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Emerging tools and
techniques for massive data
analysis

SuperComputing Applications and Innovation Department
15/16 December 2014

Bologna, Italy
Giuseppe Fiameni — g.fiameni@cineca.it
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Why this workshop?

* Data are becoming more and more
Important

* Processing large data sets has become
an issue for young researchers

* Many interesting technologies are
emerging and entering the HPC domain

* HPC classic technologies, although only
available solutions in many cases, have a
steep learning curve which limits their
wide adoption

PRACE i



Goals

During this two-day workshop you will learn:

* the trends and challenges surrounding the
BigData definition

* how the most relevant technologies and methods
in this area (Hadoop, Map-Reduce and Spark)
work

* how to structure and program your code using
Python

* how to launch an Hadoop job both on a Linux
container (Docker) and on Cineca HPC resources
(PICO)
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PARTNERSHIP FOR

ADVAF:IQED COMPUTING IN EUROPE

PRACE aisbl, a persistent pan- European i
supercomputlng infrastructure TS

25 members

4 hosting members:
France, Germany, Italy an

Enables world-class science
through large scale
simulations

Offers HPC services on leading
edge capability systems

Awards its resources
through a single and fair
pan-European peer reviev
process for
open research
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PARTNERSHIP FOR

ADVAIQIFZED COMPUTING IN EUROPE
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PRACE’s awards in 4 years

346 projects and 9.2 thousand
million core-hours awarded

BioChemistry,
— ; Bioinformatics and
MareNostrum: IBM L= - Universe Sciences|  Life Sciences

. % A UQUEEN: IBM
BSC, Barcelona, Spain = = :

Mathematics and Chemical Sciences -
Computer Sciences and Matenals UIICh’ Germany
1%

Fundamental Physics
18%

Engineering i SuperMUC: IBM
CURIE: Bull Bullx and Energy - GAUSS/LRZ

GENCI/CEA 1% Garching, Germany
Bruyéres-le-Chatel,

France

HORNET: Cray
GAUSS/HLRS,
Stuttgart, Germany

FERMI: IBM BlueGene/Q
CINECA , Bologna, ltaly
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ADVAIQIFZED COMPUTING IN EUROPE
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Scientific Steering Committee (SSC)

* |t is composed of European leading researchers that are
responsible for advice and guidance on all matters of a
scientific and technical nature which may influence the
scientific work carried out by the use of the
Association’s resources.

* The SSC includes scientists from diverse areas:
materials science, universe sciences, environmental
science, particle physics, computational earth sciences,
life sciences, plasma physics, computational physics,
mathematics, astrophysics, chemistry and engineering
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PRACE User Forum

* The User Forum was set up in December 2011 through an
initiative of PRACE itself.

* Itis an independent entity where PRACE users can discuss
their experiences and express their future needs as well as
feedback on the current services and resources of the
PRACE HPC Research Infrastructure. The aim is to provide
an effective mechanism through which the Tier-0 user
community can give feedback to PRACE.

 The PRACE User Forum takes the outcomes of these
discussions to PRACE on behalf of the User Community and
it has visibility in different social networks
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PRACE peer-review access

* Free-of-charge, need to publish results at the end of the award period

* PRACE calls are open for international projects

* Types of resource allocations for scientists
— Project Access (every 6 months)
* For a specific project, award period ~ 1 to 3 years

* For individual researchers and research groups (no restriction of nationality for both
researcher and centre)

* Requires to demonstrate technical feasibility of project
— Programmatic access

* purpose: to ensure a stable and reliable minimum access to the necessary
computational  resources for large-scale, long term projects of very high scientific
quality and with a broad European scope, importance and relevance

* maximum of 20% of the total resources available for programmatic access
— Preparatory Access

* Optionally with support from PRACE experts

* Prepare proposals for Project Access
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Project Access
Project
Opefn Call Technical Scientific +
or Peer Review Peer Review Final
Proposals
Report
~ 2 Months y ~ 3 Months > ~ 1 year
Technical Researchers Access Researcher
experts in with expertise Committee
PRACE in scientific

systems and  field of
software proposal
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Hadoop (1.2.1) useful commands

Create a directory in HDFS at given path(s).
$ hadoop fs -mkdir <paths>

List the contents of a directory.
$ hadoop fs -Is <args>

Upload and download a file in HDFS.

$ hadoop fs -put <localsrc> ...
<HDFS_dest_Path>

Download.
$ hadoop fs -get <hdfs_src> <localdst>

See contents of a file
$ hadoop fs -cat <path[filename]>

Copy a file from source to destination

This command allows multiple sources as well in
which case the destination must be a directory.

$ hadoop fs -cp <source> <dest>

Copy a file from/To Local file system to HDFS
copyFromLocal
$ hadoop fs -copyFromLocal <localsrc> URI

copyTolLocal

$ hadoop fs -copyToLocal [-ighorecrc] [-crc] URI
<localdst>

Move file from source to destination.

Note:- Moving files across filesystem is not
permitted.

$ hadoop fs -mv <src> <dest>

Remove a file or directory in HDFS.
$ hadoop fs -rm(r) <arg>

Display last few lines of a file.
$ hadoop fs -tail <path[filename]>

Display the aggregate length of a file.
$ hadoop fs -du <path>
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Word count
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First example

 Map function: processes data and generates a set of
intermediate key/value pairs.

« Reduce function: merges all intermediate values
associated with the same intermediate key.

Map Shuffle Reduce
I . A A
B ¥ ™

X
X
X

CINECA

PRACE



 SCAN

SuperComputing Appli

Word count execution

* Consider doing a word count of the following file using
MapReduce:

Hello World Bye World
— Hello Hadoop Goodbye Hadoop

CINECA
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Word count

 The map function reads in words one a time and outputs
(word, 1) for each parsed input word.

* The map function output is:

(Hello, 1)
(Worid, 1)
(Bye, 1)
(Worid, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

CINECA
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Word count

 The shuffle phase between map and reduce phase creates a
list of values associated with each key.

 The reduce function input is:

(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1)
(Hello, (1, 1))
(World, (1, 1))

PRACE s
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Word count

* The reduce function sums the numbers in the list for each
key and outputs (word, count) pairs.

* The output of the reduce function is the output of the
MapReduce job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

PRACE L
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MRJob code

from mrjob.job import MRJob
class MRWordCount (MRJob) :

def mapper (self, key, line):
for word in line.split(' '):

yield word.lower(),1

def reducer (self, word, occurrences):

yield word, sum(occurrences)

1if name == main '

MRWordCount.run ()

PRACE

CINECA
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Testing the code

$ git clone https://github.com/gfiameni/course-
exercises.git

$ docker run -v ~/course-exercises:/course-
exercises -i -t cineca/hadoop-mrjob:1.2.1
/etc/bootstrap.sh -bash

root$ show-exercises

root$ python word count.py
./data/txt/2261.txt.utf-8 (-r hadoop)

PRACE S
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Word count (combiner)

from mrjob.job import MRJob
class MRWordCount2z (MRJoDb) :

def mapper (self, key, line):
for word in line.split (' '"):

yield word.lower(),1

# Combiner step
def combiner (self, word, occurrences):

yield word, sum(occurrences)

def reducer (self, word, occurrences):

yield word, sum(occurrences)

if name == ! main '

MRWordCount?2.run ()

PRACE

CINECA
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How to execute jobs with MRJob

By default, output will be written to stdout.
* $ python my job.py input.txt

You can pass input via stdin, but be aware that mrjob will just dump it to a

file first:
* $ python my job.py < input.txt

You can pass multiple input files, mixed with stdin (using the - character)
* $ python my job.py inputl.txt input2.txt - < input3.txt

By default, mrjob will run your job in a single Python process. This provides the
friendliest debugging experience, but it’s not exactly distributed computing!

You change the way the job is run with the -r/--runner option (-r inline, -r
local, -r hadoop, or -r emr)

Use “--verbose” to show all the steps

PRACE S
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Matrix-matrix product v1

Part. 4
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Matrix-matrix product

* Basic matrix multiplication on a 2-D grid

* Matrix multiplication is an important application in
HPC and appears in many areas (linear algebra)

- C=A * Bwhere A, B, and C are matrices (two-
dimensional arrays)

* A restricted case is when B has only one column,
matrix-vector product, which appears in
representation of linear equations and partial
differential equations

CINECA

PRACE
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C=AxB

Column

: -  Sum
Multiply j / results
=] _d\f_____: —-._ -‘\I
fﬂ_’_______——-—— |
Row
/ > _—
YT I s
x\\ Cij
—
A P B = C
[—1
i 2. %Gk k,j
k=0

CINECA

PRACE



CINECA 5 CAOI

SuperComputing Application

Matrix-matrix product

AB=C
Cjj = Z Aik B
k
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Matrix-matrix product

A is stored by row ($ head data/mat/smat 10x5 A)
0 0 0.599560659528 4 -1.53589644057

H

2 0.260564861569

0 0.26719729583 1 0.839470246524
2 -1.49761307371

0 0.558321894518 1 1.22774377511
2 -1.09283410126

1 -0.912374571316 3 1.40678001003
0 -0.402945890763

O 00 J o U P W DN

B is stored by row ($ head data/mat/smat 5x5 B)

0 0.12527732342 3 1.02407852061 4 0.121151207685
0 0.597062100484

2 1.24708888756

4 -1.45057798535

2 0.0618772663296

S w DD PO
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Matrix-matrix product

&

AB=C Map 1 Reduce 1 Reduce 2
Align on Outout A . B . Output
Cij= ) AiBy HIPEE A By~
J zk: J columns keyed on (i) vﬂi sum(A,, B,)
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Joinmap

[
def joinmap(self, key, line):
mtype = self.parsemat ()

vals = [float(v) for v in 1line.split()]
row = int(vals[0])

rowvals = [(int(vals[i]) ,vals[i+1l]) for i
in xrange(l,len(vals) ,h 2)]
if mtype==1:

# rowvals are the entries in the row
# we output the entire row for each

column

for val in rowvals:
# reorganize data by columns
yield (val[0], (row, wval[l]))

else:
yield (row, (rowvals,))
AB=C Map 1 Reduce 1 Reduce 2
Align on OutputA , B Output
C}'==:E::/L Eg' utpu ik’ T Kj ¥
j ik Pkj lumn Iy
P coumns keyed on (i,)) - f Sum(Aik’ Bkj)



CINECA 5 CAI

SuperComputing Applications and Innovation

Joinred
I

def joinred(self, key, vals):
# each key is a column of the matrix.
# and there are two types of values:
# len == 2 (1, row, A row,key) # a column of A
# len == 1 rowvals # a row of B

# load the data into memory
brow = []
acol = []
for val in vals:
if len(val) ==
brow.extend (val[0])
else:
acol.append (val)

for (bcol,bval) in brow:
for (arow,aval) in acol:
yield ((arow,bcol), aval*bval)

AB =C Map 1 Reduce 1 Reduce 2

Align on Output A B Output
C," = A,’kBk' UIPUL A, Kj v
J Ek: J columns keyed on (ij) F sum(A., B,)
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Sumred

mJ
def sumred(self, key, vals):
yield (key, sum(vals))

AB=C Map 1 Reduce 1 Reduce 2
Align on Outout A . B . Output
Cij= ) AiBy HPEERe By -
J zk: J columns keyed on (i) ,P sum(A,, B,)
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from mrjob.job import MRJob

from mrjob.compat import get jobconf value
import itertools

import sys

class SparseMatMult (MRJob) :

def configure options(self):
super (SparseMatMult, self) .configure options()

self.add_passthrough option('--A-
matrix' ,default='A",
dest='Amatname')

def parsemat (self):
""" Return 1 if this is the A matrix, otherwise
return 2"""
fn = get_jobconf value('map.input.file')
if self.options.Amatname in fn:
return 1
else:
return 2

def joinmap(self, key, line):
mtype = self.parsemat()
vals = [float(v) for v in line.split()]
row = int(vals[0])

rowvals = [(int(vals[i]),vals[i+1l]) for i in
xrange (1,len(vals) ,2)]
if mtype==1:

# rowvals are the entries in the row
# we output the entire row for each column
for val in rowvals:
# reorganize data by columns
yield (val[0], (row, val[l]))
else:
yield (row, (rowvals,))

def joinred(self, key, vals):
brow = []
acol = []
for val in vals:
if len(val) ==
brow.extend (val[0])
else:
acol.append(val)
for (bcol,bval) in brow:
for (arow,aval) in acol:

yield ((arow,bcol), aval*bval)

def sumred(self, key, vals):

yield (key, sum(vals))

def rowgroupmap (self, key, val):
yield key[0], (key[l], val)

def appendred(self, key, vals):

yield key, list(itertools.chain.from iterable(vals))

def steps(self):

return [self.mr (mapper=self.joinmap,
reducer=self. joinred),

self.mr (mapper=None, reducer=self.sumred),

self.mr (mapper=self.rowgroupmap,
reducer=self.appendred) ]

if name ==' main ':

SparseMatMult. run ()
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How to launch the code

$ python mrjob/sparse matmat.py (-r hadoop)
./data/mat/smat 100x10 A ../data/mat/smat 10x200 B

$ python utils/make sparse test data vl.py <nrows>
<ncols> <density>

CINECA
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Matrix-matrix product v2

Part. 4
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Matrix-matrix product v2

We can think of a matrix as a relation with three attributes:

* the row number, the column number, and the value in that row and
column.

* M as a relation M (I, J, V), with tuples (i, j, m;)
* N as a relation N (J, K, W), with tuples (j, k, n,,)

* The product M N is almost the natural joinof M (I, J,V)and N
(3, K, W), having only attribute J in common, would produce tuples
(i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w) in N

* This five-component tuple represents the pair of matrix elements
(my,n, ). What we want instead is the product of these elements,

that is, the four-component tuple (i, j, k, v X w), because that

represents the product m;n,

* Once we have this relation as the result of one Map Reduce
operation, we can perform grouping and aggregation, with I and K as
the grouping attributes and the sum of V x W as the aggregation.

PRACE ewssa
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Matrix-matrix product v2

The Map Function:

- For each matrix element m;, produce the key value pair j, (M, i, m;) .
Likewise, for each matrix element n,, produce the key value pair j, (N, k,

n;) . Note that M and N in the values are not the matrices themselves but
rather a bit indicating whether the element comes from M or N

The Reduce Function:

* For each key j, examine its list of associated values. For each value that
comes from M, say (M, i, m;) , and each value that comes from N, say (N, k,
n,), produce a key-value pair with key equal to (i, k) and value equal to the
product of these elements, m;n,,

The Map Function:

« This function is just the identity. That is, for every input element with key (i,
k) and value v, produce exactly this key-value pair

The Reduce Function:

* For each key (i, k), produce the sum of the list of values associated with this

key. The result is a pair (i, k), v, where v is the value of the element in row i
and column k of the matrix P = MN

PRACE S
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import sys def multiply values(self, j, values):

import random

import numpy values_froml = []
import pickle

values_from2 = []
from mrjob.job import MRJob for v in values:
from mrjob.compat import get jobconf value if v[0] ==

import os values_froml.append(v)
class MatMult (MRJob) : elif v[0] ==
values_from2.append (v)
def configure options(self):
super (MatMult, self).configure_options()

self.add passthrough option('--A-matrix', default='A',
- for (m, k, v2) in values from2:
dest='Amatname') -

for (m, i, vl) in values_froml:

yield (i, k), vl*v2
def parsemat (self):
""" Return 1 if this is the A matrix, otherwise return 2""
fn = get_ jobconf value('map.input.file')
if self.options.Amatname in fn:

def identity(self, k, v):
yield k, v

return 1

else: def add values(self, k, values):
return 2 yield k, sum(values)
def emit values(self, _, line):
mtype = self.parsemat () def steps(self):
a, b, v = line.split() return [self.mr (mapper=self.emit values,

reducer=self.multiply values),
= fl

v oat(v) self.mr (mapper=self.identity,

if mtype == 1: reducer=self.add _values)]

i = int(a)

j = int(b)

yield j, (0, i, v) if _name == '_ main ':
elseé - inem) MatMult. run ()

k = int(b)

CA

yield j, (1, k, v)
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Matrix-matrix product v2

Matrix is stored by value ($ head matmat 3x2 A)
1

N MR R O O
_ O B O = O
oo w NN

CINECA
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How to launch the code

$ python mrjob/matmat.py (-r hadoop)
./data/mat/matmat 3x2 A ../data/mat/matmat 2x2 B

$ python utils/make sparse test data v2.py <nrows>
<ncols> <density>

CINECA
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Log based debug

* Python

sys.stderr (out) .write ("REDUCER INPUT: ({0}, {1})\n".format (73,
values))

e Java

System.err.println ("Temperature over 100 degrees for input: " +
value) ;

CINECA
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MapReduce Weaknesses
and
Solving Techniques

CINECA
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When to use MR + Hadoop
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When to use MR + Hadoop

* Your Data Sets Are Really Big

— Don’t even think about Hadoop if the data you want to
process is measured in MBs or GBs. If the data driving the
main problem you are hoping to use Hadoop to solve is
measured in GBs, save yourself the hassle and use Excel,
a SQL BI tool on Postgres, or some similar combination.
On the other hand, if it's several TB or (even better)
measured in petabytes, Hadoop’s superior scalability will
save you a considerable amount of time and money

* You Celebrate Data Diversity

— One of the advantages of the Hadoop Distributed File
System (HDFS) is it's really flexible in terms of data types.
It doesn’t matter whether your raw data is structured,

semi-structured (like XML and log files), unstructured (like
video files).

PRACE S
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When to use MR + Hadoop

* You Find Yourself Throwing Away Perfectly Good
Data

— One of the great things about Hadoop is its capability to
store petabytes of data. If you find that you are throwing
away potentially valuable data because its costs too much
to archive, you may find that setting up a Hadoop cluster
allows you to retain this data, and gives you the time to
figure out how to best make use of that data.

PRACE ewssa
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When to NOT use MR + Hadoo{i

* You Need Answers in a Hurry

— Hadoop is probably not the ideal solution if you need
really fast access to data. The various SQL engines for
Hadoop have made big strides in the past year, and will
likely continue to improve. But if you're using Map-Reduce
to crunch your data, expect to wait days or even weeks to
get results back.

* Your Queries Are Complex and Require Extensive
Optimization

— Hadoop is great because it gives you a massively parallel
cluster for low-cost Lintel servers and scads of cheap hard
disk capacity. While the hardware and scalability is
straightforward, getting the most out of Hadoop typically
requires a hefty investment in the technical skills required
to optimize queries.

PRACE S
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When to NOT use MR + Hadoo#

* You Require Random, Interactive Access to Data

— The pushback from the Ilimitations of the batch-oriented
MapReduce paradigm in early Hadoop led the community to
improve SQL performance and boost its capability to serve
interactive queries against random data. While SQL on Hadoop
is getting better, in most cases it's not a reason in of itself to
adopt Hadoop.

* You Want to Store Sensitive Data

— Hadoop is evolving quickly and is able to do a lot of things
that it couldn’t do just a few years ago. But one of the things
that it's not particularly good at today is storing sensitive
data. Hadoop today has basic data and use access security.
And while these features are improving by the month, the
risks of accidentally losing personally identifiable information
due to Hadoop’s less-than-stellar security capabilities is
probably not worth the risk.

PRACE ewssa
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Advantages/Disadvantage

* Now it's easy to program for many CPUs

— Communication management effectively gone
* I/0O scheduling done for us

— Fault tolerance, monitoring
* machine failures, suddenly-slow machines, etc are handled

— Can be much easier to design and program!
— Can cascade several (many?) Map-Reduce tasks
* But ... it further restricts solvable problems
— Might be hard to express problem in Map-Reduce
— Data parallelism is key
— Need to be able to break up a problem by data chunks
— Map-Reduce is closed-source (to Google) C++
— Hadoop is open-source Java-based rewrite

CINECA
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What if

« If you have access to a Hadoop cluster and you want a one-off quick-and-
dirty job...

— Hadoop Streaming
« If you don’t have access to Hadoop and want to try stuff out...
— MrJjob
« If you're heavily using AWS...
— MrJob
« If you want to work interactively...
— PySpark
« If you want to do in-memory analytics...
— PySpark
« If you want to do anything...*
— PySpark
- If you want ease of Python with high performance
— Impala + Numba

PRACE S
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Debugging
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Debug mechanisms

* The Web Interface
e Runtime monitor
* Log based debug

CINECA
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The Web User Interface

 Hadoop comes with a web UI for viewing information about
your jobs. It is useful for following a job’s progress while it
is running, as well as finding job statistics and logs after the
job has completed.

* You can find the UI at http://127.0.0.1:50030/

* $ docker run -p 127.0.0.1:50030:50030 -p
127.0.0.1:50070:50070 -i -t cineca/hadoop-
mrjob:1.2.1 /etc/bootstrap.sh -bash

PRACE ewssa
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db75867f9%¢2c Hadoop Map/Reduce Administration

State: RUNMING

Started: Sun Nowv 30 11:13:55 UTC 2014

Version: 1.2.1, r15303152

Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf

Identifier: 201411301113
SafeMode: OFF

Cluster Summary (Heap Size is 72 MB/889 MB)

Running | Running Total Oceupied | Occupied | Reserved | Reserved Map Reduce Avg. Blacklisted | Graylisted | Excluded
Map Reduce Submissions Nodes Map Reduce Map Reduce Task Task Tasks/Node Nodes Modes MNodes
Tasks Tasks Slots Slots Slots Slots Capacity | Capacity

a a 1 1 a a a a 2 2 4.00 a a a

Scheduling Information

Queue Name | State

Scheduling Information

A

default rumning

Filter {Jobid, Priority, User, Name)

Example: 'user:smith 3200 will filter by "smith’ only in the user field and 3200 in all fislds

Running Jobs

nomne
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Hadoop job_201411301113_0001 on db75867f9%e2c

User: root

Job Name: streamjob5169397335625686158 jar
Job File: hdfs.//db¥ 58679e2c: 9000 mp/hadoop-root'mapred/staging/root! . stagingfob 201411301113 0001/job.xmil
Submit Host: db7 3867 9e2c

Submit Host Address: 172.17.0.6

Job-ACLs: All users are allowed

Job Setup:_Successful

Status: Succeeded

Started at: Sun MNov 30 11:19:03 UTC 2014
Finished at: Sun Mov 30 11:19:23 UTC 2014
Finished in: 20sec

Job Cleanup:_Successful

SuperComputing Apg

Kind | % Complete || Num Tasks | Pending | Running | Complete || Killed Twm
map % 2 0 W] 2 0 0/0
reduce 100.00% 1 o o 1 o 0/0
Counter Map Reduce Total
File Input Format Counters Bytes Read o 0 554 451
SLOTS_MILLIS_MAPS 0 0 12,887
Launched reduce tasks 0 ] 1
Total time spent by all reduces waiting after reserving slots (ms) ] 0 ]
Job Counters Total time spent by all maps waiting after reserving slots (ms) ] 0 ]
Launched map tasks ] 0 2
Data-local map tasks o 0 2
SLOTS_MILLIS_REDUCES o 0 10,031
File Output Format Counters || Bytes Written o 0 43
FILE_BYTES_READ 0 245,621 545,621
) HDFS_BYTES_READ 554,781 0 554,781
FllesystemGounters FILE_BYTES_WRITTEN BET 327 || 606,362 1,273,689 ), C I N E CA
HDFS_BYTES_WRITTEM 0 43 43
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Hadoop Reporter

* The fastest way of debugging programs is via print statements,
and this is certainly possible in Hadoop.

* However, there are complications to consider: with programs
running on tens, hundreds, or thousands of nodes, how do we
find and examine the output of the debug statements,
which may be scattered across these nodes?

* For a particular case, where we are looking for (what we think
is) an unusual case, we can use a debug statement to log
to standard error, in conjunction with a message to
update the task’s status message to prompt us to look in
the error log. The web UI makes this easy, as you will see.

PRACE i
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Hadoop Reporter

"A facility for Map-Reduce applications to report progress and
update counters, status information etc.”

if (temperature > 1000) {

System.err.println ("Temperature over 100 degrees
for input: " + wvalue);

reporter.setStatus ("Detected possibly corrupt
record: see logs.");

reporter.incrCounter (Temperature.OVER 100, 1);

PRACE S
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Hadoop Reporter

Hadoop map task list for job 200904110811 0003 on
ip-10-250-110-47

Completed Tasks
Task Complete | Status Start Time | Finish Time |Errors | Counters
hdfs://ip- 11-Apr-2009
K 4 11 100.00% | 10-250-110-47.ec2.internal | 11-Apr-2009 | 09:01:25
luser/root/input/ncdc/all 09:00:06 (1mins,
/1949.gz:0+220338475 18sec)
11-Apr-2009
4 11 4 |100.00% Detected possibly corrupt § | 11-Apr-2009 | 09:01:28
record: see logs. 09:00:06 (1mins,
21sec)
hdfs://ip- 11-Apr-2009
100.00% 10-250-110-47 ec2.internal | 11-Apr-2009 |09:01:28
task 200904110811 0003 m 000045 Juser/root/input/ncdc/all 09:00:06 (1mins,
/1970.gz:0+208374610 21sec)

PRACE
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Runtime monitor

 The Java Platform Debugger Architecture is a collection of
APIs to debug Java code.

* Java Debugger Interface (JDI) - defines a high-level Java
language interface that developers can easily use to write
remote debugger application tools.

$ export HADOOP OPTS="-

agentlib:jdwp=transport=dt socket,server=y, suspend=
y, address=8000"

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

PRACE S



 SCAN

SuperComputing Applications and Innovation

Log based debug

 Python

sys.stderr (out) .write ("REDUCER INPUT: ({0}, {1})\n".format (73,
values))

 Java

System.err.println ("Temperature over 100 degrees for input: " +
value) ;

CINECA
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Debugging/profiling

Job Configuration: Jobld - job_201411301113_0001

|| name

uuh.end.retn'.lntewll 30000
|iu.b'_|r1es.per.chetksum 512
[mapred.job.tracker.retiredjobs.cache.size 1000
||m1pn=dute.j obhistory.cleaner.interval-ms 26400000
mapred.quene.default.acl-administer-jobs *
dis.image.transfer.bandwidthPerSec ]
mapred.task.profile.reduces -2
||m1pn=dute.j obtracker.staging.root.dir S {hadoop.tmp.dir} /mapred/staging
||m1predute.jub.cache.ﬂles.\-'lslhllllles [true, true
mapred.job.reuse.jvm.num.tasks 1
dis.block.access.token.lifetime 1600
mapred.reduce.tasks.speculative.execution [true

||m1pred.]ub.name

streamyob31693979356256861 58 jar

||hsdonp.htlp.authenﬂcatlun.kerherus.ke:nsb

S {user.home } hadoop.keytab

||-dfs.p-erm1§sluns.superg;r\unp

supergroup

||Iu.seqﬂle.surter.recurdllmlt

1000000

stream.reduce.output.reader.class

lorg.apache. hadoop.streaming. io. TextOutputReader

(nadoop.relaxed.worker.version.check false

||mapred Atask.tracker.http.address 10.0.0.0:50060
[stream.reduce.input.writer.class lorg.apache. hadoop.streaming. io. TextInputWriter
dfs.namenode.delegation.token.renew-interval 360000

mapred.cache.archives.timestamps 1417346338423

||f§.rlmfs.1mp1

lorg.apache. hadoop. fs.InMemoryFileSystem

mapred.system.dir

S {hadoop.tmp.dir}/mapred/system

dfs.namenode.edits.toleration.length ]

mapred.task.tracker.report.address 127.0.0.1:0

||mlpn=dute.redm:e.shufﬂe.mnnec‘t.tlmenut 1BO000

mapreduce.job.counters.max 120

dfs.datanode.readahead.bytes 4103404

mapred.healthChecker.interval 160000

mapreduce.job.complete.cancel.delegation.tokens [true

dfs.namenode.replication.work. multiplier.per.iteration 2 Pﬂlg[
|fs.trash.interval ]

T
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Profiling

* Like debugging, profiling a job running on a distributed system
like MapReduce presents some challenges. Hadoop allows you
to profile a fraction of the tasks in a job, and, as each task
completes, pulls down the profile information to your machine
for later analysis with standard profiling tools.

* HPROF is a profiling tool that comes with the JDK that,
although basic, can give valuable information about a program’s
CPU and heap usage.

conf.setProfileEnabled (true) ;

conf.setProfileParams (" -
agentlib:hprof=cpu=samples, heap=sites,depth=6," +
"force=n, thread=y,verbose=n,file=%s") ;
conf.setProfileTaskRange (true, "0-2");

CINECA
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Profiling

Set mapred.task.profile to true

Profile a small range of maps/reduces
 mapred.task.profile.{maps|reduces}

hprof support is built-in

Use mapred.task.profile.params to set options for the
debugger

Possibly DistributedCache for the profiler’'s agent

ompl close
100
20
NameNode 'db75867f9e2c:9000" ?3
80
Started: Sun Nov 30 11:13:51 UTC 2014 33
Version: 1.2.1, r1503152 30
Compiled: Mon Jul 22 15:23:09 PDT 201 3 by mattf
Upgrades: There are no upgrades in progress.

Namenode Logs ce Col close
Go back to DFS home 100
. % M o
Live Datanodes : 1 0 mso
?.g reduce
Last . Configured Used Mon DFS Remaining Used Used Remaining an
= Contact | Admin State | o acity (GB) | (GB) | Used (GB) (GB) (%) (%) (%) Bloc! 30

db7586713e2c 2 In Service 18.21 0 13.43 478 [ N [ — 26.25
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Task Complete || Status Start Time Finish Time Errors || Counters
task 201411301113 0001 _m 000000 % Records RAW=3586/1 | 30-Nov-2014 11:19:06 || 30-Nov-2014 11:19:11 (4sec) 16
task 201411301113 0001 m 000001 % Records RAW=3609/1 | 30-Nov-2014 11:19:06 [ 30-Nov-2014 11:19:11 (4sec) 16

NameNode 'db75867f9e2c:9000'

Started: Sun Mov 30 11:13:51 UTC 2014
Version: 1.2.1, r1503152

Compiled: Mon Jul 22 15:23:09 PDT 2013 by matif
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

13 files and directories, 14 blocks = 27 total. Heap Size is 72 MB / 889 MB (8%)

Configured Capacity : 18.21 GB
DFS Used : 28.01 KB
Non DFS Used : 1343 GB
DFS Remaining : 478 GB
DFS Used% : 0%
DFS Remaining% : 26.25%
Live Nodes : 1
Dead Nodes : o
Decommissioning Nodes : o
Number of Under-Replicated Blocks o

NameNode Storage:

Storage Directory Type State
CINECA
ftmp/hadoop-roct/dfs/name | IMAGE_AND_EDITS | Active P ”ﬂ”[ N
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Cluster optimizations

The problem:

*  QOut of the box configuration not friendly
. Difficult to debug

. Performance - tuning/optimizations is a black art

CINECA
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Hadoop basic options

All hadoop commands are invoked by the bin/hadoop script.
Running the hadoop script without any arguments prints
the description for all commands.

Usage: hadoop [--config confdir] [COMMAND]
[GENERIC OPTIONS] [COMMAND OPTIONS]

Hadoop has an option parsing framework that employs
parsing generic options as well as running classes.

PRACE S
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Hadoop basic options

—conf <configuration file> Specify an application
configuration file.

-D <property=value> Use value for given property.
—fs <local|namenode:port> Specify a namenode.

-jJjt <local|jobtracker:port> Specify a job tracker.
Applies only to job.

—files <comma separated list of files> Specify comma
separated files to be copied to the map reduce cluster.
Applies only to job.

—libjars <comma seperated list of jars> Specify comma
separated jar files to include in the classpath. Applies
only to job.

—archives <comma separated list of archives> Specify comma
separated archives to be unarchived on the compute
machines. Applies only to job.

PRACE S
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Compression mapred.compress.map.output -» Map Output
Compression
. Default: False
. Pros: Faster disk writes, lower disk space usage, lesser
time spent on data transfer (from mappers to
reducers).
* Cons: Overhead in compression at Mappers and
decompression at Reducers.
* Suggestions: For large cluster and large jobs this
property should be set true.

$ hadoop -Dmapred.compress.map.output=<false|true>

PRACE ewssa
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Speculative Execution

Speculative Execution mapred.map/reduce.speculative.execution

— Enable/Disable task (map/reduce) speculative Execution
. Default: True

. Pros: Reduces the job time if the task progress is slow due
to memory unavailability or hardware degradation.

. Cons: Increases the job time if the task progress is slow due
to complex and large calculations. On a busy cluster
speculative execution can reduce overall throughput, since
redundant tasks are being executed in an attempt to bring
down the execution time for a single job.

. Suggestions: In large jobs where average task completion
time is significant (> 1 hr) due to complex and large
calculations and high throughput is required the speculative
execution should be set to false.

$ bin/hadoop jar -Dmapred.map.tasks.speculative.execution=false -\ ACE CINECA
-Dmapred.reduce. tasks.speculative.execution=fal e”
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Speculative execution

» It is possible for one Map task to run more slowly than the
others (perhaps due to faulty hardware, or just a very slow
machine)

* It would appear that this would create a bottleneck

* The reduce method in the Reducer cannot start until every
Mapper has finished

 Hadoop uses speculative execution to mitigate against this

« If a Mapper appears to be running significantly more slowly than
the others, a new instance of the Mapper will be started on
another machine, operating on the same data

* The results of the first Mapper to finish will be used

* Hadoop will kill off the Mapper which is still running

PRACE S
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Number of Maps/Reducers

mapred.tasktracker.map/reduce.tasks.maximum — Maximum
tasks (map/reduce) for a tasktracker

. Default: 2

* Suggestions: Recommended range -
(cores_per_node)/2 to 2x(cores_per_node), especially
for large clusters. This value should be set according to
the hardware specification of cluster nodes and resource
requirements of tasks (map/reduce).

PRACE S
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File block size

File block size dfs.block.size = File system block size
. Default: 67108864 (bytes)
. Suggestions:

— Small cluster and large data set: default block size will create a
large number of map tasks. e.g. Input data size = 160 GB and
dfs.block.size = 64 MB then the minimum no. of maps=
(160*1024)/64 = 2560 maps.

— If dfs.block.size = 128 MB minimum no. of maps=
(160*1024)/128 = 1280 maps.

— If dfs.block.size = 256 MB minimum no. of maps=
(160*1024)/256 = 640 maps.

— In a small cluster (6-10 nodes) the map task creation overhead is
considerable. So dfs.block.size should be large in this case but
small enough to utilize all the cluster resources. The block size
should be set according to size of the cluster, map task
complexity, map task capacity of cluster and average size of
input files.

PRACE S
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Sort size

Sort size jo.sort. mb — Buffer size (MBs) for sorting
. Default: 100

* Suggestions: For Large jobs (the jobs in which map
output is very large), this value should be increased
keeping in mind that it will increase the memory
required by each map task. So the increment in this
value should be according to the available memory at
the node. Greater the value of io.sort.mb, lesser will be
the spills to the disk, saving write to the disk

PRACE S
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Sort factor

Sort factor jo.sort.factor -» Stream merge factor
. Default: 10

* Suggestions: For Large jobs (the jobs in which map
output is very large and number of maps are also large)
which have large number of spills to disk, value of this
property should be increased. The number of input
streams (files) to be merged at once in the map/reduce
tasks, as specified by io.sort.factor, should be set to a
sufficiently large value (for example, 100) to minimize
disk accesses. Increment in io.sort.factor, benefits in
merging at reducers since the last batch of streams
(equal to io.sort.factor) are sent to the reduce function
without merging, thus saving time in merging.

PRACE i
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JVM Reuse

JVM reuse mapred.job.reuse.jvm.num.tasks — Reuse single
JVM

. Default: 1

* Suggestions: The minimum overhead of JVM
creation for each task is around 1 second. So for the
tasks which live for seconds or a few minutes and
have lengthy initialization, this value can be increased

to gain performance.

PRACE S
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Reduce parallel copies

Reduce parallel copies mapred.reduce.parallel.copies —
Threads for parallel copy at reducer

. Default: 5
. Description: The number of threads used to copy map
outputs to the reducer.

* Suggestions: For Large jobs (the jobs in which map
output is very large), value of this property can be
increased keeping in mind that it will increase the total
CPU usage.

PRACE S
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Map Reduce Limitations

CINECA
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Exercise
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SPARK Environment

$ docker run -v .. -p 127.0.0.1:8088:8088 -p
127.0.0.1:8042:8042 -i -t cineca/hadoop-spark:1.1.0
/etc/bootstrap.sh -bash

All Applications
+ Cluster Cluster Metrics
About Apps Apps Apps Apps Containers Memory Memory Memory VCores WVCores
Nodes Submitted Pending Running Completed Running Used Total Reserved Used Total
Applications 0 0 0 0 0 0B 8 GB 0B 0 8
% SAVING Show 20 ¥ entries
SUBMITTED ID o : R
ACCEPTED . | User 2 Name % Application Type ] Queue < StartTime < FinishTime <
Eﬁﬂgﬂ‘é‘é No data available in table
FAILED Showing 0 to 0 of 0 entries
KILLED
Scheduler
» Tools

CINECA
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SPARK shell

X - 0O root@555b23de51e8: fcourse-exercises

odify permissions: Set(root, )

14/12/12 ©8:53:37 INFO spark.HttpServer: Starting HTTP Server

14/12/12 ©8:53:38 INFO server.Server: jetty-8.y.z-SNAPSHOT

14/12/12 88:53:38 INFO server.AbstractConnector: Started SocketConnector@e.e.e.e
kel

14/12/12 08:53:38 INFO util.Utils: Successfully started service 'HTTP class serv
er' on port 55131.

Welcome to

/I | [

NN N _

[/ «__I\_,_I_| /I_/\_\ version 1.1.0
I,

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.8_72)

Type in expressions to have them evaluated.

Type :help for more information.

14/12/12 08:53:47 INFO spark.SecurityManager: Changing view acls to: root,

14/12/12 88:53:47 INFO spark.SecurityManager: Changing modify acls to: root,

14/12/12 08:53:47 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disab
led; users with view permissions: Set(root, ); users with modify permissions: Set(root, )

14/12/12 08:53:53 INFO slf4j.51f4jLogger: Slf4jLogger started

14/12/12 ©8:53:53 INFO Remoting: Starting remoting

14/12/12 ©8:53:53 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@ss
5b23de51e8:38937]

14/12/12 08:53:53 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@s55b23des
1e8:38937]

CINECA
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SPARK Shell (using Scala)

$ hadoop fs -put ../data/txt/divine comedy.txt
/spark/divine comedy.txt

$ spark-shell

$ scala> val textFile = sc.textFile("/spark/divine comedy.txt")
// create a Resilient Distributed Dataset

S scala> textFile.count () // Number of items in this RDD
S scala> textFile.first () // First item in this RDD

S scala> val linesWithCanto = textFile.filter(line =>
line.contains ("Canto"))

S scala> textFile.filter(line =>
line.contains ("Canto")) .count ()

$ scala> linesWithSpark.cache ()
$ scala> linesWithSpark.count ()

PRACE L
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SPARK Exercise

import re

import sys
from pyspark import SparkContext

#function to extract the data from the line
#based on position and filter out the invalid records
def extractData(line):
val = line.strip()
(year, temp, q) = (val[l5:19], val[87:92], val[92:93])
if (temp != "+9999" and re.match("[01459]", q)):
return [ (year, temp)]
else:
return []

#Create Spark Context with the master details and the application name
sc = SparkContext (appName="PythonMaxTemp")

#Create an RDD from the input data in HDFS
weatherData = sc.textFile(sys.argv[1l], 1)

#Transform the data to extract/filter and then find the max temperature
max_temperature per year = weatherData.flatMap (extractData) .reduceByKey(lambda a,b : a if int(a) > int(b) else
b)

#Save the RDD back into HDFS
max_temperature per year.saveAsTextFile ("output")

PRACE S

course—-exercises/spark/max temp.py



 SCAN

SuperComputing Applications and Innovation

spark/max_temp.py

$ hadoop fs -put ../data/spark/1902 /spark/1902

$ spark-submit --master yarn-client max temp.py
/spark/1902

$ hadoop fs —-get /user/root/output/part-00000

CINECA
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SPARK execution

YARN-client mode

In yarn-client mode, the driver runs in the client process, and
the application master is only used for requesting resources
from YARN.

YARN-cluster mode

In yarn-cluster mode, the Spark driver runs inside an
application master process which is managed by YARN on the
cluster, and the client can go away after initiating the
application. This mode is not available for Python.

PRACE S
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Criteria

Conciseness
Performance
Testability

Iterative processing

Exploration of data

SQL like interface

Fault Tolerance

Eco system

In memory
computations

SPARK vs Map Reduce

Map Reduce
Plain MR has a lot of boiler plate

High latency
Possible via libraries, but non trivial
Non trivial

Not possible easily

Via Hive

Inheranlty able to handle fault tolerance via
persisting the results of each of phases

lots of tools available but integration is not
quite seamless, requiring lot of effort for
their seamless integration

not possible

Spark

Almost no boilerplate
very fast compared to MR
Very much easy

straight forward

Spark shell allows quick and easy
data exploration

Build in as SparkSQL

Exploits immutability of RDD to
enable fault tolerance

Unifies lot of interfaces like SQL,
stream processing etc into single
abstraction of RDD

possible

PRACE i
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SPARK Performance

Hadoop Spark Spark
World Record 100TB* 1PB
Data Size 1025TB 100TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
# Nodes 2100 206 190
# Cores 50400 6592 6080
# Reducers 10,000 29,000 250,000
Rate 1.42 TB/min 427 TB/min 427 TB/min
Rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min
Sort Benchmark Voe Voe o

Daytona Rules

Environment

dedicated data
center

EC2 (i2.8xlarge)

EC2 (i2.8xlarge)

" not an official sort benchmark record

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.htm

PRACE
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What do we do when there is too
much data to process?

PRACE L
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Scale Up vs. Scale Out (1/2)

* Scale up or scale vertically:

— adding resources to a single node in a system.
* Scale out or scale horizontally:

— adding more nodes to a system.

CINECA
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Scale Up vs. Scale Out (2/2)

* Scale up:
— more expensive than scaling out.
* Scale out:

— more challenging for fault tolerance and software
development.

CINECA
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Shared nothing

Interconnect

665

Shared disk Shared memory
........ Interconnect
Interconnect | ] 1| | e

Memory

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database
systems”. ACM Communications, 35(6), 85-98, 1992.
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Different classes of applications

- Map Reduce/Hadoop

— A shared nothing architecture for processing large data
sets with a distributed algorithm on clusters.

« MPI (Message Passing Interface)

— A shared disk infrastructure for processing large data sets
with a parallel algorithm on clusters

« OpenMP (Open MultiProcessing)

— A shared memory infrastructure for processing large data
sets with a parallel algorithm on a node

PRACE ewssa
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- PrOgramming Models: What is

MPI?

- Message Passing Interface (MPI)
— World’s most popular distributed API
— MPI is “de facto standard” in scientific computing
— C and FORTRAN, ver. 2 in 1997

- What is MPI good for?
— Abstracts away common network communications
— Allows lots of control without bookkeeping

— Freedom and flexibility come with complexity
* 300 subroutines, but serious programs with fewer than 10

* Basics:
— One executable run on every node
— Each node process has a rank ID number assigned wﬂe@
— Call API functions to send messages i
http://www.mpi-forum.org/ PRACE CINECA
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Challenges with MPI

- Deadlock is possible...
— Blocking communication can cause deadlock
» "crossed" calls when trading information

* example:

* Procl: MPI Receive (Proc2, A); MPI Send(Procz,
B);

* Proc2: MPI Receive (Procl, B); MPI Send(Procl,
A);

* There are some solutions - MPI_SendRecv()
 Large overhead from comm. mismanagement
— Time spent blocking is wasted cycles
— Can overlap computation with non-blocking comm.
- Load imbalance is possible! Dead machines?
 Things are starting to look hard to code!

CINECA
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Are emerging data analytics
techniques the new El Dorado?

PRACE L
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Where and When
Where

* Batch data processing, not
real-time

* Highly parallel data
Intensive distributed
applications .

* Very large production
deployments .

CliEEbED

using Hadoop
When

Process lots of unstructured
data

When your processing can
easily be made parallel

Running batch jobs is
acceptable

When you have access to
lots of cheap hardware

CINECA
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Advantages/Disadvantage

—»
§
§

"7’\
* Now it's easy to program for many CPUs

— Communication management effectively gone
* I/0O scheduling done for us

— Fault tolerance, monitoring
* machine failures, suddenly-slow machines, etc are handled

— Can be much easier to design and program!

* But ... it further restricts solvable problems
— Might be hard to express problem in MapReduce
— Data parallelism is key
— Need to be able to break up a problem by data chunks
— MapReduce is closed-source (to Google) C++
— Hadoop is open-source Java-based rewrite

CINECA
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What if

« If you have access to a Hadoop cluster and you want a quick-and-dirty
job...

— Hadoop Streaming
« If you don’t have access to Hadoop and want to try stuff out...
— MrJjob
« If you're heavily using AWS...
— MrJob
« If you want to work interactively...
— PySpark
« If you want to do in-memory analytics...
— PySpark
« If you want to do anything...*
— PySpark
- If you want ease of Python with high performance
— Impala + Numba

CINECA
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HPC vs HPDA

Applications

Applications

Orchestration
(Pegasus, Taverna, Dryad, Swift)

Orchestration (Oozie, Pig)

Advanced Analytics & Machine Learning

MPI Frameworks for (Pilot-KMeans, Replica Exchange)

Advanced Analytics & Machine Learning (Mahout, R, MLBase)

Advanced Analytics &

Machine Learning

MapReduce Declarative
g:ﬁ?’ LS:SI;]A;;CS}E Frameworks Languages
ool " || (Pilot-MapReduce) (Swit)

Blast)

Workload Management
(Pilots, Condor)

SQL-Engines (Impala, Hive, Shark, Phoenix)

Higher-Level
Workload
Management
(TEZ, LLama)

Data Store &
Processing
(HBase)

| Scheduler

In-Memory
(Spark)

MapReduce

Spark
Scheduler

Map
Reduce

Scheduler

Twister
MapReduce

Twister
Scheduler

MPI, RDMA

Data Access
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GridFTP, SSH)
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(IRODS, SRM, GFFS)

Storage Resources
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Cluster Resource Manager

(Slurm, Torque, SGE)
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Compute and Data Resources

(Nodes, Cores, HDFS)

Apache Hadoop Big Data
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Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction, multiple-
data) problem.

— Indeed, the map step is highly scalable because the same instructions are
carried out over all data. Parallelism arises by breaking the data into
independent parts with no forward or backward dependencies (side effects)
within a Map step; that is, the Map step may not change any data (even its
own).

— The reducer step is similar, in that it applies the same reduction process to a
different set of data (the results of the Map step).

— In general, the MapReduce model provides a functional, rather than procedural,
programing model. Similar to a functional language, MapReduce cannot change
the input data as part of the mapper or reducer process, which is usually a
large file. Such restrictions can at first be seen as inefficient; however, the lack
of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD (multiple-
instruction, multiple-data) jobs.
— The programmer determines how to execute the parallel algorithm. Users,

however, are not restricted when creating their own MapReduce application
within the framework of a typical HPC cluster.

CINECA
A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures PRACE
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox



it SCA
Big Data Needs Big Solutions

* Without a doubt, Hadoop is useful when analyzing very large
data files.

« HPC has no shortage of “big data” files

* Provided your problem fits into the MapReduce framework,
Hadoop is a powerful way to operate on staggeringly large
data sets. Because both the Map and Reduce steps are user
defined, highly complex operations can be encapsulated in
these steps.

 The growth of Hadoop and the hardware on which it runs has
been increasing. Certainly it can be seen as a subset of HPC,
offering a single yet powerful algorithm that has been
optimized for a large number of commodity servers. “pggpr -~ S'NECA



1) Mab Onl (2) Classic (3) Iterative Map Reduce| (4) Point to Point or
(1) Map Only MapReduce or Map-Collective Map-Communication
et Input Input  Iteration

map

Correspond to first 4 of Identified Architectures




 SCAN

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

The PICO system
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Intel Xeon E5
f:’:ﬂ":ﬁie 66 2670 v2 20 128 GB
g @2.5Ghz
Intel Xeon E5
Visualization node 2 2670 v2 @ 20 128 GB 2 GPU Nvidia K40
2.5Ghz

Intel Xeon E5
Big Mem node 2 2650 v2 @ 2.6 16 512 GB 1 GPU Nvidia K20
Ghz

Intel Xeon E5

BigInsight node 4 2650 v2 @ 2.6 16 64 GB 32T'3dgk'°ca'
Ghz
SSD Storage 40 TB
CINECA

http://www.hpc.cineca.it/hardware/pico - P ‘_"__”f "
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PICO: how to log in

 Establish a ssh connection

ssh <username>@login.pico.cineca.it

* Notes:

ssh available on all linux distros
Putty (free) or Tectia ssh on Windows
secure shell plugin for Google Chrome!

login nodes are swapped to keep the load balanced
important messages can be found in the message of the day

PRACE

CINECA
107
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Working environment

$HOME:
— Permanent, backed-up, and local to PICO.
— For source code or important input files.

$CINECA_SCRATCH:
— Large, parallel filesystem (GPFS).
— No quota. Run your simulations and calculations here.

* use the command cindata command to get info on your disk
occupation

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

PRACE S
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"module”, my best friend

* All the optional software on the system is made
available through the "module” system

— provides a way to rationalize software and its environment variables

* Modules are divided in 2 profiles
— profile/base (stable and tested modules)
— profile/advanced (software not yet tested or not well optimized)

* Each profile is divided in 4 categories
— compilers (GNU, intel, openmpi)
— libraries (e.g. LAPACK, BLAS, FFTW, ...)
— tools (e.g. Hadoop, GNU make, VNC, ...)
— applications (software for chemistry, physics, ... )

INECA
PRACE ~ 100 <
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Modules

 CINECA'’s work environment is organized in modules, a set
of installed libraries, tools and applications available for all
users.

* “loading” a module means that a series of (useful) shell
environment variables will be set

 E.g. after a module is loaded, an environment variable of
the form "<MODULENAME>_ HOME" is set

[amarani0@fen07 ~]1S5 module load namd
[amaraniO@fen07 ~]5 1ls SNAMD HOME

flipbinpdb flipdcd namd2 namd2 plumed namd2 remd psfgen sortreplicas

INECA
PRACE ~ 1o <
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Module commands

COMMAND

module

module

module

module

module

module

module

avail
load <module name (s)>
list
purge

unload <module_pame>

help <module name>

show <module_pame>

DESCRIPTION
list all the available modules

load module <module_name>

list currently loaded modules
unload all the loaded modules

unload module <module_name>

print out the help (hints)

rint the env. variables set when
oading the module

INECA
PRACE ~ Sin—<
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Launching a Job

* Now that we have our executable, it's time to learn how to
prepare a job for its execution

 PICO uses PBS scheduler.
* The job script scheme is:

#'/bin/bash
#PBS keywords

variables environment

execution line

INECA
PRAGE ~ 1o <
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PBS keywords

#PBS -N jobname # name of the job

#PBS -0 job.out # redirect stdout (output file)
#PBS -e Jjob.err # redirect stderr (error file)
#PBS -1 select=1:ncpus=20::mem=96gb # resources
#PBS -1 walltime=1:00:00 # hh:mm:ss

#PBS —-g <gueue-name> # chosen queue

#PBS -A <my account> # name of the account

select = number of chunk requested
ncpus = number of cpus per chunk requested

mem = RAM memory per chunk

INECA
PRACE ~ Sin-<
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PBS keyword - resource

Memory per node:

* The default memory is 1 GB per node (for the classes debug,
parallel and longpar).

* The user can specify the requested memory up to 128 GB, on 58
nodes

#PBS -1 select=NN:ncpus=CC:mem=128GB

INECA
PRACE ~ Sip-<
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PBS job script - Serial using 1 G ;

#!/bin/bash

#PBS -I walltime=30:00
#PBS -l select=1:ncpus=1
#PBS -0 job.out

#PBS -e job.err

#PBS -q debug

#PBS -A train_cmda2014

cd $PBS_ O WORKDIR

/myProgram

INECA
PRACE ~ 1o <
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PBS Commands

qsub
qsub <job_script>

Your job will be submitted to the PBS scheduler and
executed when there will be nodes available (according to
your priority and the queue you requested)

qstat
gstat

Shows the list of all your scheduled jobs, along with their
status (idle, running, closing, ...) Also, shows you the job id
required for other gstat options

INECA
PRACE ~ 1o <
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PBS Commands

qstat
gstat -f <job_id>

Provides a long list of informations for the job requested.

In particular, if your job isn’t running yet, you'll be notified
about its estimated start time or, if you made an error on
the job script, you will learn that the job won't ever start

qdel
gdel <job_id>

Removes the job from the scheduled jobs by killing it

INECA
PRACE ~ Sip=<
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Hadoop on PICO

CINECA
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PBS Script

#!/bin/bash

#PBS -A <account>

#PBS -1 walltime=01:00:00

#PBS -1 select=1:ncpus=20:mem=96GB
#PBS -gq parallel

## Environment configuration

module load profile/advanced hadoop/1.2.1

# Configure a new HADOOP instance using PBS job information
$MYHADOOP HOME/bin/myhadoop-configure.sh -c $HADOOP CONF DIR
# Start the Datanode, Namenode, and the Job Scheduler
$HADOOP HOME/bin/start-all.sh

HHAFHHH AR A AR A AR A AR SRS RS

# Your job goes here

# Stop HADOOP services
$MYHADOOP HOME/bin/myhadoop-shutdown.sh

CINECA

PRACE
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Sample execution

* Login on PICO

* ssh login.pico.cineca.it -1 <username>

 Download source codes within $SHOME or
SCINECA_SCRATCH

* Change the selected PBS script accordingly to the destination
directory

* gsub SHOME/course-exercises/pbs/mrjob/wordcount/word-
count. hadooop. pbs

* gstat

PRACE S
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Sample execution (cont.)

Output:
— word-count.hado.03041 // std output
— word-count.hado.o3042 // std error

CINECA

PRACE
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