

Welcome!

Emerging tools and
techniques for massive data

analysis

SuperComputing Applications and Innovation Department
15/16 December 2014

Bologna, Italy

Giuseppe Fiameni – g.fiameni@cineca.it

Why this workshop?

● Data are becoming more and more
important

● Processing large data sets has become
an issue for young researchers

● Many interesting technologies are
emerging and entering the HPC domain

● HPC classic technologies, although only
available solutions in many cases, have a
steep learning curve which limits their
wide adoption

•

Goals

During this two-day workshop you will learn:
● the trends and challenges surrounding the
BigData definition

● how the most relevant technologies and methods
in this area (Hadoop, Map-Reduce and Spark)
work

● how to structure and program your code using
Python

● how to launch an Hadoop job both on a Linux
container (Docker) and on Cineca HPC resources
(PICO)

25 members

Enables world-class science
through large scale

simulations

Offers HPC services on leading
edge capability systems

Awards its resources
through a single and fair

pan-European peer review
process for

open research

4 hosting members:
France, Germany, Italy and Spain

PRACE aisbl, a persistent pan-European
supercomputing infrastructure

346 projects and 9.2 thousand
million core-hours awarded

PRACE’s awards in 4 years

Universe Sciences
21%

Mathematics and
Computer Sciences

4%

Fundamental Physics
18%

Engineering
and Energy

13%

Earth System
Sciences

10%

Chemical Sciences
and Materials

21%

BioChemistry,
Bioinformatics and

Life Sciences
13%

MareNostrum: IBM
BSC, Barcelona, Spain

JUQUEEN: IBM
BlueGene/Q
GAUSS/FZJ
Jülich, Germany

CURIE: Bull Bullx
GENCI/CEA
Bruyères-le-Châtel,
France

SuperMUC: IBM
GAUSS/LRZ
Garching, Germany

FERMI: IBM BlueGene/Q
CINECA , Bologna, Italy

HORNET: Cray
GAUSS/HLRS,
Stuttgart, Germany

Scientific Steering Committee (SSC)

8

• It is composed of European leading researchers that are
responsible for advice and guidance on all matters of a
scientific and technical nature which may influence the
scientific work carried out by the use of the
Association’s resources.

• The SSC includes scientists from diverse areas:
materials science, universe sciences, environmental
science, particle physics, computational earth sciences,
life sciences, plasma physics, computational physics,
mathematics, astrophysics, chemistry and engineering

PRACE User Forum
• The User Forum was set up in December 2011 through an

initiative of PRACE itself.

• It is an independent entity where PRACE users can discuss
their experiences and express their future needs as well as
feedback on the current services and resources of the
PRACE HPC Research Infrastructure. The aim is to provide
an effective mechanism through which the Tier-0 user
community can give feedback to PRACE.

• The PRACE User Forum takes the outcomes of these
discussions to PRACE on behalf of the User Community and
it has visibility in different social networks

Crite
rion:

Scientifc

ExcellenceCrite
rion:

Scientifc

Excellence

PRACE peer-review access
• Free-of-charge, need to publish results at the end of the award period

• PRACE calls are open for international projects

• Types of resource allocations for scientists
– Project Access (every 6 months)

• For a specific project, award period ~ 1 to 3 years
• For individual researchers and research groups (no restriction of nationality for both

researcher and centre)
• Requires to demonstrate technical feasibility of project

– Programmatic access
• purpose: to ensure a stable and reliable minimum access to the necessary

computational resources for large-scale, long term projects of very high scientific
quality and with a broad European scope, importance and relevance

• maximum of 20% of the total resources available for programmatic access
– Preparatory Access

• Optionally with support from PRACE experts
• Prepare proposals for Project Access

Project Access

Open Call
for

Proposals

Technical
Peer Review

Scientifc
Peer Review

Technical
experts in
PRACE
systems and
software

Access
Committee

Priorisation
+

Ressouce
Allocation

Project
+

Final
 Report

ResearcherResearchers
with expertise
in scientific
field of
proposal

~ 2 Months ~ 3 Months ~ 1 year

Right
to reply

Hadoop (1.2.1) useful commands

Create a directory in HDFS at given path(s).
$ hadoop fs -mkdir <paths>

List the contents of a directory.
$ hadoop fs -ls <args>

Upload and download a file in HDFS.
$ hadoop fs -put <localsrc> ...

<HDFS_dest_Path>

Download.
$ hadoop fs -get <hdfs_src> <localdst>

See contents of a file
$ hadoop fs -cat <path[filename]>

Copy a file from source to destination
This command allows multiple sources as well in

which case the destination must be a directory.
$ hadoop fs -cp <source> <dest>

Copy a file from/To Local file system to HDFS
copyFromLocal
$ hadoop fs -copyFromLocal <localsrc> URI

copyToLocal
$ hadoop fs -copyToLocal [-ignorecrc] [-crc] URI

<localdst>

Move file from source to destination.
Note:- Moving files across filesystem is not

permitted.
$ hadoop fs -mv <src> <dest>

Remove a file or directory in HDFS.
$ hadoop fs -rm(r) <arg>

Display last few lines of a file.
$ hadoop fs -tail <path[filename]>

Display the aggregate length of a file.
$ hadoop fs -du <path>

Word count

First example

• Map function: processes data and generates a set of
intermediate key/value pairs.

• Reduce function: merges all intermediate values
associated with the same intermediate key.

Word count execution

• Consider doing a word count of the following file using
MapReduce:

– Hello World Bye World
– Hello Hadoop Goodbye Hadoop

Word count

• The map function reads in words one a time and outputs
(word, 1) for each parsed input word.

• The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

Word count

• The shuffle phase between map and reduce phase creates a
list of values associated with each key.

• The reduce function input is:

(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1)
(Hello, (1, 1))
(World, (1, 1))

Word count

• The reduce function sums the numbers in the list for each
key and outputs (word, count) pairs.

• The output of the reduce function is the output of the
MapReduce job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

MRJob code

from mrjob.job import MRJob

class MRWordCount(MRJob):

 def mapper(self, key, line):

 for word in line.split(' '):

 yield word.lower(),1

 def reducer(self, word, occurrences):

 yield word, sum(occurrences)

if __name__ == '__main__':

 MRWordCount.run()

Testing the code

$ git clone https://github.com/gfiameni/course-
exercises.git

$ docker run -v ~/course-exercises:/course-
exercises -i -t cineca/hadoop-mrjob:1.2.1
/etc/bootstrap.sh -bash

root$ show-exercises
root$ python word_count.py
../data/txt/2261.txt.utf-8 (-r hadoop)

Word count (combiner)
from mrjob.job import MRJob

class MRWordCount2(MRJob):

 def mapper(self, key, line):

 for word in line.split(' '):

 yield word.lower(),1

 # Combiner step

 def combiner(self, word, occurrences):

 yield word, sum(occurrences)

 def reducer(self, word, occurrences):

 yield word, sum(occurrences)

if __name__ == '__main__':

 MRWordCount2.run()

How to execute jobs with MRJob
By default, output will be written to stdout.
• $ python my_job.py input.txt

You can pass input via stdin, but be aware that mrjob will just dump it to a
file first:
• $ python my_job.py < input.txt

You can pass multiple input files, mixed with stdin (using the – character)
• $ python my_job.py input1.txt input2.txt - < input3.txt

By default, mrjob will run your job in a single Python process. This provides the
friendliest debugging experience, but it’s not exactly distributed computing!

You change the way the job is run with the -r/--runner option (-r inline, -r
local, -r hadoop, or -r emr)

Use “--verbose” to show all the steps

Matrix-matrix product v1
Part. 4

Matrix-matrix product

• Basic matrix multiplication on a 2-D grid

• Matrix multiplication is an important application in
HPC and appears in many areas (linear algebra)

• C = A * B where A, B, and C are matrices (two-
dimensional arrays)

• A restricted case is when B has only one column,
matrix-vector product, which appears in
representation of linear equations and partial
differential equations

C = A x B

Matrix-matrix product

Matrix-matrix product
A is stored by row ($ head data/mat/smat_10x5_A)
0 0 0.599560659528 4 -1.53589644057

1

2 2 0.260564861569

3

4 0 0.26719729583 1 0.839470246524

5 2 -1.49761307371

6 0 0.558321894518 1 1.22774377511

7 2 -1.09283410126

8 1 -0.912374571316 3 1.40678001003

9 0 -0.402945890763

B is stored by row ($ head data/mat/smat_5x5_B)
0 0 0.12527732342 3 1.02407852061 4 0.121151207685

1 0 0.597062100484

2 2 1.24708888756

3 4 -1.45057798535

4 2 0.0618772663296

Matrix-matrix product

Map 1
Align on
columns

Reduce 1
Output A

ik
, B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

Joinmap

Map 1
Align on
columns

Reduce 1
Output A

ik
, B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def joinmap(self, key, line):
 mtype = self.parsemat()
 vals = [float(v) for v in line.split()]
 row = int(vals[0])
 rowvals = [(int(vals[i]),vals[i+1]) for i
in xrange(1,len(vals),2)]
 if mtype==1:
 # rowvals are the entries in the row
 # we output the entire row for each
column
 for val in rowvals:
 # reorganize data by columns
 yield (val[0], (row, val[1]))
 else:
 yield (row, (rowvals,))

Joinred

Map 1
Align on
columns

Reduce 1
Output A

ik
B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def joinred(self, key, vals):
 # each key is a column of the matrix.
 # and there are two types of values:
 # len == 2 (1, row, A_row,key) # a column of A
 # len == 1 rowvals # a row of B

 # load the data into memory
 brow = []
 acol = []
 for val in vals:
 if len(val) == 1:
 brow.extend(val[0])
 else:
 acol.append(val)

 for (bcol,bval) in brow:
 for (arow,aval) in acol:
 yield ((arow,bcol), aval*bval)

Sumred

Map 1
Align on
columns

Reduce 1
Output A

ik
, B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def sumred(self, key, vals):
 yield (key, sum(vals))

from mrjob.job import MRJob
from mrjob.compat import get_jobconf_value
import itertools
import sys

class SparseMatMult(MRJob):

 def configure_options(self):
 super(SparseMatMult,self).configure_options()
 self.add_passthrough_option('--A-
matrix',default='A',
 dest='Amatname')

 def parsemat(self):
 """ Return 1 if this is the A matrix, otherwise
return 2"""
 fn = get_jobconf_value('map.input.file')
 if self.options.Amatname in fn:
 return 1
 else:
 return 2

 def joinmap(self, key, line):
 mtype = self.parsemat()
 vals = [float(v) for v in line.split()]
 row = int(vals[0])
 rowvals = [(int(vals[i]),vals[i+1]) for i in
xrange(1,len(vals),2)]
 if mtype==1:
 # rowvals are the entries in the row
 # we output the entire row for each column
 for val in rowvals:
 # reorganize data by columns
 yield (val[0], (row, val[1]))
 else:
 yield (row, (rowvals,))

mrjob/sparse_matmat.py
def joinred(self, key, vals):

 brow = []

 acol = []

 for val in vals:

 if len(val) == 1:

 brow.extend(val[0])

 else:

 acol.append(val)

 for (bcol,bval) in brow:

 for (arow,aval) in acol:

 yield ((arow,bcol), aval*bval)

 def sumred(self, key, vals):

 yield (key, sum(vals))

 def rowgroupmap(self, key, val):

 yield key[0], (key[1], val)

 def appendred(self, key, vals):

 yield key, list(itertools.chain.from_iterable(vals))

 def steps(self):

 return [self.mr(mapper=self.joinmap,
reducer=self.joinred),

 self.mr(mapper=None, reducer=self.sumred),

 self.mr(mapper=self.rowgroupmap,
reducer=self.appendred)]

if __name__=='__main__':

 SparseMatMult.run()

How to launch the code

$ python mrjob/sparse_matmat.py (-r hadoop)
../data/mat/smat_100x10_A ../data/mat/smat_10x200_B

$ python utils/make_sparse_test_data_v1.py <nrows>
<ncols> <density>

Matrix-matrix product v2
Part. 4

Matrix-matrix product v2

We can think of a matrix as a relation with three attributes:
● the row number, the column number, and the value in that row and

column.
● M as a relation M (I, J, V), with tuples (i, j, mij)
● N as a relation N (J, K, W), with tuples (j, k, njk)
● The product M N is almost the natural join of M (I, J, V) and N

(J, K, W), having only attribute J in common, would produce tuples
(i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w) in N

● This five-component tuple represents the pair of matrix elements
(mij,njk). What we want instead is the product of these elements,
that is, the four-component tuple (i, j, k, v × w), because that
represents the product mijnjk

● Once we have this relation as the result of one Map Reduce
operation, we can perform grouping and aggregation, with I and K as
the grouping attributes and the sum of V × W as the aggregation.

Matrix-matrix product v2
The Map Function:
● For each matrix element mij, produce the key value pair j, (M, i, mij) .

Likewise, for each matrix element njk, produce the key value pair j, (N, k,
njk) . Note that M and N in the values are not the matrices themselves but
rather a bit indicating whether the element comes from M or N

The Reduce Function:
● For each key j, examine its list of associated values. For each value that

comes from M , say (M, i, mij) , and each value that comes from N , say (N, k,
njk), produce a key-value pair with key equal to (i, k) and value equal to the
product of these elements, mijnjk

The Map Function:
● This function is just the identity. That is, for every input element with key (i,

k) and value v, produce exactly this key-value pair
The Reduce Function:
● For each key (i, k), produce the sum of the list of values associated with this

key. The result is a pair (i, k), v , where v is the value of the element in row i
and column k of the matrix P = MN

import sys

import random

import numpy

import pickle

from mrjob.job import MRJob

from mrjob.compat import get_jobconf_value

import os

class MatMult(MRJob):

 def configure_options(self):

 super(MatMult, self).configure_options()

 self.add_passthrough_option('--A-matrix', default='A',

 dest='Amatname')

 def parsemat(self):

 """ Return 1 if this is the A matrix, otherwise return 2"""

 fn = get_jobconf_value('map.input.file')

 if self.options.Amatname in fn:

 return 1

 else:

 return 2

 def emit_values(self, _, line):

 mtype = self.parsemat()

 a, b, v = line.split()

 v = float(v)

 if mtype == 1:

 i = int(a)

 j = int(b)

 yield j, (0, i, v)

 else:

 j = int(a)

 k = int(b)

 yield j, (1, k, v)

mrjob/matmat.py
 def multiply_values(self, j, values):

 values_from1 = []

 values_from2 = []

 for v in values:

 if v[0] == 0:

 values_from1.append(v)

 elif v[0] == 1:

 values_from2.append(v)

 for (m, i, v1) in values_from1:

 for (m, k, v2) in values_from2:

 yield (i, k), v1*v2

 def identity(self, k, v):

 yield k, v

 def add_values(self, k, values):

 yield k, sum(values)

 def steps(self):

 return [self.mr(mapper=self.emit_values,

 reducer=self.multiply_values),

 self.mr(mapper=self.identity,

 reducer=self.add_values)]

if __name__ == '__main__':

 MatMult.run()

Matrix-matrix product v2

Matrix is stored by value ($ head matmat_3x2_A)
0 0 1

0 1 2

1 0 2

1 1 3

2 0 4

2 1 5

How to launch the code

$ python mrjob/matmat.py (-r hadoop)
../data/mat/matmat_3x2_A ../data/mat/matmat_2x2_B

$ python utils/make_sparse_test_data_v2.py <nrows>
<ncols> <density>

Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))

● Java
System.err.println("Temperature over 100 degrees for input: " +
value);

MapReduce Weaknesses
and

Solving Techniques

When to use MR + Hadoop

When to use MR + Hadoop

• Your Data Sets Are Really Big
– Don’t even think about Hadoop if the data you want to

process is measured in MBs or GBs. If the data driving the
main problem you are hoping to use Hadoop to solve is
measured in GBs, save yourself the hassle and use Excel,
a SQL BI tool on Postgres, or some similar combination.
On the other hand, if it’s several TB or (even better)
measured in petabytes, Hadoop’s superior scalability will
save you a considerable amount of time and money

• You Celebrate Data Diversity
– One of the advantages of the Hadoop Distributed File

System (HDFS) is it’s really flexible in terms of data types.
It doesn’t matter whether your raw data is structured,
semi-structured (like XML and log files), unstructured (like
video files).

When to use MR + Hadoop

• You Find Yourself Throwing Away Perfectly Good
Data

– One of the great things about Hadoop is its capability to
store petabytes of data. If you find that you are throwing
away potentially valuable data because its costs too much
to archive, you may find that setting up a Hadoop cluster
allows you to retain this data, and gives you the time to
figure out how to best make use of that data.

When to NOT use MR + Hadoop

• You Need Answers in a Hurry
– Hadoop is probably not the ideal solution if you need

really fast access to data. The various SQL engines for
Hadoop have made big strides in the past year, and will
likely continue to improve. But if you’re using Map-Reduce
to crunch your data, expect to wait days or even weeks to
get results back.

• Your Queries Are Complex and Require Extensive
Optimization

– Hadoop is great because it gives you a massively parallel
cluster for low-cost Lintel servers and scads of cheap hard
disk capacity. While the hardware and scalability is
straightforward, getting the most out of Hadoop typically
requires a hefty investment in the technical skills required
to optimize queries.

When to NOT use MR + Hadoop

• You Require Random, Interactive Access to Data
– The pushback from the limitations of the batch-oriented

MapReduce paradigm in early Hadoop led the community to
improve SQL performance and boost its capability to serve
interactive queries against random data. While SQL on Hadoop
is getting better, in most cases it’s not a reason in of itself to
adopt Hadoop.

• You Want to Store Sensitive Data
– Hadoop is evolving quickly and is able to do a lot of things

that it couldn’t do just a few years ago. But one of the things
that it’s not particularly good at today is storing sensitive
data. Hadoop today has basic data and use access security.
And while these features are improving by the month, the
risks of accidentally losing personally identifiable information
due to Hadoop’s less-than-stellar security capabilities is
probably not worth the risk.

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!
– Can cascade several (many?) Map-Reduce tasks

• But … it further restricts solvable problems
– Might be hard to express problem in Map-Reduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– Map-Reduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

51

What if

• If you have access to a Hadoop cluster and you want a one-off quick-and-
dirty job…
– Hadoop Streaming

• If you don’t have access to Hadoop and want to try stuff out…
– MrJob

• If you’re heavily using AWS…
– MrJob

• If you want to work interactively…
– PySpark

• If you want to do in-memory analytics…
– PySpark

• If you want to do anything…*
– PySpark

• If you want ease of Python with high performance
– Impala + Numba

Debugging

Debug mechanisms

● The Web Interface
● Runtime monitor
● Log based debug

The Web User Interface

● Hadoop comes with a web UI for viewing information about
your jobs. It is useful for following a job’s progress while it
is running, as well as finding job statistics and logs after the
job has completed.

● You can find the UI at http://127.0.0.1:50030/

● $ docker run -p 127.0.0.1:50030:50030 -p
127.0.0.1:50070:50070 -i -t cineca/hadoop-
mrjob:1.2.1 /etc/bootstrap.sh -bash

Hadoop Reporter

● The fastest way of debugging programs is via print statements,
and this is certainly possible in Hadoop.

● However, there are complications to consider: with programs
running on tens, hundreds, or thousands of nodes, how do we
find and examine the output of the debug statements,
which may be scattered across these nodes?

● For a particular case, where we are looking for (what we think
is) an unusual case, we can use a debug statement to log
to standard error, in conjunction with a message to
update the task’s status message to prompt us to look in
the error log. The web UI makes this easy, as you will see.

Hadoop Reporter

“A facility for Map-Reduce applications to report progress and
update counters, status information etc.”

if (temperature > 1000) {

System.err.println("Temperature over 100 degrees
for input: " + value);

reporter.setStatus("Detected possibly corrupt
record: see logs.");

reporter.incrCounter(Temperature.OVER_100, 1);

}

Hadoop Reporter

Runtime monitor

● The Java Platform Debugger Architecture is a collection of
APIs to debug Java code.

● Java Debugger Interface (JDI) - defines a high-level Java
language interface that developers can easily use to write
remote debugger application tools.

$ export HADOOP_OPTS="-
agentlib:jdwp=transport=dt_socket,server=y,suspend=
y, address=8000"

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))

● Java
System.err.println("Temperature over 100 degrees for input: " +
value);

Debugging/profiling

Profiling

● Like debugging, profiling a job running on a distributed system
like MapReduce presents some challenges. Hadoop allows you
to profile a fraction of the tasks in a job, and, as each task
completes, pulls down the profile information to your machine
for later analysis with standard profiling tools.

● HPROF is a profiling tool that comes with the JDK that,
although basic, can give valuable information about a program’s
CPU and heap usage.

conf.setProfileEnabled(true);

conf.setProfileParams("-
agentlib:hprof=cpu=samples,heap=sites,depth=6," +

"force=n,thread=y,verbose=n,file=%s");

conf.setProfileTaskRange(true, "0-2");

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

Profiling

● Set mapred.task.profile to true
● Profile a small range of maps/reduces

● mapred.task.profile.{maps|reduces}
● hprof support is built-in
● Use mapred.task.profile.params to set options for the

debugger
● Possibly DistributedCache for the profiler’s agent

Cluster optimizations

The problem:
 Out of the box configuration not friendly
 Difficult to debug
 Performance – tuning/optimizations is a black art

Hadoop basic options

All hadoop commands are invoked by the bin/hadoop script.
Running the hadoop script without any arguments prints
the description for all commands.

Usage: hadoop [--config confdir] [COMMAND]
[GENERIC_OPTIONS] [COMMAND_OPTIONS]

Hadoop has an option parsing framework that employs
parsing generic options as well as running classes.

Hadoop basic options

-conf <configuration file> Specify an application
configuration file.

-D <property=value> Use value for given property.

-fs <local|namenode:port> Specify a namenode.

-jt <local|jobtracker:port> Specify a job tracker.
Applies only to job.

-files <comma separated list of files> Specify comma
separated files to be copied to the map reduce cluster.
Applies only to job.

-libjars <comma seperated list of jars> Specify comma
separated jar files to include in the classpath. Applies
only to job.

-archives <comma separated list of archives> Specify comma
separated archives to be unarchived on the compute
machines. Applies only to job.

Configuration parameters

Compression mapred.compress.map.output → Map Output
Compression

 Default: False
 Pros: Faster disk writes, lower disk space usage, lesser

time spent on data transfer (from mappers to
reducers).

 Cons: Overhead in compression at Mappers and
decompression at Reducers.

 Suggestions: For large cluster and large jobs this
property should be set true.

$ hadoop -Dmapred.compress.map.output=<false|true>

Speculative Execution

Speculative Execution mapred.map/reduce.speculative.execution
 Enable/Disable task (map/reduce) speculative Execution →

 Default: True
 Pros: Reduces the job time if the task progress is slow due

to memory unavailability or hardware degradation.
 Cons: Increases the job time if the task progress is slow due

to complex and large calculations. On a busy cluster
speculative execution can reduce overall throughput, since
redundant tasks are being executed in an attempt to bring
down the execution time for a single job.

 Suggestions: In large jobs where average task completion
time is significant (> 1 hr) due to complex and large
calculations and high throughput is required the speculative
execution should be set to false.

$ bin/hadoop jar -Dmapred.map.tasks.speculative.execution=false \
 -Dmapred.reduce.tasks.speculative.execution=false

Speculative execution

● It is possible for one Map task to run more slowly than the
others (perhaps due to faulty hardware, or just a very slow
machine)

● It would appear that this would create a bottleneck
● The reduce method in the Reducer cannot start until every

Mapper has finished

● Hadoop uses speculative execution to mitigate against this
● If a Mapper appears to be running significantly more slowly than

the others, a new instance of the Mapper will be started on
another machine, operating on the same data

● The results of the first Mapper to finish will be used
● Hadoop will kill off the Mapper which is still running

Number of Maps/Reducers

Number of Maps/Reducers
mapred.tasktracker.map/reduce.tasks.maximum Maximum →
tasks (map/reduce) for a tasktracker

 Default: 2
 Suggestions: Recommended range -

(cores_per_node)/2 to 2x(cores_per_node), especially
for large clusters. This value should be set according to
the hardware specification of cluster nodes and resource
requirements of tasks (map/reduce).

File block size

File block size dfs.block.size → File system block size
 Default: 67108864 (bytes)
 Suggestions:

– Small cluster and large data set: default block size will create a
large number of map tasks. e.g. Input data size = 160 GB and
dfs.block.size = 64 MB then the minimum no. of maps=
(160*1024)/64 = 2560 maps.

– If dfs.block.size = 128 MB minimum no. of maps=
(160*1024)/128 = 1280 maps.

– If dfs.block.size = 256 MB minimum no. of maps=
(160*1024)/256 = 640 maps.

– In a small cluster (6-10 nodes) the map task creation overhead is
considerable. So dfs.block.size should be large in this case but
small enough to utilize all the cluster resources. The block size
should be set according to size of the cluster, map task
complexity, map task capacity of cluster and average size of
input files.

Sort size

Sort size io.sort.mb → Buffer size (MBs) for sorting
 Default: 100
 Suggestions: For Large jobs (the jobs in which map

output is very large), this value should be increased
keeping in mind that it will increase the memory
required by each map task. So the increment in this
value should be according to the available memory at
the node. Greater the value of io.sort.mb, lesser will be
the spills to the disk, saving write to the disk

Sort factor

Sort factor io.sort.factor Stream merge factor →
 Default: 10
 Suggestions: For Large jobs (the jobs in which map

output is very large and number of maps are also large)
which have large number of spills to disk, value of this
property should be increased. The number of input
streams (files) to be merged at once in the map/reduce
tasks, as specified by io.sort.factor, should be set to a
sufficiently large value (for example, 100) to minimize
disk accesses. Increment in io.sort.factor, benefits in
merging at reducers since the last batch of streams
(equal to io.sort.factor) are sent to the reduce function
without merging, thus saving time in merging.

JVM Reuse

JVM reuse mapred.job.reuse.jvm.num.tasks Reuse single →
JVM

 Default: 1
 Suggestions: The minimum overhead of JVM

creation for each task is around 1 second. So for the
tasks which live for seconds or a few minutes and
have lengthy initialization, this value can be increased
to gain performance.

Reduce parallel copies

Reduce parallel copies mapred.reduce.parallel.copies →
Threads for parallel copy at reducer
 Default: 5
 Description: The number of threads used to copy map

outputs to the reducer.
 Suggestions: For Large jobs (the jobs in which map

output is very large), value of this property can be
increased keeping in mind that it will increase the total
CPU usage.

Map Reduce Limitations

Exercise

SPARK Environment

$ docker run -v … -p 127.0.0.1:8088:8088 -p
127.0.0.1:8042:8042 -i -t cineca/hadoop-spark:1.1.0
/etc/bootstrap.sh -bash

http://127.0.0.1:8088

SPARK shell

$ spark-shell

SPARK Shell (using Scala)

$ hadoop fs -put ../data/txt/divine_comedy.txt
/spark/divine_comedy.txt

$ spark-shell

$ scala> val textFile = sc.textFile("/spark/divine_comedy.txt")
// create a Resilient Distributed Dataset

$ scala> textFile.count() // Number of items in this RDD

$ scala> textFile.first() // First item in this RDD

$ scala> val linesWithCanto = textFile.filter(line =>
line.contains("Canto"))

$ scala> textFile.filter(line =>
line.contains("Canto")).count()

$ scala> linesWithSpark.cache()

$ scala> linesWithSpark.count()

SPARK Exercise
import re

import sys

from pyspark import SparkContext

#function to extract the data from the line

#based on position and filter out the invalid records

def extractData(line):

 val = line.strip()

 (year, temp, q) = (val[15:19], val[87:92], val[92:93])

 if (temp != "+9999" and re.match("[01459]", q)):

 return [(year, temp)]

 else:

 return []

#Create Spark Context with the master details and the application name

sc = SparkContext(appName="PythonMaxTemp")

#Create an RDD from the input data in HDFS

weatherData = sc.textFile(sys.argv[1], 1)

#Transform the data to extract/filter and then find the max temperature

max_temperature_per_year = weatherData.flatMap(extractData).reduceByKey(lambda a,b : a if int(a) > int(b) else
b)

#Save the RDD back into HDFS

max_temperature_per_year.saveAsTextFile("output")

course-exercises/spark/max_temp.py

spark/max_temp.py

$ hadoop fs -put ../data/spark/1902 /spark/1902

$ spark-submit --master yarn-client max_temp.py
/spark/1902

$ hadoop fs -get /user/root/output/part-00000

SPARK execution

YARN-client mode

In yarn-client mode, the driver runs in the client process, and
the application master is only used for requesting resources
from YARN.

YARN-cluster mode

In yarn-cluster mode, the Spark driver runs inside an
application master process which is managed by YARN on the
cluster, and the client can go away after initiating the
application. This mode is not available for Python.

SPARK vs Map Reduce

Criteria Map Reduce Spark

Conciseness Plain MR has a lot of boiler plate Almost no boilerplate

Performance High latency very fast compared to MR

Testability Possible via libraries, but non trivial Very much easy

Iterative processing Non trivial straight forward

Exploration of data Not possible easily Spark shell allows quick and easy
data exploration

SQL like interface Via Hive Build in as SparkSQL

Fault Tolerance Inheranlty able to handle fault tolerance via
persisting the results of each of phases

Exploits immutability of RDD to
enable fault tolerance

Eco system lots of tools available but integration is not
quite seamless, requiring lot of effort for
their seamless integration

Unifies lot of interfaces like SQL,
stream processing etc into single
abstraction of RDD

In memory
computations

not possible possible

SPARK Performance

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

SPARK caching performance

What do we do when there is too
much data to process?

Scale Up vs. Scale Out (1/2)

• Scale up or scale vertically:
– adding resources to a single node in a system.

• Scale out or scale horizontally:
– adding more nodes to a system.

Scale Up vs. Scale Out (2/2)

• Scale up:
– more expensive than scaling out.

• Scale out:
– more challenging for fault tolerance and software

development.

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database
systems”. ACM Communications, 35(6), 85-98, 1992.

Different classes of applications

• Map Reduce/Hadoop
– A shared nothing architecture for processing large data

sets with a distributed algorithm on clusters.

• MPI (Message Passing Interface)
– A shared disk infrastructure for processing large data sets

with a parallel algorithm on clusters

• OpenMP (Open MultiProcessing)
– A shared memory infrastructure for processing large data

sets with a parallel algorithm on a node

http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Programming Models: What is
MPI?

• Message Passing Interface (MPI)
– World’s most popular distributed API
– MPI is “de facto standard” in scientific computing
– C and FORTRAN, ver. 2 in 1997

• What is MPI good for?
– Abstracts away common network communications
– Allows lots of control without bookkeeping
– Freedom and flexibility come with complexity

• 300 subroutines, but serious programs with fewer than 10

• Basics:
– One executable run on every node
– Each node process has a rank ID number assigned
– Call API functions to send messages

Challenges with MPI

• Deadlock is possible…
– Blocking communication can cause deadlock

• "crossed" calls when trading information
• example:
• Proc1: MPI_Receive(Proc2, A); MPI_Send(Proc2,
B);

• Proc2: MPI_Receive(Proc1, B); MPI_Send(Proc1,
A);

• There are some solutions - MPI_SendRecv()
• Large overhead from comm. mismanagement

– Time spent blocking is wasted cycles
– Can overlap computation with non-blocking comm.

• Load imbalance is possible! Dead machines?
• Things are starting to look hard to code!

Are emerging data analytics
techniques the new El Dorado?

Where and When using Hadoop

WhenWhere

● Batch data processing, not
real-time

● Highly parallel data
intensive distributed
applications

● Very large production
deployments

● Process lots of unstructured
data

● When your processing can
easily be made parallel

● Running batch jobs is
acceptable

● When you have access to
lots of cheap hardware

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!

• But … it further restricts solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– MapReduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

100

What if

• If you have access to a Hadoop cluster and you want a quick-and-dirty
job…
– Hadoop Streaming

• If you don’t have access to Hadoop and want to try stuff out…
– MrJob

• If you’re heavily using AWS…
– MrJob

• If you want to work interactively…
– PySpark

• If you want to do in-memory analytics…
– PySpark

• If you want to do anything…*
– PySpark

• If you want ease of Python with high performance
– Impala + Numba

HPC vs HPDA

Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction, multiple-
data) problem.

– Indeed, the map step is highly scalable because the same instructions are
carried out over all data. Parallelism arises by breaking the data into
independent parts with no forward or backward dependencies (side effects)
within a Map step; that is, the Map step may not change any data (even its
own).

– The reducer step is similar, in that it applies the same reduction process to a
different set of data (the results of the Map step).

– In general, the MapReduce model provides a functional, rather than procedural,
programing model. Similar to a functional language, MapReduce cannot change
the input data as part of the mapper or reducer process, which is usually a
large file. Such restrictions can at first be seen as inefficient; however, the lack
of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD (multiple-
instruction, multiple-data) jobs.

– The programmer determines how to execute the parallel algorithm. Users,
however, are not restricted when creating their own MapReduce application
within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox

Big Data Needs Big Solutions

● Without a doubt, Hadoop is useful when analyzing very large
data files.

● HPC has no shortage of “big data” files

● Provided your problem fits into the MapReduce framework,
Hadoop is a powerful way to operate on staggeringly large
data sets. Because both the Map and Reduce steps are user
defined, highly complex operations can be encapsulated in
these steps.

● The growth of Hadoop and the hardware on which it runs has
been increasing. Certainly it can be seen as a subset of HPC,
offering a single yet powerful algorithm that has been
optimized for a large number of commodity servers.

(1) Map Only(1) Map Only
(4) Point to Point or

Map-Communication

(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce

or Map-Collective

(3) Iterative Map Reduce
or Map-Collective

(2) Classic
MapReduce

(2) Classic
MapReduce

InputInput

mapmap

reducereduce

InputInput

mapmap

 reducereduce

IterationsIterations
InputInput

OutputOutput

mapmap

 Local

Graph

BLAST Analysis
Local Machine
Learning
Pleasingly
Parallel

High Energy
Physics (HEP)
Histograms
Distributed search
Recommender
Engines

Expectation
maximization
Clustering e.g. K-
means
Linear Algebra,
PageRank

Classic MPI
PDE Solvers and
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with
Compute and Communication model separated

Correspond to frst 4 of Identifed Architectures

The PICO system

The PICO system

 Total
Nodes

CPU
Cores per
Nodes

Memory (RAM) Notes

Compute
login node

66
Intel Xeon E5

2670 v2
@2.5Ghz

20 128 GB

Visualization node 2
Intel Xeon E5
2670 v2 @

2.5Ghz
20 128 GB 2 GPU Nvidia K40

Big Mem node 2
Intel Xeon E5

2650 v2 @ 2.6
Ghz

16 512 GB 1 GPU Nvidia K20

BigInsight node 4
Intel Xeon E5

2650 v2 @ 2.6
Ghz

16 64 GB
32TB of local

disk

SSD Storage 40 TB

http://www.hpc.cineca.it/hardware/pico
12/15/14 106

107

PICO: how to log in

● Establish a ssh connection
ssh <username>@login.pico.cineca.it

● Notes:
– ssh available on all linux distros
– Putty (free) or Tectia ssh on Windows
– secure shell plugin for Google Chrome!
– login nodes are swapped to keep the load balanced
– important messages can be found in the message of the day

Working environment

$HOME:
– Permanent, backed-up, and local to PICO.
– For source code or important input files.

$CINECA_SCRATCH:
– Large, parallel filesystem (GPFS).
– No quota. Run your simulations and calculations here.

● use the command cindata command to get info on your disk
occupation

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

109

"module”, my best friend

● All the optional software on the system is made
available through the "module" system

– provides a way to rationalize software and its environment variables

● Modules are divided in 2 profiles

– profile/base (stable and tested modules)
– profile/advanced (software not yet tested or not well optimized)

● Each profile is divided in 4 categories
– compilers (GNU, intel, openmpi)
– libraries (e.g. LAPACK, BLAS, FFTW, ...)
– tools (e.g. Hadoop, GNU make, VNC, ...)
– applications (software for chemistry, physics, ...)

Modules

• CINECA’s work environment is organized in modules, a set
of installed libraries, tools and applications available for all
users.

• “loading” a module means that a series of (useful) shell
environment variables will be set

• E.g. after a module is loaded, an environment variable of
the form “<MODULENAME>_HOME” is set

110

Module commands

COMMAND DESCRIPTION

module avail list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when
loading the module

111

112

Launching a Job

● Now that we have our executable, it’s time to learn how to
prepare a job for its execution

● PICO uses PBS scheduler.

● The job script scheme is:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS keywords

#PBS -N jobname # name of the job

#PBS -o job.out # redirect stdout (output file)

#PBS -e job.err # redirect stderr (error file)

#PBS -l select=1:ncpus=20::mem=96gb # resources

#PBS -l walltime=1:00:00 # hh:mm:ss

#PBS -q <queue-name> # chosen queue

#PBS -A <my_account> # name of the account

select = number of chunk requested

ncpus = number of cpus per chunk requested

mem = RAM memory per chunk

113

114

PBS keyword - resource

Memory per node:
● The default memory is 1 GB per node (for the classes debug,

parallel and longpar).
● The user can specify the requested memory up to 128 GB, on 58

nodes

#PBS -l select=NN:ncpus=CC:mem=128GB

PBS job script – Serial using 1 GPU

#!/bin/bash

#PBS -l walltime=30:00

#PBS -l select=1:ncpus=1

#PBS -o job.out

#PBS -e job.err

#PBS -q debug

#PBS -A train_cmda2014

cd $PBS_O_WORKDIR

./myProgram

115

116

PBS Commands

qsub
 qsub <job_script>

Your job will be submitted to the PBS scheduler and
executed when there will be nodes available (according to
your priority and the queue you requested)

qstat
 qstat

 Shows the list of all your scheduled jobs, along with their
status (idle, running, closing, …) Also, shows you the job id
required for other qstat options

117

PBS Commands

qstat
 qstat -f <job_id>

Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified
about its estimated start time or, if you made an error on
the job script, you will learn that the job won’t ever start

qdel
 qdel <job_id>

 Removes the job from the scheduled jobs by killing it

Hadoop on PICO

Traditional HPC Architecture

Sharednothing (MapReducestyle) Architectures

COMPUTE/DATA
CLUSTER WITH
LOCAL STOARGE

ETHERNETETHERNET

PBS Script

#!/bin/bash

#PBS -A <account>

#PBS -l walltime=01:00:00

#PBS -l select=1:ncpus=20:mem=96GB

#PBS -q parallel

Environment configuration

module load profile/advanced hadoop/1.2.1

Configure a new HADOOP instance using PBS job information

$MYHADOOP_HOME/bin/myhadoop-configure.sh -c $HADOOP_CONF_DIR

Start the Datanode, Namenode, and the Job Scheduler

$HADOOP_HOME/bin/start-all.sh

#####################################

Your job goes here

Stop HADOOP services

$MYHADOOP_HOME/bin/myhadoop-shutdown.sh

Sample execution

● Login on PICO
● ssh login.pico.cineca.it -l <username>

● Download source codes within $HOME or
$CINECA_SCRATCH

● Change the selected PBS script accordingly to the destination
directory

● qsub $HOME/course-exercises/pbs/mrjob/wordcount/word-
count.hadooop.pbs

● qstat

Sample execution (cont.)

Output:
– word-count.hado.o3041 // std output
– word-count.hado.o3042 // std error

Credits

● Geoffrey C. Fox – Indiana University
● Hanspeter Pfister and Joe Blitzstein – Harvard

University
● Borja Sotomayor – University of Chicago
● Glenn K. Lockwood – High-Performance and Data-

Intensive Computing San Francisco Bay Area

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	PRACE’s awards in 4 years
	Scientific Steering Committee (SSC)
	PRACE User Forum
	PRACE peer-review access
	Project Access
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Where and When using Hadoop
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	4 Forms of MapReduce
	Slide 105
	The PICO system
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Traditional HPC Architecture
	Slide 121
	Slide 122
	Slide 123
	Slide 124

