|nierun|ver5|iar|o
nazionale
per I'informatica

Spark

Giovanni Simonini

Slides partially taken from
the Spark Summit, and Amp Camp:
http://spark-summit.org/ 20 | 4/training
http://ampcamp.berkeley.edu/

DBGroup
Universita di Modena e Reggio Emilia

Dipartimento di Ingegneria 'Enzo Ferrari'

SPARK INTRODUCTION

€ DBGroup @ unimore

MapReduce issues

MapReduce let users write parallel computations using a set of high-level operators

* without having to worry about:
— distribution

— fault tolerance
* abstractions for accessing a cluster's computational resources
* but lacks abstractions for leveraging distributed memory

* between two MR jobs writes results to an external stable storage system, e.g,,
HDFS

I Inefficient for an important class of emerging applications:

* iterative algorithms
— those that reuse intermediate results across multiple computations

— e.g. Machine learning and graph algorithms
* interactive data mining

— where a user runs multiple ad-hoc queries on the same subset of the data

The Spark Solution

Spark handles current computing frameworks’ inefficiently (iterative algorithms
interactive data mining tools)

€ DBGroup @ unimore

How!
* keeping data in memory can improve performance by an order of magnitude

— Resilient Distributed Datasets (RDDs)
rK

* up to 20x/40x faster than Hadoop for iterative applications

RDDs Spo

RDDs provide a restricted form of shared memory:

* based on coarse-grained transformations rather than fine-grained updates to
shared state

* RDDs are expressive enough to capture a wide class of computations

— Including recent specialized programming models for iterative jobs, such as Pregel
(Giraph)

— and new applications that these models do not capture

Universita degli Studi di /\/Ioden-

PageRank Performance

Iteration time (s)

N
-
o

[ERY
U1
o

=
o
o

U
o

171

“ Hadoop

80

& Spark

23
14

30 60
Number of machines

€ DBGroup @ unimore

Other lterative Algorithms

K-Means 155 W Hadoop
Clustering 4.1 ® Spark

0 30 60 90 120 150 180

Logistic 110

Regression | 0.96

0 25 50 75 100 125

Time per Iteration (s)

Goals

Support batch, streaming, and interactive

computations in a unified framework

€ DBGroup @ unimore

Batch

One
f stack to Wy
s ofitat Y
é > rule them alll e)

v
78N

’ :, ‘
[Interactive] < > [Streaming] 7.

e Easy to combine batch, streaming, and interactive computations

* Easy to develop sophisticated algorithms
¢ Compatible with existing open source ecosystem (Hadoop/HDFS)

Spark Ecosystem

BDAS Stack (Feb, 2014)

3 party

RDDs

RDDs are fault-tolerant, parallel data structures:
* let users explicitly:

€ DBGroup @ unimore

— persist intermediate results in memory
— control their partitioning to optimize data placement

— manipulate them using a rich set of operators

* RDDs provide an interface based on coarse-grained transformations (e.g., map, filter and
join) that apply the same operation to many data items

— This allows them to efficiently provide fault tolerance by logging the
transformations used to build a dataset (its lineage)

* Ifa partition of an RDD is lost:

— the RDD has enough information about how it was derived from other RDDs to
re-compute just that partition

Universita degli Studi di Modi-

Key Concepts

Write programs in terms of transformations
on distributed datasets

Resment Distnbuted Datasets Operations

Collections of objects spread across a cluster, e Transformations

stored in RAM or on Disk (e.g. map, filter, groupBy)
 Built through parallel transformations « Actions

(e.g. count, collect, save)

* Automatically rebuilt on failure

Working With RDDs

textFile = sc.textFile('SomeFile.txt")

RDD — -> Value

Transformations

linesWithSpark.count()
74

linesWithSpark.first()
Apache Spark

linesWithSpark = textFile.filter(lambda line: 'Spark' in line)

DBGroup @ unimore

=
)

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

Base RDD

Tines = spark.textFile('hdfs://...")
errors = lines.filter(lambda s: s.startswith('ERROR'))
messages = errors.map(lambda s: s.split('\t')[2]) gﬁ;

messages.cache(y Transformed RDD

Action: here is launched the computation

(Lazy Evaluaziont)
messages.filter(lambda s: 'mysqgl' in s).count()

messages.filter(lambda s: 'php' in s).count()

}=i~.
H-[—H

Block 2

Sis '
Note: |

Block 3

Scaling Down

Degrade Gracefully, if you don't have enough memory
* User can define custom policies to allocate memory to RDDs

[
(@) oo @)
o o @)

40

Execution time (5)

20

Example of a task execution
O with different percentage of
g cache available

@)
™M

12

Cache 25% 50% 75% Fully
disabled cached

% of working set in cache

Fault Recovery

€ DBGroup @ unimore

RDDs track lineage information that can be used to efficiently re-compute lost data

msgs = textFile.filter(lambda s: s.startswith("ERROR"))
.map(lambda s: s.split('\t')[2])

[HDFS File } { Filtered RDD} {Mapped RDDJ
filter map
(func = startsWith(...)) (func = split(...))

€ DBGroup @ unimore

Language Support

Python

lines = sc.textFile(...)
Tines.filter(lambda s: "ERROR' in s).count()

Scala

val lines = sc.textFile(...)
lines.filter(x => x.contains('ERROR')).count()

Java

JavaRDD<String> lines = sc.textFile(...);
Tines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains('error');

})%count();

Standalone Programs
*Python, Scala, & Java

Interactive Shells
* Python & Scala

Performance

* Java & Scala are faster
due to static typing

* ...but Python is often
fine

Universita degli Studi -

Interactive Shell

The Fastest Way to Learn Spark

Available in Python and Scala

AN N
f__ 1 __IN_, /-0 /_/_\ version 0.8.0

Runs as an application on an I~
. . Using Python version 2.6.6 (r266:84292, Sep 11 2012 08:34:23)
eX|St|ng Spark Cluster_ .. Spark czntext avaiable as sc.

>»> file = sc.textFile("hdfs://ip-172-31-11-254.us-west-2.compute.internal:8020/user/
hdfs/ec2-data/pageviews/2007/2007-12/pagecounts-20071209-180000.9z")

>»> file.count()

OR Can run locally -

»>»>> file.filter(lambda line: "Holiday" in line).count()

flo1
—-—

JOB EXECUTION

€ DBGroup @ unimore

Software Components

Spark runs as a library in your program
(1 instance per app)

Runs tasks locally or on cluster

— Mesos, YARN or standalone mode

Accesses storage systems via Hadoop InputFormat
API

— Can use HBase, HDFS, S3, ...

Your application

SparkContext

Cluster Local
manager threads

Worker Worker

Spark Spark
executor executor

HDFS or other storage

€ DBGroup @ unimore

Task Scheduler

General task graphs

Automatically pipelines
functions

Data locality aware

Partrtioning aware
to avoid shuffles

=RDD (g = cached partition

DBGroup @ unimore

=
)

Advanced Features

Controllable partitioning
— Speed up joins against a dataset

Controllable storage formats

— Keep data serialized for efficiency, replicate to multiple nodes, cache on
disk

Shared variables: broadcasts, accumulators

See online docs for details!

Local Execution

€ DBGroup @ unimore

* Just pass 1local or local[k] as master URL
* Debug using local debuggers
— For Java / Scala, just run your program in a debugger

— For Python, use an attachable debugger (e.g. PyDev)

* Great for development & unit tests

WORKING WITH SPARK

Using the Shell

€ DBGroup @ unimore

® O O [cloudera-5-testin

| root@ip-172-31-11-254:~ 2-31-11-254:

' [root@ip-172-31-11-254 ~]# /opt/cloudera/parcels/SPARK/pyspark
|] e

Launching: e

NN N

S pa r k -S he-l_ -l_ # S Ca'l_ a Ay 1A version 0.8.0
pys pa rl k # python g;;r:a F:g:g:tv:::i:glz.g;es£r266:84292, Sep 11 2012 08:34:23)

>>> file = sc.textFile("hdfs://ip-172-31-11-254.us-west-2.compute.internal:8020/user/
hdfs/ec2-data/pageviews/2007/2007-12/pagecounts-20071209-180000.gz")

g — root@ip-172-31-11-254:~ — ssh — 85x22 e

root@ip-=1s

>>> file.count()
856769
>>> file.filter(lambda line: "Holiday" in line).count()

flo1

Modes:

MASTER=1ocal ./spark-shell # local, 1 thread
MASTER=1ocal[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # cluster

SparkContext

* Main entry point to Spark functionalrty
* Avallable in shell as variable "sc’

* In standalone programs, you'd make your own (see later for
detalls)

Creating RDDs

€ DBGroup @ unimore

Turn a Python collection 1nto an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile('file.txt")
sc.textFile('directory/*.txt")
sc.textFile('hdfs://namenode:9000/path/file")

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

€ DBGroup @ unimore

Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # {4}

Map each element to zero or more others
nums.flatMap(lambda x: range(x)) # {0, 0, 1, 0, 1, 2}

Fuzzy Evaluation!

even.collect() Range object (sequence

of numbers 0, 1, .., x-1)

Basic Actions

€ DBGroup @ unimore

nums = sc.parallelize([1, 2, 3]1)

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums . take(2) # => [1, 2]

count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile('hdfs://file.txt")

Working with Key-Value Pairs

€ DBGroup @ unimore

Spark’s 'distributed reduce' transformations operate on RDDs of key-value pairs:

Python: pair = (a, b)

pair[@] # => a
pair[1] # => b Java: Tuple2 pair = new Tuple2(a, b);
pair. 1 // => a
Scala: val pair = (a, b) pair. 2 // => b

pair. 1 // => a
pair. 2 // => Db

Some Key-Value Operations:

pets = sc.parallelize([('cat', 1), ('dog', 1), ('cat', 2)]1)
pets.reduceByKey(lambda x, y: x + y) #{(cat, 3), (dog, 1)}

pets.groupByKey() # {(cat, [1, 2]), (dog, [1])}
pets.sortByKey() # {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the map side

€ DBGroup @ unimore

Example: Word Count

create file 'hamlet.txt’

$ echo -e '"to be\nor not to be' > /usr/local/spark/hamlet.txt

$ IPYTHON=1 pyspark

lines = sc.textFile('file:///usr/local/spark/hamlet.txt’)

words = lines.flatMap(lambda l1ine:

line.split(' "))

w_counts = words.map(lambda word: (word, 1))
counts = w_counts.reduceByKey(lambda x, y: x + y)

counts.collect()
descending order:

counts.sortBy(lambda (word,count):

'to

‘tobeor —» b’ —»

'not to be'! —» 'to

count, ascending=False).take(3)

T

Ebc()al 11)) (be, 2)
(or,ll) (not, 1)
(not, 1)

(to, 1) (or, 1)
(be, 1) (to, 2)

€ DBGroup @ unimore

Other Key-Value Operations

visits = sc.parallelize([('index.html', '1.2.3.4"),
('about.html', '3.4.5.6"),
('"index.html', '1.3.3.1")

pageNames = sc.parallelize([('index.html', 'Home'),
('about.html', 'About') 1)

visits.join(pageNames)

("index.html', ('1.2.3.4', 'Home'))

('index.html', ('1.3.3.1', 'Home'))

('about.html', ('3.4.5.6', 'About'))

visits.cogroup(pageNames)
('index.html', (['1.2.3.4'
('about.html', (['3.4.5.6'

["Home']))

| I

Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks

~words.reduceByKey(lambda x, y: x + vy, 5)
~words.groupByKey(5)
~visits.join(pageNames,5)

Using Local Variables

€ DBGroup @ unimore

Any external variables you use in a closure will automatically be shipped to the
cluster:

query = sys.stdin.readline()
pages.filter(lambda x: query in x).count()

Some caveats:

* FEach task gets a new copy (updates aren't sent back)
* Variable must be Serializable / Pickle-able

* Don't use fields of an outer object (ships all of it!)

€ DBGroup @ unimore

More RDD Operators

map
filter

groupBy

sort

union

join
leftOuterloin
rightouterJ]oin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Z1p

sample

take

first
partitionBy
mapwith
pipe

save

Universita degli Studi di Modena e Reggio Emilia
33

CREATING SPARK APPLICATIONS

Add Spark to Your Project

* Scala/ Java: add a Maven dependency on

groupld: org.spark-project
artifactld:spark-core_2.9.3
version: 0.8.0

* Python: run program with pyspark script

o

O

= Create a SparkContext

)

®

S

o © import org.apache.spark.SparkContext

2 = import org.apache.spark.SparkContext._

QO 9

D val sc = new SparkContext('url', 'name', 'sparkHome', Seq('app.jar'))
Cluster URL, or App Spark install List of JARs with
local / local[N] name path on cluster app code (to ship)

import org.apache.spark.api.java.JavaSparkContext;

©

r% JavaSparkContext sc = new JavaSparkContext(

- "'masterurl', 'name', 'sparkHome', new String[] {'app.jar'}));

c .

o from pyspark import SparkContext

i -

r)

n>_~ sc = SparkContext('masterurl', 'name', 'sparkHome', ['library.py']))

Universita degli Studi di Modena e Reggio EmI
3

L
£ Complete App
©
(e
5
@
)
a
W .

import sys

from pyspark import SparkContext

if _name__ == '_main__"':

sc = SparkcContext('local', 'wordCount', sys.argv[0], None)

Tines = sc.textFile(sys.argv[1l])

counts = lines.flatmap(lambda s: s.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y)

counts.saveAsTextFile(sys.argv[2])

CONCLUSION

Conclusion

* Spark offers a rich APl to make data analytics fast: both fast to write and fast to run
* Achieves |00x speedups in real applications
* Growing community with 25+ companies contributing

Hive on Spark, and more...

SPARK SQL

Data Model

e Tables: unit of data with the same schema
* Partitions: e.g. range-partition tables by date

» Data Types:

— Primitive types
* TINYINT, SMALLINT, INT, BIGINT
BOOLEAN
FLOAT, DOUBLE
STRING
TIMESTAMP

— Complex types
» Structs: STRUCT {a INT; b INT}
* Arrays: ['a', 'b', 'c’]
* Maps (key-value pairs): M['key']

€ DBGroup @ unimore

Hive QL

o Subset of SOL
— Projection, selection
— Group-by and aggregations
— Sort by and order by
— Joins
— Sub-queries, unions
* Hive-specific
— Supports custom map/reduce scripts (TRANSFORM)
— Hints for performance optimizations

CREATE EXTERNAL TABLE wik1i

(1d BIGINT, title STRING, last_modified STRING, xml
STRING, text STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION 's3n://spark-data/wikipedia-sample/';

SELECT COUNT(C*) FROM wiki WHERE TEXT LIKE '%Berkeley%';

Universita degli Studi di Modena e Reggio Emilia
42

Caching Data in Shark

» Creates a table cached in a cluster's memory using RDD.cache ()

e '_cached’ suffix is reserved from Spark, and guarantees caching of the table

€ DBGroup @ unimore

CREATE TABLE mytable_cached AS SELECT *
FROM mytable WHERE count > 10;

* Unified table naming (in Shark 0.8.1):
CACHE mytable; UNCACHE mytable;

Universita degli Studi di Mo-

€ DBGroup @ unimore

Spark Integration

From Scala:

val points = sc.runSql[Double, Double](
'select latitude, longitude from historic_tweets')

val model = KMeans.train(points, 10)

sc.twitterStream(...)
.map(t => (model.closestCenter(t.location), 1))
.reduceByWindow('5s', _ +)

From Spark SQL:

GENERATE KMeans(tweet locations) AS TABLE tweet clusters
// Scala table generating function (TGF):
object KMeans {

@Schema(spec "X double, y double, cluster int')

def apply(points: RDD[(Double, Double)]) = {

}...
¥

Universita degli Studi di Modena e Reggio Emilia
44

Tuning Degree of Parallelism

Shark relies on Spark to infer the number of map task
— automatically based on input size

Number of 'reduce’ tasks needs to be specified

Out of memory error on slaves if too small

Automated process soon (?)

€ DBGroup @ unimore

Under the hood

A better execution engine
— Hadoop MR is ill-suited for short running SQL

Optimized storage format
— Columnar memory store

Various other optimizations
— Fully distributed sort, data co-partitioning, partition pruning, etc.

Extremely fast scheduling
— ms in Spark vs secs in Hadoop MR

Support for general DAGs
— FEach query is a 'job' rather than stages of jobs

Partial DAG Execution (PDE — extension of Spark): Spark SQL can re-optimize a
running query after running the first few stages of its task DAG, choosing better join
strategies or the right degree of parallelism based on observed statistics

Many more useful primitives

— Higher level APIs
— Broadcast variables

Hive Architecture Mfmglu@mmh

(e fableau)
o IR

Physical Plan

SerDes, UDFs

Execution

Query

. Optimizer

mmalpéllllll|l_

Shark Architecture

(R

(e.gyTableau) -

SQL Parser SerDes, UDFs

Columnar Memory Store

* Column-oriented storage for in-memory tables
— when we chache in spark, each element of an RDD is maintained in memory as java object
— with column-store (spark sql) each column is serialized as a single byte array (single java object)

* Yahoo! contributed CPU-efficient compression
— e.g dictionary encoding, run-length encoding

e 3 —20X reduction in data size

Row Storage Column Storage

1 john | 4a 1 p) 3

mike | 3.5 john mike sally

sally | 6.4

€ DBGroup @ unimore

Spark SQL example (1)

Import SQLContext and data types
from pyspark.sql import *

sc 1s an existing SparkContext
sglContext = SQLContext(sc)

Load a text file and convert each 1ine in a tuple. ‘file://’ for
local files
fname = 'file:///usr/local/spark/examples/src/main/resources/people.txt’

lines = sc.textFile(fname)

Count number of elements
parts = lines.map(lambda 1: L.split(", "))
people = parts.map(lambda p: (p[@], p[1l].strip()))

The schema 1is encoded in a string
schemaString = 'name age'

Write elements to a text file
fields = [StructField(field_name, StringType(), True) for

field_name in schemaString.split()]

€ DBGroup @ unimore

Spark SQL example (2)

schema = StructType(fields)

Apply the schema to the RDD
schemaPeople = sqlContext.applySchema(people, schema)

Register the SchemaRDD as a table
schemaPeople.registerTempTable('people’)

SQL can be run over SchemaRDDs that have been registered as a table
results = sqglContext.sql('SELECT name FROM people')

The results of SQL queries are RDDs and support all the normal RDD
operations
results = sqlContext.sql('SELECT name FROM people') # return a RDD
names = results.map(lambda p: 'Name: ' + p.name)

for name in names.collect():
print name

€ DBGroup @ unimore

Optimized Execution

Logical
Plan

Project
name

Filter
id=1

Project
id,name

Writing imperative code to optimize such patterns generally is hard.

Physical
Plan

IndexLookup
id=1
return: name

Instead write simple rules:

Each rule makes one small change
Many rules together to fixed point.

€ DBGroup @ unimore

Optimizing with Rules

Original Filter
Plan Push-Down
Project Project v
name name
Filter N ,4{ Project

id =1 id,name

Filter
id=1

Project
id,name

Combine Physical
Projection Plan
Project .
name \
\
\
\
\
Filter N
id =1)
IndexLookup

(People ’
—————— T

id =1
return: name

Universita degli Studi -

Ongoing Work

Code generation for query plan (Intel)
BlinkDB integration (UCB)
Bloom-filter based pruning (Yahoo!)

More intelligent optimizer

SPARK STREAMING

What is Spark Streaming?

€ DBGroup @ unimore

* Framework for large scale stream processing
— Scales to 100s of nodes
— Can achieve second scale latencies
— Integrates with Spark’s batch and interactive processing
— Provides a simple batch-like APl for implementing complex algorithm
— (Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

€ DBGroup @ unimore

Motivation

* Many important applications must process large streams of live data and
provide results in near-real-time

Browse categories - Find friends

— Social ne'twor‘k 'trends 7OVeMew Retresn [Lostony | Lastweok | Lastmontn | Arume | Jun 16, 2010 2: PM - Jun 16, 2010 455 P

. . . Worldwide Trends - Char i
— Website statistics e | MMWWM\/MM A 1
#ThingsGirlsLike o Pageviews st manth
— Intrustion detection systems e L) —~

Internet
#NigerianBloggers &._\ /__/T
_t #HocaliSoykinminiUnutma
e C- FC Twente
Toni Cant6

David Bowie

snort

Internal)
Network
/

* Require latencies of few seconds —_— / \ 'N";iw;'k)

DBGroup @ unimore

=
)

Need for a framework ...

... for building such complex stream processing applications

But what are the requirements from such a framework?

* Scalable to large clusters

* Second-scale latencies

* Simple programming model

DBGroup @ unimore

=
)

Case study: XYZ, Inc.

Any company who wants to process live streaming data has this problem
Twice the effort to implement any new function
Twice the number of bugs to solve

Twice the headache

New Requirement:
Scalable to large clusters
Second-scale latencies
Simple programming model

Integrated with batch & interactive processing

Stateful Stream Processing

mutable state

* Traditional streaming systems have a
event-driven record-at-a-time processing

€ DBGroup @ unimore

model :
input
P —
— Each node has mutable state records
— For each record, update state & send
new records
e State is lost if node dies! _
Input
records

» Making stateful stream processing be
fault-tolerant is challenging

Spark Streaming: Discretized Stream Processing (1)

Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

= Chop up the live stream into batches of X
seconds

Streaming
-

= Spark treats each batch of data as RDDs and batches of X —
processes them using RDD operations seconds -
= Finally, the processed results of the RDD
operations are returned in batches ‘ R B Spark
processed
results

Spark Streaming: Discretized Stream Processing (2)

Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

. ‘ Spark
= Batch sizes as low as /2 second, latency ~ | Streamine
second =

= Potential for combining batch processing and batches of X
streaming processing in the same system seconds

= m-m-

processed
results

Example | — Get hashtags from Twitter

val tweets = ssc.twitterStream (<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of]
data

Twitter Streaming AP bach@t batch@t+| batch@t+2 ‘
tweets DStream - - -

stored in memory as an RDD
(immutable, distributed)

Example | — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))

transformation: modify data in one J

new DStream Dstream to create another DStream

N

tweets DStream

hashTags Dstream
[#cat, #dog, ...]

new RDDs created
for every batch

Example | — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hash Tags.saveAsHadoopFiles("hdfs://...")

j output operation: to push data to external storage]

tweets DStream

hashTags DStream

flatMap flatMap flatMap
save save

. > e every batch saved
% v & ’ to HDFS

Java Example

Scala
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))
hash Tags.saveAsHadoopFiles("hdfs://...")

Java
JavaDStream<Status> tweets = ssc.twitterStream (<Twitter username>, <Twitter password>)

JavaDstream<String> hash Tags = tweets.flatMap(new Function<..> { })
hash Tags.saveAsHadoopFiles("hdfs://...")

Function object to define the
transformation

Fault-tolerance

* RDDs are remember the sequence
of operations that created it from
the original fault-tolerant input data

» Batches of input data are replicated
in memory of multiple worker
nodes, therefore fault-tolerant

* Data lost due to worker failure, can
be recomputed from input data

hashTags
RDD

input data
replicated
in memory

lost partitions
recomputed on
other workers

Example — Counting HashTags

Count the (e.g. most 10 popular) hashtags over last 10 mins

|. Count HashTags from a stream

2. Count HashTags in a time windows from a stream

Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()

tweets
flatMap flatMap flatMap
hashTags
map :
auklk
reduceByKey reduceByKey reduceByKey
tagCounts

[(#cat, 10), (#dog, 25), ...]

Count the hashtags over last 10 mins (1)

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding Wﬁ window length sliding interval
operation

Example — Count the hashtags over last |0 mins (2)

val tasCounts = hash Tags.window(Minutes(10), Seconds(1)).countByValue()

t-1 1 t+| t+2 t+3

hashTags {

countByValue

\
tagCounts . . count over all

| the data in the
window

)

Smart window-based countByValue

€ DBGroup @ unimore

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

t-| t t+| t+2 t+3
hash Tags
countByValue
\
add the counts
from the new
batch in the
subtract the window
. R counts from
tagCounts + ' 1 | batch before
Tt =7 | the window

-

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

€ DBGroup @ unimore

val hashTags = tweets.flatMap (status => getTags(status))
hash lags.saveAsHadoopFiles("hdfs://..")

Spark program on Twitter log file

val tweets = sc.hadoopFile("hdfs://..")

val hashTags = tweets.flatMap (status => getTags(status))
hash Tags.saveAsHadoopFile("hdfs://..")

Spark Streaming Conclusion

€ DBGroup @ unimore

* Stream processing framework that is ...
— Scalable to large clusters
— Achieves second-scale latencies
— Has simple programming model
— Integrates with batch & interactive workloads

— Ensures efficient fault-tolerance in stateful computations

* For more information, checkout the paper:
www.cs.berkeley.edu/~matei/papers/20 | 2/hotcloud spark streaming.pdf

GRAPHX

Difficult to Program and Use

* Having separate systems for each view Is:
— difficult to use

— Inefficient

€ DBGroup @ unimore

* Users must Learn, Deploy, and Manage multiple systems

§ e PArK” # 4% Grapnlab

| eads to brittle and often
complex interfaces

0
£ Inefficient
®
o
5
é? Extensive data movement and duplication across
the network and file system

_

7

' '- Graph Lab\ § :

HDFS HDFS

Limited reuse internal data-structures

across stages

¥ ive_

€ DBGroup @ unimore

Solution: The GraphX Unified Approach

New AP New System
Blurs the distinction between Combines Data-Parallel Graph-
lables and Graphs Parallel Systems

e
(S
3O
1S

"
(]
)
v

N

;2 Spcwr‘lgZ
R A (N
Graph Lab'

a
L)
ay,
®

X/

(S

S

[9X)
/)

0> 138

Enabling users to easily and efficiently express
the entire graph analytics pipeline

¥ ’V_

GraphX

Tables and Graphs are composable
views of the same physical data

Table View GraphX Unified Graph View
Representation

Each view has its own operators that
exploit the semantics of the view
to achieve efficient execution

MLLIB

€ DBGroup @ unimore

Machine Learning on Spark

Algorithms
MLIib .1 contains the following algorithmes:

* linear SVM and logistic regression

* classification and regression tree

* k-means clustering

* recommendation via alternating least squares

* singular value decomposition

* linear regression with L1- and L2-regularization
* multinomial naive Bayes

* basic statistics

* feature transformations

Usable in Java, Scala and Python
MLIib fits into Spark's APls and interoperates with NumPy in Python

points = spark.textFile("hdfs://...")
.map(parsePoint)

model = KMeans.train(points, k=10) spark.apache.org/millib/

SPARK REAL CASES APPLICATIONS

Thunder: Neural Data Analysis in Spark

thunder 0.4.1 Tutorials APl Site ~ Page ~ Search

€ DBGroup @ unimore

thunder: neural data analysis in spark

Thunder is a library for analyzing large-scale neural data. It's fast to run, easy to develop for, and can be used interactively. It is built on
Spark, a new framework for cluster computing.

Thunder includes utilties for loading and saving different formats, classes for working with distributed spatial and temporal data, and
modular functions for time series analysis, factorization, and model fitting. Analyses can easily be scripted or combined. It is written in
Spark's Python API (Pyspark), making use of scipy, numpy, and scikit-learn.

Project Homepage: thefreemanlab.com/thunder/docs/
Youtube: www.youtube.com/watchiv=Gg SfWIIfgA&list=UURzsq/k4-kT-h3TDUBO82-w

Universita degli Studi di Modena e Reggio .

€ DBGroup @ unimore

Big Data Genomics

Big Data Genomics Blog Archives Projects MailingList CLAs

i@ MAR 4TH, 2014

Projects

Thanks to advances in both the cost and speed of sequencing technology, the amount of genomic data available for
processing is growing exponentially. As a project, our goal is to build scalable pipelines for processing genomic data
on top of high performance distributed computing frameworks.

Variant Call Format

From Wikipedia, the free encyclopedia

Projects

At the moment, we The Variant Call Format (VCF) specifies the format of a text file used in bioinformatics for storing gene sequence variations.

* ADAM: A scalable API| & CLI for genome processing
* bdg-formats: Schemas for genomic data
» avocado:|A Variant Caller, Distributed

The source for these projects is available at Github.

Project Homepage: _Homepage: http://bdgenomics.org/projects/
Youtube: www.youtube.com/watch?v=RwyEEMw-NR8&list=UURzsq/k4-k T-h3TDUBO82-w

Spark

ADDENDUM

http://<Standalone Master>:8080 (by default)

Administrative GUIs

0 O O /[spark Master at spark:/ X\D. —

€« - C (D localhost:8080

URL: spark://mbp-2.local:7077

Memory: 45.0 {3B Total, 1536.0 MB Used
Applications: | Running, 0 Completed

Workers

Id
worker-20131802231645-192.168.1.106-56789
worker-20131802231657-192.168.1.106-56801
worker-20131802231705-192.168.1.106-56806

Running Agplications

Name
Spark shell

app-20131202231712-0000

Q VG ¢) / || Spark shell - Spark Stages % \D

1 localhost:4040/stages/

Spoﬂ'g Spark Master at spal ¢ °©

Stages Storage Environment

.S‘pc»r‘izz

Spark Stages

Total Duration: 3.8 m
Scheduling Mode: FIFO
Active Stages: 0
Completed Stages: 2
Failed Stages: 0

Active Stages (0)

Stage Id Description Submitted

Completed Stages (2)

Stage Id Description
0 count at <console>:13

1 reduceByKey at <console>:13

Failed Stages (0)

Stage Id Description Submitted

Executors

Duration

Submitted
2013/12/02 21:07:55
2013/12/02 21:07:55

Duration

Tasks: Succeeded/Total Shuffle Read

Duration Tasks: Succeeded/Total Shuffle

o (N 7ot

wsms (R
Tasks: Succeeded/Total Shuffle Read

EXAMPLE APPLICATION: PAGERANK

Example: PageRank

* Good example of a more complex algorithm
— Multiple stages of map & reduce

* Benefits from Spark’s in-memory caching
— Multiple rterations over the same data

Basic Idea

€ DBGroup @ unimore

Give pages ranks (scores) based
on links to them

* Links from many pages =»
high rank

* Link from a high-rank page
=>» high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

1.0

1.0

1.0

1.0

Algorithm

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

1.0

1.0 0.5

0.5

1.0

0.5

0.5

1.0

Algorithm

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

1.85

0.58

0.58

1.0

Algorithm

€ DBGroup @ unimore

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

1.85
0.58

0.58 0.29

0.29

0.58

0.5

0.5

1.0

Algorithm

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

1.31

0.39 {

0.58

1.72

Algorithm

€ DBGroup @ unimore

Start each page at a rank of |

On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

Set each page’s rank to 0.15 + 0.85 x contribs

Final state: 144

0.46

0.73

1.37

Algorithm

Scala Implementation

val links
var ranks

// load RDD of (url, neighbors) pairs
// load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatMap {
case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))
¥

ranks = contribs.reduceByKey(_ + _)
.mapValues(@.15 + 0.85 *)
ky

ranks.saveAsTextFile(...)

€ DBGroup @ unimore

References

Zaharia, Matel, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing." Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation. USENIX Association, 2012.

Xin, Reynold S, et al. "Shark: SQL and rich analytics at scale." Proceedings of the 2013

international conference on Management of data. ACM, 201 3.
https://spark.apache.org/
http://spark-summit.org/20 | 4/training

http://ampcamp.berkeley.edu/

T d_

