:3)=(1,5,2), the instruction

generates the new NEWGROUP with the three processes above numbered.

The following table shows correspondence between the two groups:

call mpi_group_incl (group, 3, ranks, newgroup, ierr)
fortran

Group Newgroup

1 0

5 1

2 2

Managing groups of processes

On the contrary in the following function the array RANKS(I) specify the

processes of GROUP to be eliminated for building NEWGROUP:

It is also possible to specify a range of indexes, like RANGES(1:N,1:3). In

the following functions the second dimension of the array specifies the first

and the last index to be included and the stride.

call mpi_group_range_incl (group, n, ranges, newgroup, ierr) fortran

int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup) c/c++

interface

subroutine mpi_group_excl(group, n, ranks, newgroup, ierr)

integer, intent(in) :: group, n, ranks

integer, intent(out) :: newgroup, ierr

end subroutine mpi_group_excl

end interface

fortran

call mpi_group_range_excl (group, n, ranges, newgroup, ierr) fortran

Managing groups of processes

Example:

If group contains 1000 processes and a new group is to be generated with half

the number of the processes, taken from the odd positions, the array may be

defined as RANGES(1,1)=2, RANGES(1,2)=1000, RANGES(1,3)=2

and the program should issue the following instruction:

The correspondence between the two groups would be:

Group Newgroup

1 0

3 1

5 2

� �

call mpi_group_range_excl (group, n, ranges, newgroup, ierr) fortran

Managing groups of processes

The operations to manage groups are local and do not involve communications.

The following instruction may be used to know the relevant rank of the

processes in two different groups.

RANKS1(:) are the known ranks of the processes in GROUP1; RANKS2(:) are

the related ranks in GROUP2:

interface

subroutine mpi_group_translate_ranks(group1, n, ranks1, group2, &

ranks2, ierr)

integer, intent(in) :: group1, n, ranks1(:), group2

integer, intent(out) :: ranks2(:), ierr

end subroutine mpi_group_translate

end interface

fortran

int MPI_Group_translate (group1, n, ranks1, group2, ranks2, ierr)

c/c++

Managing groups of processes

It is possible to check similarity of two groups:

The returned values may be one out of the following:

• MPI_IDENT if the groups have the same processes with identical ranks

• MPI_SIMILAR if the groups have the same processes but unequal ranks

• MPI_UNEQUAL if the groups are different

interface

subroutine mpi_group_compare(group1, group2, result, ierr)

integer, intent(in) :: group1, group2

integer, intent(out) :: result, ierr

end subroutine mpi_group_compare

end interface

fortran

int MPI_Group_compare (group1, group2, result, ierr) c/c++

Communicators

A communicator defines the processes that can communicate

each other. Each communicator has its own handle, is an opaque

object and can be managed by proper functions only.

The default communicator is named MPI_COMM_WORLD, but in

a real program it is often useful to generate additional

communicators, to be able to directly manage communications

among process subsets.

Communicator handles must always be specified in sending and

receiving functions.

Communicators

Example: 0306MPIExample_two_comms

The default communicator is splitted in two sets of processes

and an intercommunicator is created:

colour = id % 2;

MPI_Comm_split(GlobalComm, colour, id, &LocComm);

if (colour == 0) {

MPI_Intercomm_create(LocComm, 0, GlobalComm, 1,

01, &InterComm);

} else {

MPI_Intercomm_create(LocComm, 0, GlobalComm, 0,

01, &InterComm);

}

Managing communicators

The following function may be used to generate a new communicator

connected to an existing group:

• COMM is an existing communicator related to a wider process group; the

function must be called by all processes in the COMM communicator

• GROUP is a sub-group of the process group related to COMM

• NEWCOMM is the handle of the newly generated communicator

interface

subroutine mpi_comm_create(comm, group, newcomm, ierr)

integer, intent(in) :: comm, group

integer, intent(out) :: newcomm, ierr

end subroutine mpi_comm_create

end interface fortran

int MPI_Comm_create (MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm) c/c++

Managing communicators

Suppose there is a communicator connected to a group of 8 processes and 2

new communicators are required by dividing the communicator in two parts

as follow:

0

1

23

4

5

76

Managing communicators
To accomplish this task all the processes of the existing communicator may issue the

following instructions:

Each process receives a new communicator handle and will have the rank:

If for some process COLOR=MPI_UNDEFINED, the function MPI_COMM_SPLIT

returns NEWCOMM=MPI_COMM_NULL

Communicator 1

Rank in new group Rank in old group

0

1

2

3

3

2

1

0

call mpi_comm_rank (comm, rank, ierr)

call mpi_comm_size (comm, size, ierr)

color = 2*rank/size

key = size - rank - 1

call mpi_comm_split (comm, color, key, newcomm, ierr) fortran

Communicator 2

Rank in new group Rank in old group

0

1

2

3

7

6

5

4

Communications between groups

Once the processes have been separated in several groups it is

possible to realize client-server connections by connecting

disjoined groups.

Communications between separated groups can only be of

point-to-point type: no collective communications are available.

Communications between groups

Whenever a new inter-communicator has been created, the

sending process must specify the rank of the receiving process

(relevant to the other group); the receiving process must specify

the rank of the sender (relevant to the other group).

To enable this, while the functions mpi_comm_size,

mpi_comm_rank, mpi_comm_group return informations

relevant to the local communicator, the functions

mpi_comm_remote_size, mpi_comm_remote_group

instead return informations on the disjoined intercommunicator

group.

Communications between groups

A communicator connecting disjoined groups is called an inter-
communicator and can be generated by calling the function
mpi_intercomm_create. This function requires:

• A leading process for each one of two disjoined groups

• An intra-communicator between the two leading processes

• A tag for safe communications between the two leading
processes

Communications between groups

The following function generates an inter-communicator NEWINTERCOMM

between the processes LOCALLEADER and REMOTELEADER of the intra-

communicator LOCALCOMM, using TAG and the point-to-point communicator

PEERCOMM. It should be noted that REMOTELEADER and PEERCOMM are

referred to the local process, while TAG must have the same value for both

the processes:

interface

subroutine mpi_intercomm_create(localcomm, localleader, peercomm, &

remoteleader, tag, newintercomm, ierr)

integer, intent(in) :: localcomm, localleader, peercomm

integer, intent(in) :: remoteleader, tag

integer, intent(out) :: newintercomm, ierr

end subroutine mpi_intercomm_create

end interface

fortran

int MPI_Intercomm_create (MPI_Comm localcomm, int localleader,

MPI_Comm peercomm, int remoteleader, int tag,

MPI_Comm *newintercomm)

c/c++

Communications between groups

The intra-communicator NEWINTRACOMM may be generated from an inter-

communicator INTERCOMM calling the function:

This way two separated groups may be joined. The value of HIGH must be the

same for all the processes belonging to the same group. If HIGH =.FALSE.

for group 1 and HIGH =.TRUE. for group 2, in the new communicating

group the processes are ordered starting from group 1; i.e. the processes in

group 2 have a higher rank.

Example: 0307MPIExample_comms_merge (Fortran and C)

interface

subroutine mpi_intercomm_merge(intercomm, high, newintracomm, ierr)

integer, intent(in) :: intercomm, high

integer, intent(out) :: newintracomm, ierr

end subroutine mpi_intercomm_merge

end interface

fortran

int MPI_Intercomm_merge(MPI_Comm intercomm,int high,MPI_Comm *newintracomm)c/c++

Topologies

In many programs it may be important to arrange the processes in a given

topology. MPI enables the definition of topologies, with an explicit support

for cartesian topology. This topology may be defined by calling the function:

interface

subroutine mpi_cart_create(comm_old, ndims, ldims, periods, reorder,

comm_cart, ierr)

integer, intent(in) :: comm_old, ndims

integer, dimension(:), intent(in) :: ldims

logical, dimension(:), intent(in) :: periods

logical, intent(in) :: reorder

integer, intent(out) :: comm_cart, ierr

end subroutine mpi_cart_create

end interface fortran

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *ldims, int *periods,

int reorder, MPI_Comm *comm_cart) c/c++

Topologies

Example: 0308MPIExample_cart_create

In the example a 2D cartesian topology is created to send a message along

horizontal and vertical «bands».

ldims(:) = q

periods(:) = .TRUE.

reorder = .FALSE.

call MPI_Cart_Create (MPI_COMM_WORLD, 2, ldims, periods, &

& reorder, cart_comm, ierr)

! Get process coordinates

call MPI_COMM_RANK(cart_comm, cart_rank, ierr)

call mpi_cart_coords(cart_comm, cart_rank, 2, coords, &

& ierr)

CALL MPI_CART_SHIFT(cart_comm, 0, 1, source, dest, ierr)

CALL MPI_SENDRECV_REPLACE(cval, 1, MPI_INTEGER, dest, 0, &

& source, 0, cart_comm, status, ierr)

Topologies

The MPI_CART_CREATE function returns the new

communicator COMM_CART, connected to a grid with NDIMS

dimensions. The extent of each dimension must be defined in

LDIMS(1:NDIMS) and it is possible to specify periodicity for

each dimension. The REORDER variable is used to allow

reordering of the processes.

In cartesian topologies the processes are ordered by rows.

Functions dealing with informations and details about the

topology associated to a communicator are available.

Topologies

Given a communicator COMM, the function MPI_TOPO_TEST returns the

associated topology:

MPI_GRAPH: graph topology

MPI_CART: cartesian topology

MPI_UNDEFINED: no topology

interface

subroutine mpi_topo_test(comm, topol, ierr)

integer, intent(in) :: comm

integer, intent(out) :: topol, ierr

end subroutine mpi_topo_test

end interface

fortran

int MPI_Topo_test (MPI_Comm comm, int *topol) c/c++

Topologies

Given a communicator COMM, with cartesian topology, the

function MPI_CARTDIM_GET returns the number of dimensions

interface

subroutine mpi_cartdim_get(comm, ndims, ierr)

integer, intent(in) :: comm

integer, intent(out) :: ndims, ierr

end subroutine mpi_cartdim_get

end interface

fortran

int MPI_Cartdim_get (MPI_Comm comm, int *ndims) c/c++

Topologies

The function MPI_CART_GET, returns the number DIMS(:) of processes

in each dimension, the periodicity for each dimension, the process

coordinates.

interface

subroutine mpi_cart_get(comm, maxdims, dims, periods, coords, ierr)

integer, intent(in) :: comm, maxdims

integer, intent(out) :: ierr

integer, dimension(:), intent(out) :: dims, coords

logical, dimension(:), intent(out) :: periods

end subroutine mpi_cart_get

end interface

fortran

int MPI_Cart_get (MPI_Comm comm, int maxdims, int *dims,

int *periods, int *coords)
c/c++

Topologies

Given a communicator associated to a cartesian topology a the process

coordinates, the following function returns the process rank:

interface

subroutine mpi_cart_rank(comm, coords, rank, ierr)

integer, intent(in) :: comm

integer, dimension(:), intent(in) :: coords

integer, intent(out) :: rank, ierr

end subroutine mpi_cart_rank

end interface fortran

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank) c/c++

Topologies

The following function returns the coordinates of a process in a cartesian

topology:

interface

subroutine mpi_cart_coords(comm, rank, maxdims, coords, ierr)

integer, intent(in) :: comm, rank, maxdims

integer, dimension(:), intent(out) :: coords

integer, intent(out) :: ierr

end subroutine mpi_cart_coords

end interface fortran

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords) c/c++

Topologies

Topologies may be useful to send messages along specific directions.

As an example, suppose that every process in a cartesian topology has to

send data toward the DIM dimension to a DELTA distance. The following

function returns the ranks of the processes SOURCE and DEST

to be passed to the function

interface

subroutine mpi_cart_shift(comm, dim, delta, source, dest, ierr)

integer, intent(in) :: comm, dim, delta

integer, intent(out) :: source, dest, ierr

end subroutine mpi_cart_shift

end interface fortran

int MPI_Cart_shift(MPI_Comm comm,int dim,int delta,int *source,int *dest) c/c++

CALL MPI SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, &

SENDTAG, RECVBUF,RECVCOUNT, RECVTYPE, &

SOURCE, RECVTAG, COMM, STATUS, IERROR) fortran

Example: MPI_CART_SHIFT

....

C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr))

C find cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)

C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)

C skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm, &

status, ierr)

fortran

Topologies

The following function generates new cartesian topologies by cutting a wider

cartesian space along the given dimensions:

Example: if COMM is associated to a cartesian topology with extensions 2x3x4

and REMAIN_DIMS=(.T.,.T.,.F.), four new topologies are generated

with extension 2x3.

Each process is returned one communicator handle; the former group is

divided in 4 new groups with 6 processes each.

interface

subroutine mpi_cart_sub(comm, remain_dims, newcomm, ierr)

integer, intent(in) :: comm

logical, dimension(:), intent(in) :: remain_dims

integer, intent(out) :: newcomm, ierr

end subroutine mpi_cart_sub

end interface fortran

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm) c/c++

MPI+OpenMP

It is possible to develop parallel programs mixing MPI calls and OpenMP

directives.

Intel compilers: mpixxx -openmp -O3 -o nomefile.exe nomefile.xxx

PGI compilers: mpixxx -mp -O3 -o nomefile.exe nomefile.xxx

GNU compilers: mpixxx -fopenmp -O3 -o nomefile.exe nomefile.xxx

Execution:

export OMP_NUM_THREADS=threads

mpirun -np 2 -machinefile mc -x OMP_NUM_THREADS nomefile.exe

