
Università degli Studi di Modena e Reggio Emilia
1

D
BG

ro
up

 @
 u

nim
or

e

Giovanni Simonini

DBGroup
Università di Modena e Reggio Emilia

Dipartimento di Ingegneria “Enzo Ferrari”

Università degli Studi di Modena e Reggio Emilia
2

D
BG

ro
up

 @
 u

nim
or

e

ThroughputLatency

Internet

Private
data

center

Data-
parallel

Shared
memory

MapReduce

Università degli Studi di Modena e Reggio Emilia
3

D
BG

ro
up

 @
 u

nim
or

e

•  Programming distributed systems has always been very difficult task, needing
specialized techniques and experts

•  Moore’s Law has held for over 40 years:
-  Processing power double every two years
-  Processing speed is no longer the problem

•  Getting the data to the processor becomes the bottleneck
–  e.g.: Typical disk transfer rate: 75MB/sec���

 Time taken to transfer 100GB of data to the processor:���
 ~22minutes! (actual time is worse if servers have less than 100GB RAM)���

“End of the Moore’s low as we know it”
•  Increasing performance cannot be achieved just through increasing

hardware speed, new approach is needed
•  Distributed computation must be exploited

-  Micro scale: multicore processing
-  Macro scale: cloud computing / distributed data parallel systems

Università degli Studi di Modena e Reggio Emilia
4

D
BG

ro
up

 @
 u

nim
or

e 3#4#00,0%$#+#(#6,6%

!"#$%&%'())('%&%'() !"#$% !"#$% !"#$%

*+
,

*+
,

*+
,

+-
./
0#
#.
-

+-
./
0#
#.
-

+-
./
0#
#.
-

+-
./
0#
#.
-

+-
./
0#
#.
-

+-
./
0#
#.
-

!"#$%&'((()'"*#$+
'12-0%304.-5%'3+
670-28"9:%'5#804

)'"*#$+

'12-0;%304.-5 '12-0;%!"#$ '12-0;%).81"9:

Common in RDBMS Scale to 1000 nodesEasy to program, $$$

Università degli Studi di Modena e Reggio Emilia
5

D
BG

ro
up

 @
 u

nim
or

e

Odersky M. : “Working hard to keep it simple”. Keynote at OSCON ’11.

var x = 0
async { x = x + 1}
async { x = x * 2}

One method to avoid ND output is to eliminate ND execution, for example by means
of coordination method (e.g. locks)

Non-deterministic Output
Non-deterministic���

Execution
Mutable

State= +

Università degli Studi di Modena e Reggio Emilia
6

D
BG

ro
up

 @
 u

nim
or

e

Backus J. W.: “Can Programming Be Liberated From the von Neumann Style? A Functional Style and its Algebra of Programs”. In CACM ‘78.

Processor	

Memory	

Data	 Instruc1ons	

The Von Neumann Model (VNM)

In the VNM, computers are logically partitioned into memory, cpu, and a connecting tube.
Then memory is again partitioned into a data segment and a code segment.
This model suffers from an intrinsic limitation:
•  the connection between the memory and the cpu acts as a bottleneck restricting the

computation rate. This is what Backus [Backus] named the Von Neumann bottleneck.
Thus, programmers are forced to split computation in sequences of operations that step
by step must be applied by moving data and code back and forth from the memory and
the cpu. Imperative languages are high level abstractions of the Von Neumann model, and
therefore they also inherit its bottleneck.
In fact, for such languages, the program logic mainly concerns with the control flow, to
assure that operations are executed in the proper order; while program state is an
ordered array of data values to permit an efficient access to memory locations.

Università degli Studi di Modena e Reggio Emilia
7

D
BG

ro
up

 @
 u

nim
or

e

•  To overcome the Von Neumann bottleneck, a different programming style
must then be embraced: instead of specifying how the computation flow
should proceed sequentially in time, programmers must be pushed to reason
more in space:

•  computation intended as a set of order-agnostic transformations applied in
parallel to a collection of input data elements.

•  The output is then a new set of elements which can be used as new building
block for the successive computations.

Time
(concurrent / imperative languages)

Sp
ac

e
(p

ar
all

el)

Odersky M. : “Working hard to keep it simple”. Keynote at OSCON ’11.

Università degli Studi di Modena e Reggio Emilia
8

D
BG

ro
up

 @
 u

nim
or

e

•  State is immutable by default. As a consequence, the parallel nature of modern
architectures can be fully exploited while maintaining a deterministic output.

•  Thanks to the immutability of states, not only the Von Neumann bottleneck is
avoided and parallel programming becomes natural, but also fault-tolerance concerns
can be easily addressed:
-  if only deterministic operations are considered, and the evolution of the immutable states is

logged, every time a state is lost because of a machine fault, it can be recomputed starting
from the previous state, and replaying the proper set of operations.

•  Due to the above features, we are not surprised to see many data-parallel
frameworks embracing a functional programming style:
-  Exploited by modern data-parallel system “MapReduce-like”

§  mainly driven by industrial needs

Non-deterministic Output
Non-deterministic���

Execution
Mutable

State= +

Università degli Studi di Modena e Reggio Emilia
9

D
BG

ro
up

 @
 u

nim
or

e

What is needed to implement a functional programming approach on a
distributed system?

•  Google File System (paper published in 2003)

•  Google MapReduce (paper published in 2003 – implemented at Google in 2002)

•  Hadoop (2006-2008)

–  HDFS
–  MapReduce
–  A whole ecosystem

http://thebigdatablog.weebly.com/blog/the-hadoop-ecosystem-overview

Università degli Studi di Modena e Reggio Emilia
10

D
BG

ro
up

 @
 u

nim
or

e

•  Google File System
•  Design Assumption
•  Architecture
•  HDFS

Università degli Studi di Modena e Reggio Emilia
11

D
BG

ro
up

 @
 u

nim
or

e

•  Goals (as previous distributed file systems):
–  performance, scalability, reliability, and availability

However, its design has been driven by key observations of particular
application work- loads and technological environment

•  Design assumptions
–  Hardware failures are common (commodity machines)

•  If medium-time-between-failure is 1 year – Then 10000 servers have one failure / hour

–  Files are huge (GB) and their number is limited (millions, not billions)
–  Sequential writes: typically most files are mutated by appending new data rather

than overwriting existing data
§  Random writes within a file are typically non-existent (possible, but not

efficient)
–  Sequential reads: once written, the files are only read, and often only sequentially

§  Random modification in files possible, though not efficient
–  High sustained bandwidth rather than low latency

§  Batch processing

Università degli Studi di Modena e Reggio Emilia
12

D
BG

ro
up

 @
 u

nim
or

e

•  Files are divided into fixed-size chunks

-  Size: typically 64/128 MB (modifiable parameter)

-  Files are replicated (by default 3 times, remember: fault-tolerance)

-  Advantages of (large) fixed-size chunks:
§  Disk seek time small compared to transfer time
§  A single file can be larger than a node’s disk space
§  Fixed size makes allocation computations easy

o  Why not increase the chunk size further?���
Maps task operate on one chunk at a time the increasing of the
chunk size decreases the parallelism (see MapReduce)

Università degli Studi di Modena e Reggio Emilia
13

D
BG

ro
up

 @
 u

nim
or

e

•  Single Master maintains all file system metadata:
-  the namespace, access control information, the mapping from files to

chunks, and the current locations of chunks
-  All metadata is kept in master’s memory (fast random access)

•  Multiple Chunkservers store chunks on local disks as Linux
files and read or write chunk data specified by a chunk handle
and byte range.
-  chunkserver has the final word over what chunks it has

•  Heartbeat messages between master and chunkservers
-  Is the chunkserver still alive? What chunks are stored at the

chunkserver?

•  Single Master can became the bottleneck
-  HDFS Federation in 2.X versions: several NameNodes share control

(partition of filesystem namespace)

Università degli Studi di Modena e Reggio Emilia
14

D
BG

ro
up

 @
 u

nim
or

e

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

1) Client translates filename and byte offset specified
by the application into a chunk index within the file.
Sends request to master

Università degli Studi di Modena e Reggio Emilia
15

D
BG

ro
up

 @
 u

nim
or

e

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

2) The master replies with chunk handle and locations

Università degli Studi di Modena e Reggio Emilia
16

D
BG

ro
up

 @
 u

nim
or

e

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

3) Client caches the metadata.

4) Client sends a data request to one of the replicas (the
closest one). Byte range indicates wanted part of the chunk.
More than one chunk can be requested within a single request.

Università degli Studi di Modena e Reggio Emilia
17

D
BG

ro
up

 @
 u

nim
or

e

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

5) Contacted chunkserver replies
with the requested data

Università degli Studi di Modena e Reggio Emilia
18

D
BG

ro
up

 @
 u

nim
or

e

Replicas
•  One of the 3 replicas is designated as a prime replica

–  This information is stored on the master node
–  The master node continuously pings the replicas to be sure that they are alive
–  If one node is unreachable, a new replica is created

Write Operation
•  When writing data, the client contact all the 3 replicas

1.  The prime replica decides where to writes the data, assign the offset, and sent it
to the secondary replicas

2.  If all the replicas succeed in writing the data, the operation is completed
3.  If some replica returns a failure, the offset value is changed and the write

process is restarted with the new value
–  In this way, multiple writes can be performed in parallel, and we are sure that at

least 3 replicas exists every time
–  GFS very good in bulk writes at the end of files, not very good in random writes

at the middle of a file.
•  We will see that GFS is a really important piece in MapReduce

Università degli Studi di Modena e Reggio Emilia
19

D
BG

ro
up

 @
 u

nim
or

e

•  The File System (FS) shell includes various shell-like commands that directly
interact with the Hadoop Distributed File System (HDFS)

•  The FS shell (Unix-like) is invoked by:
bin/hadoop fs <args>

•  lsr
•  mkdir
•  moveFromLocal
•  moveToLocal
•  mv
•  put
•  rm
•  rmr
•  setfacl
•  setfattr
•  setrep
•  stat
•  tail
•  test
•  text
•  touchz

•  appendToFile
•  cat
•  chgrp
•  chmod
•  chown
•  copyFromLocal
•  copyToLocal
•  count
•  cp
•  du
•  dus
•  expunge
•  get
•  getfacl
•  getfattr
•  getmerge
•  ls

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

GFS HDFS

Master NameNode

Chunkserver DataNode

Chunk Block

Università degli Studi di Modena e Reggio Emilia
20

D
BG

ro
up

 @
 u

nim
or

e

•  Data Model
•  Architecture
•  First Algorithms
•  Advanced optimization

Università degli Studi di Modena e Reggio Emilia
21

D
BG

ro
up

 @
 u

nim
or

e

•  Developed by Google and first presented in:
–  Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data processing

on large clusters. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design \& Implementation - Volume 6 (OSDI'04), Vol. 6. USENIX
Association, Berkeley, CA, USA, 10-10.

•  Who use Map-Reduce? (Actually Hadoop, Map-Reduce open source implementation)
–  Amazon CloudSearch, Accela Communication, Adobe, AOL, adyard, Able Grape,

Adknowledge, Aguja, Alibaba, AOL, ARA.COM.TR, Archive.is, Atbrox, BabaCar,
Basenfasten, Benipal Technologies, Beebles, Bixo Labs, BrainPad, Brilig, Brockmann
Consult GmbH, Caree.rs, CDU now!, Charleston, Cloudspace, Contestweb,
Cooliris, Cornell University Web Lab, CRS4, crowdmedia, Datagraph, Dataium,
Deepdyve, Detektei Berlin, Detikcom, devdaily.com, DropFire, eBay, eCircle, Enet,
Enormo, Eyealike, Explore.To Yellow Pages, Facebook…

–  More at http://wiki.apache.org/hadoop/PoweredBy

Università degli Studi di Modena e Reggio Emilia
22

D
BG

ro
up

 @
 u

nim
or

e

•  MapReduce is an high-level programming model and implementation for large-
scale parallel data processing.

•  A MapReduce program consists of two functions (inspired by primitives of
functional programming language):
–  MAP function:

•  Input: (input key, value)
• Output: bag of (intermediate key, value)

–  REDUCE function:
•  Input: (intermediate key, bag of values)
• Output: bag of output (values)

System executes the program in two steps:
step 1) the map function is applied in parallel to all (input key, value) pairs in the input file
step 2) the system will group all pairs with the same intermediate key (“shuffle”), and passes
the bag of values to the REDUCE function

Università degli Studi di Modena e Reggio Emilia
23

D
BG

ro
up

 @
 u

nim
or

e

map R

map

map

R

R

input data intermediate results
final results
R file output

Map Phase Shuffle
(GroupByKey)

Reduce Phase

Università degli Studi di Modena e Reggio Emilia
24

D
BG

ro
up

 @
 u

nim
or

e

http://blog.trifork.com//wp-content/uploads/2009/08/MapReduceWordCountOverview1.png

Università degli Studi di Modena e Reggio Emilia
25

D
BG

ro
up

 @
 u

nim
or

e

Università degli Studi di Modena e Reggio Emilia
26

D
BG

ro
up

 @
 u

nim
or

e

•  Consider the problem of counting the number of occurrences of each word
in a large collection of documents:

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value: EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values: result += ParseInt(v);
 Emit(AsString(result));

•  The map function emits each word plus an associated count of occurrences
(just ‘1’ in this simple example).

•  The reduce function sums together all counts emitted for a particular word.

Università degli Studi di Modena e Reggio Emilia
27

D
BG

ro
up

 @
 u

nim
or

e

Hadoop environment takes care of:

•  Partitioning the input data

•  Scheduling the program’s execution across a set of machines

•  Performing the group by key step

•  Handling node failures

•  Managing required inter-machine communication

Università degli Studi di Modena e Reggio Emilia
28

D
BG

ro
up

 @
 u

nim
or

e

Hadoop Daemons*:
Each daemon runs in its own Java Virtual Machine (JVM)

1.  JobTracker
–  Manages MapReduce jobs, distribute individual tasks (map/reduce) to

machines running the…

2.  TaskTracker
–  Instantiates and monitors individual Map and Reduce tasks
–  When a TaskTracker receives a request to run a task, it instantiates a

separate JVM for that task
•  Can run multiple tasks at the same time depending on the hardware

resources

*  For what concerns “Map-Reduce alone”, in total they are five:���
NameNode (HDFS), Secondary NameNode (HDFS - performs housekeeping to alleviate
NameNode computations), DataNode (HDFS), JobTracker, and TaskTracker

Università degli Studi di Modena e Reggio Emilia
29

D
BG

ro
up

 @
 u

nim
or

e

•  JobTracker takes care of:
–  task status: (idle, in-progress, completed)
–  scheduling idle tasks as resources (managed by taskTrackers) become available
–  gathering location and size of each intermediate file produced by the Map tasks
–  sending this info to the reducer tasks

•  JobTracker pings taskTrackers periodically to detect failures:
–  if a Map failure occurs:

• Map tasks completed or in-progress are reset to idle
•  Reduce tasks are notified when the map task is rescheduled on another

taskTracker
–  if Reduce failure occurs:

• Only in-progress tasks are reset to idle
–  JobTracker failure

• MapReduce task is aborted and client is notified

Università degli Studi di Modena e Reggio Emilia
30

D
BG

ro
up

 @
 u

nim
or

e '-5'$*%0#123*$4+*%

Università degli Studi di Modena e Reggio Emilia
31

D
BG

ro
up

 @
 u

nim
or

e

•  How to chose the number of Mappers and Reducers?

–  M map tasks, R reduce tasks

–  Rule of thumb:
• Make M and R much larger than the number of nodes in cluster

– One block (chunk) per map is common
–  Improves dynamic load balancing and speeds recovery from worker failure

–  Usually R is smaller than M, because output is spread across R files

Università degli Studi di Modena e Reggio Emilia
32

D
BG

ro
up

 @
 u

nim
or

e

•  Whenever possible, Hadoop will attempt to assign a Map task to a node working on
a block of data stored locally (the chunk of file in HDFS)

•  If this is not possible, the Map task will have to transfer the data across the network as
it process that data

•  Once the Map tasks have finished, data is then transferred across the network to the
Reducers
–  Intermediate outputs of the Map tasks are written only on the local filesystem (on the node

where it is running, not on HDFS); if the node fails, all computed data is lost, and the
JobTracker reassign the computation to another worker.

–  Although the Reducers may run on the same physical machines as the Map tasks, there is no
concept of data locality for the Reducers

•  All Mappers will, in general, have to communicate with all Reducers

•  It appears that the shuffle and sort phase is a bottleneck:
–  The reduce method cannot start until all Mapper have finished
–  In practice, Hadoop will start to transfer data from Mappers to Reducers as the Mappers

finish work

Università degli Studi di Modena e Reggio Emilia
33

D
BG

ro
up

 @
 u

nim
or

e

•  Often a map task will produce many pairs of the form (k,v1), (k,v2), … for
the same key k (e.g. Word Count)

•  Can save network time by pre-aggregating at mapper
–  combine(k1, list(v1)) à v2
–  Usually same as reduce function

•  Works only if reduce function is commutative and associative:
–  Sum
–  Average

•  if mapper emit (k, (partial_sum, num_of_instances_summed))
•  reduce: compute sum([partial_sum])/sum([num_of_instances_summed])

–  Median
• not possible

•  Create a monoid out of the intermediate value emitted by the mapper:
–  A monoid is an algebraic structure with a single associative binary operation and an identity

element. As a simple example, the natural numbers form a monoid under addition with the
identity element 0

Università degli Studi di Modena e Reggio Emilia
34

D
BG

ro
up

 @
 u

nim
or

e

•  Inputs to map tasks are created by contiguous splits of input file

•  For reduce, we need to ensure that records with the same
intermediate key end up at the same worker

•  Hadoop uses a default partition function e.g., hash(key) mod R

•  Sometimes useful to override
–  E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in

the same output file

•  Custom Partitioners are also useful:
–  to avoid potential performance issues, redistributing the workload across

Reducers
–  to perform Secondary Sort (allow to customize shuffle and sort)

Università degli Studi di Modena e Reggio Emilia
35

D
BG

ro
up

 @
 u

nim
or

e

E.g. Find the most frequent word starting with “a”

•  How to perform secondary sort?
–  “natural key” vs “actual key”:

e.g. (key =‘a#23’, value=‘apple’)���
(key =‘a#9’, value=‘airplane’)���
(key =‘a#22’, value=‘air’)

• custom partitioner���
“group by” performed on a sub-set of the key���
e.g. all key starting with ‘a’ are sent to the same reducer

• custom comparator ���
record ordered according to a custom function ���
e.g. sort by the second half of the key

Università degli Studi di Modena e Reggio Emilia
36

D
BG

ro
up

 @
 u

nim
or

e

Given a collection of textual documents, how to create an
inverted index?

input:
tweet_01 “apple computers are …”
tweet_02 “I an apple today …”
tweet_03 “todays computers are … ”

desired output:
“apple”, (tweet_01, tweet_02)
“computers”, (tweet_01, tweet_03)
“todays”, (tweet_02, tweet_03)
…

Map(k,val):
for word in val:

emit(w,k)

Reduce(k,values):
emit(k, set(values))

Università degli Studi di Modena e Reggio Emilia
37

D
BG

ro
up

 @
 u

nim
or

e

Order

type orderid account date

ord 001 john 14-12

ord 002 sim 13-12

ord 003 mary 09-12

LineItem

type orderid itemid qty

line 001 i1 3
line 001 i2 2

line 002 i1 5

line 002 i3 2
line 003 i2 3

desired output:

001, john, 14-12, i1, 3
001, john, 14-12, i2, 2
002, sim, 13-12, i1, 5
002, sim, 13-12, i3, 2
003, mary, 09-12, i2, 3

Università degli Studi di Modena e Reggio Emilia
38

D
BG

ro
up

 @
 u

nim
or

e

Map(k,val):
orderid = val[1]
emit(orderid, val)

Reduce(k,values):
lines = []
for val in values:

type = val[0]
if type == ‘ord’:

order = val
if val[0] == ‘line’
else:

lines.append(val)
for line in line:

emit(order + line)

Università degli Studi di Modena e Reggio Emilia
39

D
BG

ro
up

 @
 u

nim
or

e

MEMORY-BACKED JOIN:
•  If one of the two dataset can fit in memory, it is possible to store in memory

a copy of the dataset for each mapper
•  Reduce phase only to aggregate the data

SkewTune: Mitigating Skew in MapReduce Applications

YongChul Kwon1, Magdalena Balazinska1, Bill Howe1, Jerome Rolia2

1 University of Washington, 2 HP Labs
{yongchul,magda,billhowe}@cs.washington.edu, jerry.rolia@hp.com

ABSTRACT
We present an automatic skew mitigation approach for user-
defined MapReduce programs and present SkewTune, a sys-
tem that implements this approach as a drop-in replacement
for an existing MapReduce implementation. There are three
key challenges: (a) require no extra input from the user
yet work for all MapReduce applications, (b) be completely
transparent, and (c) impose minimal overhead if there is no
skew. The SkewTune approach addresses these challenges
and works as follows: When a node in the cluster becomes
idle, SkewTune identifies the task with the greatest expected
remaining processing time. The unprocessed input data of
this straggling task is then proactively repartitioned in a way
that fully utilizes the nodes in the cluster and preserves the
ordering of the input data so that the original output can be
reconstructed by concatenation. We implement SkewTune
as an extension to Hadoop and evaluate its e↵ectiveness us-
ing several real applications. The results show that Skew-
Tune can significantly reduce job runtime in the presence of
skew and adds little to no overhead in the absence of skew.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed

databases, Parallel databases, Query processing

General Terms
Design, Performance

1. INTRODUCTION
Today, companies, researchers, and governments accu-

mulate increasingly large amounts of data that they pro-
cess using advanced analytics. We observe that the in-
creased demand for complex analytics support has trans-
lated into an increased demand for user-defined operations
(UDOs) — relational algebra and its close derivatives are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

0 100 200 300
Time (seconds)

Ta
sk

s

Shuffle

Sort

Exec

M
A
P

R
E
D
U
C
E

Figure 1: A timing chart of a MapReduce job run-
ning the PageRank algorithm from Cloud 9 [18]. Exec
represents the actual map and reduce operations. The
slowest map task (first one from the top) takes more than
twice as long to complete as the second slowest map task,
which is still five times slower than the average. If all
tasks took approximately the same amount of time, the
job would have completed in less than half the time.

not enough [23, 32]. But UDOs complicate the algebraic
reasoning and other simplifying assumptions relied on by the
database community to optimize execution. Instead devel-
opers rely on “tricks” to achieve high performance: ordering
properties of intermediate results, custom partitioning func-
tions, extensions to support pipelining [33] and iteration [5],
and assumptions about the number of partitions. For ex-
ample, the Hadoop-based sort algorithm that won the tera-
sort benchmark in 2008 required a custom partition func-
tion to prescribe a global order on the data [27]. Moreover,
when these UDOs are assembled into complex workflows,
the overall correctness and performance of the application
becomes sensitive to the characteristics of individual oper-
ations. Transparent optimization in the context of realistic
UDO programming practices is a key goal in this work. In
particular, we tackle the challenge of e↵ective UDO paral-
lelization.
MapReduce [6] has proven itself as a powerful and cost-

e↵ective approach for writing UDOs and applying them to
massive-scale datasets [2]. MapReduce provides a simple
API for writing UDOs: a user only needs to specify a serial

SKEW JOIN:
•  Struggler tasks: a small fraction of reducers (even only one)

are doing the majority of the work
•  load imbalances will swamp any of the parallelism gains

–  e.g.: most of the keys have few hundreds of tuples, while only
one joining key correspond to millions of tuples

•  Solution:
–  computes a histogram of the key space and uses this

data to allocate reducers for a given key
–  splits the (for instance) left input on the join predicate

and streaming the right input

Università degli Studi di Modena e Reggio Emilia
40

D
BG

ro
up

 @
 u

nim
or

e

Yet Another Resource Negotiator

Università degli Studi di Modena e Reggio Emilia
41

D
BG

ro
up

 @
 u

nim
or

e

http://thegeekpa.wordpress.com/2013/09/14/a-birds-eye-view-of-hadoop-cluster/

http://www.tomsitpro.com/articles/hadoop-2-vs-1,2-718.html

•  HDFS Federation (Hadoop 2.x) addresses
limitation of the prior architecture by adding
support multiple Namenodes/namespaces to
HDFS file system

Hadoop v0.x

Università degli Studi di Modena e Reggio Emilia
42

D
BG

ro
up

 @
 u

nim
or

e

•  ResourceManager has two main components:
-  ApplicationsManager: responsible for allocating resources to the various running

applications
-  Scheduler : pure scheduler in the sense that it performs no monitoring or tracking

of status for the application

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Università degli Studi di Modena e Reggio Emilia
43

D
BG

ro
up

 @
 u

nim
or

e

§  Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM

SIGOPS Operating Systems Review. Vol. 37. No. 5. ACM, 2003.

§  Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters."

Communications of the ACM 51.1 (2008): 107-113.

§  Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

§  Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University

Press, 2011.

§  http://hadoop.apache.org/

§  http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html

§  http://www.st.ewi.tudelft.nl/~hauff/BDP-Lectures/5_filesystem.pdf

§  https://www.coursera.org/course/datasci

§  https://www.coursera.org/course/mmds

§  https://www.coursera.org/course/bigdata

