Data Analytics — Other
approaches

Gilovanni Simonini

DBGroup
Universita di Modena e Reggio Emilia

Dipartimento di Ingegneria “Enzo Ferrari”

Outline

» Abstractions on top of MapReduce
— Pig
— Hive

* MapReduce and Machine learning
— Mahout

* MapReduce and graphs
— Giraph

Pig and Hive

ABSTRACTIONS ON TOP OF
MAPREDUCE

Abstractions on top of MapReduce

High level languages: easier to program MR jobs

€ DBGroup @ unimore

o
§§ urls:Curl, category, pagerank)
H
good_urls = FILTER urls BY pagerank > 0.2;
w groups = GROUP good_urls BY category;
H big_groups = FILTER groups BY COUNT(good_urls)>10/6;
output = FOREACH big_groups
GENERATE category, AVG(good_urls.pagerank);
SELECT category, AVG(pagerank)
=~ FROM urls WHERE pagerank > 0.2
= GROUP BY category

HAVING COUNT(*) > 1076

Finds, for each sufficiently large category, the average pagerank of high-
pagerank urls in that category.

Universita degli Studi di Modena e Reggio Emilia
4

Not only easier languages!

PIG and HIVE W
Q

SHIVE
* Allow to express programs through declarative languages that is
transformed in a series of MapReduce Job.

€ DBGroup @ unimore

* Bring Relational Algebra on top of MapReduce

— higher layer of abstraction that allows a series of optimization
of the generates MapReduce jobs

Universita degli Studi -

What is Pig

* Pig provides an engine for executing data flow in parallel on
Hadoop

€ DBGroup @ unimore

— Pig Latin: language for expressing the data flows
* Operators for many traditional data operations (join, sort, filter)

* Ability to develop UDF (User Defined Function) for reading,
processing, and writing data

* Pig Latin use cases tend to fall into three separate categories:
— traditional extract transform load (ETL) data pipelines

— research on raw data
— Iterative processing

From Pig to MapReduce

A Pig Latin program describes a data flow

€ DBGroup @ unimore

* How do we go from Pig Latin to MapReduce!?
— Pig Compiler
» Complex execution environment that interacts with Hadoop
MapReduce

* Pig Latin operators are translated into MapReduce code

* Pig Optimizer
— Pig Latin data flows undergo an (automatic) optimization phase

— These optimizations are borrowed from the RDBMS community (thanks
to Relational Algebra)

Universita degli Studi di Mode-

€ DBGroup @ unimore

Writing Pig Program vs “Native’” MapReduce (1)

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = joiln Fltrd by name, Pages by user;
Grpd = group Jnd by url;
smmd = foreach Grpd generate group,
COUNT (Jnd) as clicks;
Srtd = order Smmd by clicks desc;
TopS = limit Srtd 5;
store Topb into ‘topbsites’;

9 lines of code, 15 minutes to write

€ DBGroup @ unimore

Writing Pig Program vs “Native” MapReduce (2)

In MapReduce

import java.io.IOException; reporter.setStatus ("OK") ;
import java.util.ArrayList 3
import Java.util.Iterator;
import java.util.List; // Do the cross product and collect the values
for (String sl : first)
import org.apache.hadoop.fs.Path; for (String s2 : second) {
import org.apache.hadoop.io.LongWritable; String outval = key + "," + sl + "," + s2;
import org.apache.hadoop.io.Text; oc.collect (null, new Text (outval));
import org.apache.hadoop.io.Writable; reporter.setStatus ("OK") ;
import org.apache.hadoop.io.WritableComparable; i
import org.apache.hadoop.mapred.FileInputFormat; 3
import org.apache.hadoop.mapred.FileOutputFormat;)
import org.apache.hadoop.mapred.JobConf; }
import org.apache.hadoop.mapred.KeyValueTextInputFormat; public static class LoadJoined extends MapReduceBase
import org.apache.hadoop.mapred.Mapper; implements Mapper<Text, Text, Text, LongWritable> (
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector; public void map (
import org.apache.hadoop.mapred.RecordReader; Text k,
import org.apache.hadoop.mapred.Reducer; Text val,
import org.apache.hadoop.mapred.Reporter; OutputCollector<Text, LongWritable> oc,
import org.apache.hadoop.mapred.SequenceFilelnputFormat; Reporter reporter) throws IOException {
import org.apache.hadoop.mapred.SequenceFileOutputFormat; // Find the url
import org.apache.hadoop.mapred.TextInputFormat; String line = val.toString();
import org.apache.hadoop.mapred.jobcontrol.Job; int firstComma = line.indexOf(',');
import org.apache.hadoop.mapred.jobcontrol.JobControl int secondComma = line.indexOf(',', firstComma);
import org.apache.hadoop.mapred.lib.IdentityMapper; String key — line.substring(firstComma, secondComma);
// drop the rest of the record, I don't need it anymore,
public class MRExample { // just pass a 1 for the combiner/reducer to sum instead.
public static class LoadPages extends MapReduceBase Text outKey — new Text (key):
implements Mapper<LongWritable, Text, Text, Text> { oc.collect (outKey, new LongWritable (1L));
)
public void map(LongWritable k, Text val, ¥
OutputCollector<Text, Text> oc, public static class ReduceUrls extends MapReduceBase
Reporter reporter) throws IOException (implements Reducer<Text, LongWritable, WritableComparable,
// Pull the key out writable> {
String line = val.toString();
int firstComma = line.indexOf(','); public void reduce(
string key = line.substring(0, firstComma); Text key,
String value = line.substring(firstComma + 1); Iterator<LongWritable> iter,
Text outKey — new Text (key); OutputCollector<WritableComparable, Writable> oc,
// Prepend an index to the value so we know which file Reporter reporter) throws IOException
// it came from. // Add up all the values we see
Text outval — new Text ("1" + value);
oc.collect (outKey, outval); long sum = 0
¥ while (iter.hasNext ()) (
) sum += iter.next().get ();
public static class LoadAndFilterUsers extends MapReduceBase reporter.setStatus ("OK") ;
implements Mapper<LongWritable, Text, Text, Text> { 3
public void map(LongWritable k, Text val, oc.collect (key, new LongWritable (sum));
OutputCollector<Text, Text> oc, }
Reporter reporter) throws IOException ()
// Pull the key out public static class LoadClicks extends e
String line - val.toString(); implements Mapper<WritableComparable, Writable, LongWritable,
int firstComma = line.indexOf(','); Text>
String value — line.substring(firstComma + 1);
int age = Integer.parselnt (value); public void map
if (age < 18 || age > 25) return; WritableComparable key,
String key = line.substring(0, firstComma); Writable val,
Text outKey = new Text (key); OutputCollector<LongWritable, Text> oc,
// Prepend an index to the value so we know which file Reporter reporter) throws IOException {
// it came from. oc.collect ((LongWritable)val, (Text)key);
Text outval = new Text ("2" + value);)
oc.collect (outKey, outval); ¥

)

} public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {

public static class Join extends MapReduceBase

implements Reducer<Text, Text, Text, Text> [int count = 0;
public void reduce (
public void reduce (Text key, LongWritable key,
Iterator<Text> iter, Tterator<Text> iter,
OutputCollector<Text, Text> oc, outputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException { Reporter reporter) throws IOException {
// For each value, figure out which file it's from and
store it // Only output the first 100 records
// accordingly. while (count < 100 && iter.hasNext()) {
List<String> first = new ArrayList<String>(); oc.collect (key, iter.next());
List<String> second = new ArrayList<String>(); countt;
)
while (iter.hasNext()) { 3
Text t = iter.next(); b
String value t.tostring(); public static void main(String[] args) throws IOException {
if (value.charaAt (0) 1) JobConf 1lp = new JobConf (MRExample.class);
first.add(value.substring (1)) ; 1p.setJobName ("Load Pages™);
else second.add(value.substring(1)); lp.setInputFormat (TextInputFormat.class);

170 lines of code, 4 hours to write

1p.setOutputKeyClass (Text.class) ;
1p.setOutputvValueClass (Text.class) ;
1p.setMapperClass (LoadPages.class) ;
FileInputFormat.addInputPath(lp, new

Path ("/user/gates/pages”)) ;

FileOutputFormat.setOutputPath (1p,

new Path ("/user/gates/tmp/indexed_pages"));
1p.setNumReduceTasks (0) 7
Job loadPages = new Job(lp);

JobConf 1fu = new JobConf (MRExample.class);
1fu.setJobName ("Load and Filter Users");
1fu.setInputFormat (TextInputFormat.class) ;
1fu.setOutputKeyClass (Text.class);
1fu.setOutputvalueClass (Text.class) ;
1fu.setMapperClass (LoadAndFilterUsers.class);
FileInputFormat.addInputPath(lfu, new

Path ("/user/gates/users"));

FileOutputFormat.setOutputPath (1fu,

new Path("/user/gates/tmp/filtered users
1fu.setNumReduceTasks (0) ;
Job loadUsers — new Job (1fu);

JobConf join = new JobConf (MRExample.class):
join.setJobName ("Join Users and Pages");
join.setInputFormat (KeyValueTextInputFormat.class);
join.setOutputKeyClass (Text.class) 7
join.setOutputvalueClass (Text.class) ;
join.setMapperClass (IdentityMapper.class) ;
join.setReducerClass (Join.class);
FileInputFormat.addInputPath(join, new

Path ("/user/gates/tmp/indexed_pages"));

FileInputFormat.addInputPath(join, new

Path ("/user/gates/tmp/filtered_users™));

Path("/user/gates/tmp/joined

Path("/user/gates/tmp/joined

FileOutputFormat.setOutputPath(join, new

) ;
join.setNumReduceTasks (50) ;
Job joinJdob = new Job(join);
joinJob.addDependingJob (loadPages) 7
joinJob.addDependingJob (loadUsers) ;

JobConf group — new JobConf (MRExample.class);
group.setJobName ("Group URLs")

group.setInputFormat (KeyvalueTextInputFormat.class) ;
group.setOutputKeyClass (Text.class)
group.setOutputValueClass (LongWritable.class) ;
group.setOutputFormat (SequenceFileOutputFormat.class) ;
group.setMapperClass (LoadJoined.class) 7
group.setCombinerClass (ReduceUrls.class) ;
group.setReducerClass (ReduceUrls.class) ;
FileInputFormat.addInputPath(group, new

1)
FileOutputFormat.setOutputPath (group, new

Path ("/user/gates/tmp/grouped”)) ;

Path ("/user/gates/tmp/grouped

group.setNumReduceTasks (50) ;
Job groupJob = new Job (group):
groupJob.addDependingJob (joinJdob) ;

JobConf topl00 = new JobConf (MRExample.class);
£opl00.setJobName ("Top 100 sites™);
topl00.setInputFormat (SequenceFilelnputFormat.class);
topl00.setOutputKeyClass (LongWritable.class) ;
topl00.setOutputvalueClass (Text.class) ;
topl00.setOoutputFormat (SequencerileOutputFormat.class) ;
topl00.setMapperClass (LoadClicks.class) ;
topl00.setCombinerClass (LimitClicks.class)
topl00.setReducerClass (LimitClicks.class) ;
FileInputFormat.addInputPath (topl00, new

FileOutputFormat.setOutputPath (topl00, new

Path ("/user/gates/topl00sitesforusersl8to25")) ;

18 to

topl00.setNumReduceTasks (1) ;
Job limit = new Job (topl00);
limit.addDependingJob (groupJob) ;

JobControl jc = new JobControl ("Find top 100 sites for users

25

)i

jc.addJob (loadPages) ;
jc.addJob (loadUsers) ;
jc.addJob (joinJob) ;
jc.addJob (groupJob) ;
je.addJob (Limit) ;
Je.run ()

Pig's Data Model

e Atom
— Int, float, string ...

€ DBGroup @ unimore

* Complex Types

— Tuple
* An ordered set of fields, (19,2)
* Each field of any type

— Bag
* A collection of tuples, {(19,2), (18,1)}
* not necessary the same type
* duplicate allowed

— Map
* A set of key value pairs, [open#apache]

C a,{(19,2),(18,1),(19,2)}, [open#apache])

\ | |

€ DBGroup @ unimore

fl:atom f2:bag f3:map
$0 a
f2 bag{(19,2),(18,1),(19,2)}
f2.%0 bag{(19),(18),(19)}
f3#’open’ ‘apache’

sum(f2.%$1) 2 +1+ 2

€ DBGroup @ unimore

Schemas

Schemas enable you to assign names to and declare types for fields

— Schemas are optional

Type declarations result in better parse-time error checking and more
efficient code execution

You can define a schema that includes the field name and field type

Definition of a schema that includes the field name only
— you can refer to that field using the name or by positional notation
— the field type defaults to bytearray

Undefined schema
— the field is un-named and the field type defaults to bytearray

— you can only refer to the field using positional notation

Universita degli Studi di Modena e -

€ DBGroup @ unimore

Load

Input is assumed to be a bag (sequence of tuples)

Assumes that every dataset is a sequence of tuples

Specify a parsing function with “USING”

— you can define your own function

Specify a schema with “AS”

A = LOAD 'myfile.txt' USING PigStorage('\t') AS (al,a2,a3);

Universita degli Studi di Modi-

€ DBGroup @ unimore

Pig Operators

FILTER

— Getting nd of data

— Arbitrary Boolean conditions
— Regular expressions allowed

GROUP

— The result is a relation that includes one tuple per group. This tuple
contains two fields:

* The first field is named "group" and is the same type as the group key.
* The second field takes the name of the original relation and is type bag.

COGROUP
— similar to GROUP, but with multiple relations re involved

FOREACH
— Takes a set of expressions and applies them to every record in the

pipeline
Universita degli Studi di Mode-

Pig operators: JOIN vs COGRUP

* JOIN is a two-step process
— Create groups with shared keys
— Produce joined tuples

 COGROUP only performs the first step
— You might do different processing on the groups

€ DBGroup @ unimore

Pig Operators

Relational Operators
COGROUP
CROSS
DISTINCT

FILTER
FOREACH
GROUP

JOIN (inner/outer)
LIMIT

LOAD

ORDER

SAMPLE

SPLIT

STORE

STREAM

UNION

UDF Statements
DEFINE
REGISTER

Diagnostic Operators
DESCRIBE

DUMP

EXPLAIN

ILLUSTRATE

Eval Functions
AVG
CONCAT
COUNT
COUNT_STAR
DIFF

IsEmpty

MAX

MIN

SIZE

SUM
TOKENIZE

Load/Store Functions Handling
Compression

BinStorage

PigStorage

PigDump

TextLoader

Arithmetic Operators Arithmetic
Operators

Comparison Operators

Null Operators

Boolean Operators

Dereference Operators

Sign Operators

Flatten Operator

Cast Operators

Universita degli Studi di Mode-

€ DBGroup @ unimore

Example
A = LOAD ‘traffic.dat’ AS (ip, time, url); | OAD
B = GROUP A BY 1ip;
C = FOREACH B GENERATE group AS ip,
COUNT(A): Y
D = FILTER C BY ip IS ¢192.168.0.1° GROUP
OR ip IS ¢192.168.0.0°;
STORE D INTO ‘local_traffic.dat’;
FOREACH
\'4
FILTER

Lazy Evaluation:
no work Is done until the store

l

STORE

Universita degli Studi di Modena e Reggio Emilia
17

Example: from DAG to MapReduce

€ DBGroup @ unimore

. (CO)GROUP reqguires both LOAD
Map and Reduce phase:
— create a MR job for each v
(CO)GROUP FILTER
> v
2. Adds other operator where CROLP
possible o
v
Certain operator requires their FORCALE
own MR job l
(e.g ORDER) STORE

Universita degli Studi di Modena e Reggio Emilia
18

€ DBGroup @ unimore

Efficiency through Algebraic Function

Conceptually speaking, our (CO)GROUP command places tuples

belonging to the same group into one or more nested bags.

* In many cases, the system can avoid actually materializing these
bags, which is especially important when the bags are larger than
one machine’s main memory

* One common case is where the user applies a algebraic
aggregation function over the result of a (CO)GROUP
operation

An algebraic function is one that can be structured as a tree of sub-
functions, with each leaf sub-function operating over a subset of the
input data. (remember monoids?)

* If nodes in this tree achieve data reduction, then the system can
keep the amount of data materialized in any single location
small.

* Examples: COUNT, SUM, MIN, MAX, AVERAGE,VARIANCE,
although some useful functions are not algebraic, e.g., MEDIAN

* Pig provides a special APl for algebraic UDF

Universita degli Studi di Modena e Reggio Emgl
1

Join — advanced techniques

MEMORY-BACKED JOIN:

* If one of the two dataset can fit in memory, it is possible to store in memory
a copy of the dataset for each mapper

€ DBGroup @ unimore

* Reduce phase only to aggregate the data
C = JOIN big BY bl, tiny BY t1, mini BY ml USING 'replicated';

SKEW JOIN: .
Shuffle

Sort

* Struggler tasks: a small fraction of reducers (even only one)
are doing the majority of the work

H Exec

* load imbalances will swamp any of the parallelism gains

— e.g: most of the keys have few hundreds of tuples, while only
one joining key correspond to millions of tuples

Tasks

mOCUOm®

e Solution:

— computes a histogram of the key space and uses this
data to allocate reducers for a given key

— splits the left input on the join predicate and streaming
the right input

C = JOIN big BY bl, massive BY ml USING 'skewed';

Universita degli Studi di Modena e Reggio EmiI
2

€ DBGroup @ unimore

Pig vs. MapReduce

Pig

Pig Latin provides standard data-processing
operations, such as join, filter, sroup by, order
by, union, ...

MapReduce

MapReduce provides the group by
operation directly, the order by operation
indirectly through the grouping. Filter and
projection can be implemented in the map
phase

Pig provides some complex implementations

of standard data operations.

* For example the data sent to the reducers is
often skewed.

e Pig has join and order by operators that will
handle this case and (in some cases) rebalance
the reducers.

In MapReduce, the data processing inside the
map and reduce phases Is opaque to the
system. This means that MapReduce has no
opportunity to optimize or check the user
code

Pig, can analyze a Pig Latin script and

understand the data flow that the user is

describing.

* [t can do early error checking and
optimizations

MapReduce does not have a type system.
This gives users the flexibility to use their

own data types and serialization frameworks.
e this limits the system’s ability to check users’
code for errors both before and during

runtime.

Choosing Between Pig and MapReduce

€ DBGroup @ unimore

Are your problem
surted for Pig?

Nes

Use Pig

* Writing and optimizing MapReduce code
requires Java expert

e MapReduce is not a place where learn Java

* Using Pig the code does not loose in
performance

* Using Pig help to think to the dataflow of
the solution to your problem

— Pig has an interactive shell...

No

Try Pig Anyway

l

Does it works!?

~e No

Use MapReduce

Universita degli Studi di Modena e -

Grunt

* Grunt is Pig's interactive shell

€ DBGroup @ unimore

— Local Mode

To run the scripts in local mode, no Hadoop or HDFS installation is
required

— Mapreduce Mode
To run the scripts in mapreduce mode, you need access to a Hadoop
cluster and HDFS installation

pig {-x local}

HIVE

Hive
* Provide a SQL-like language (HiveQL)
* Under the covers, generates MapReduce jobs that run on Hadoop (like Pig)

€ DBGroup @ unimore

* Enabling Hive requires almost no extra work by the system administrator

Hive Data Model

* Requires table definition
— typed columns (int, float, string, boolean...)
— allows array, struct, map...
* Hive Metastore
— a database containing table definition and other metadata

— Default: stored locally on the client machine in a Derby database (embedded
RDBMS)

— If needed: shared Metastore (usually MySQL).

* but the system administrator should create it

Universita degli Studi di Modena e Reggio Emilia
24

Hive Limitations

* Not all ‘standard” SQL is supported
— Subqueries are only supported in the FROM clause

€ DBGroup @ unimore

— No correlated subqueries

* No support for UPDATE or DELETE

» All inserts overwrite the existing data. Accordingly, Hive has an
explicit syntax:
— INSERT OVERWRITE TABLE t1

The only option is to append row to the table:
— INSERT INTO TABLE t1

Universita degli Studi di Modena e Reggio EI

o
§ Pig vs. Hive
© :
o
9,
oM
O
® PIG LATIN HiveQL (~SQL)
Schema defined dynamically while Schema defined before importing data, e.g.:

importing data
CREATE TABLE text (freq INT, word
text = LOAD ’PATH_TO_FILE’ AS STRING)

(freq:INT, word:CHARARRAY); ROW FORMAT DELIMITED
FIELD TERMINATED BY ‘\t’

STORE AS TEXTFILE;

LOAD DATA INPATH ‘PATH_TO_FILE’
INTO TABLE text

Mahout

MAPREDUCE AND MACHINE LEARNING

€ DBGroup @ unimore

Mahout

In theory, Mahout is a project open to implementations of all kinds of machine
learning techniques

In practice, it's a project that focuses on three key areas of machine learning at
the moment. These are recommender engines (collaborative filtering),
clustering, and classification

Recommendation
* Fora given set of input, make a recommendation
* Rank the best out of many possibilities

Clustering

* Finding similar groups (based on a definition of similarity)
* Algorithms do not require training

* Stopping condition: iterate until close enough

Classification
* identifying to which of a set of (predefined)categories a new observation belongs

e Algorithms do require training
Universita degli Studi di Modena e Reggio E.

€ DBGroup @ unimore

Mahout goes to Spark

Mahout News

25 April 2014 - Goodbye MapReduce

The Mahout community decided to move its codebase onto modern data processing systems that offer a richer programming model
and more efficient execution than Hadoop MapReduce. Mahout will therefore reject new MapReduce algorithm
implementations from now on. We will however keep our widely used MapReduce algorithms in the codebase and maintain
them.

We are building our future implementations on top of a DSL for linear algebraic operations which has been developed over the last
months. Programs written in this DSL are automatically optimized and executed in parallel on Apache Spark.

Furthermore, there is an experimental contribution undergoing which aims to integrate the h20 platform into Mahout.

Scala & Spark Bindings for Mahout:
* Scala DSL and algebraic optimizer
— The main idea is that a scientist writing algebraic expressions cannot care
less of distributed operation plans and works entirely on the logical level
just like he or she would do with R.
— Another idea is decoupling logical expression from distributed back-end. As
more back-ends are added, this implies "write once, run everywhere".

Mahout Algorithm (1)

Collaborative Filtering with CL/ Drivers
User-Based Collaborative Filtering
Item-Based Collaborative Filtering
Matrix Factorization with ALS

Matrix Factorization with ALS on Implicit
Feedback
Weighted Matrix Factorization, SVD++

Classification with CLI Drivers
Logistic Regression - trained via SGD

Naive Bayes / Complementary Naive Bayes

Random Forest
Hidden Markov Models

Multilayer Perceptron

Clustering with CL/ Drivers
Canopy Clustering
k-Means Clustering

Fuzzy k-Means

Streaming k-Means

Spectral Clustering

Single
Machine

deprecated
X
X

X

MapReduce

deprecated
X
X
X

X

Spark

in
development

http://mahout.apache.org/users/basics/algorithms.html

Mahout Algorithm (2)

Single MapReduce Spark
Machine
Dimensionality Reduction with CL/ Drivers
- note: most scala-based dimensionality
reduction algorithms are available through
the Mahout Math-Scala Core Library for all
engines
Singular Value Decomposition X X
Lanczos Algorithm X X
Stochastic SVD X X
PCA (via Stochastic SVD) X X
QR Decomposition X X
Topic Models
Latent Dirichlet Allocation X X
Miscellaneous
RowsSimilarityJob X X
ConcatMatrices X
Collocations X
Sparse TF-IDF Vectors from Text X
XML Parsing X
Email Archive Parsing X
Lucene Integration X
Evolutionary Processes X

http://mahout.apache.org/users/basics/algorithms.html

Mahout Algorithm (3)

Collaborative Filtering with CL/ Drivers
User-Based Collaborative Filtering
Item-Based Collaborative Filtering
Matrix Factorization with ALS

Matrix Factorization with ALS on Implicit
Feedback
Weighted Matrix Factorization, SVD++

Classification with CLI Drivers
Logistic Regression - trained via SGD

Naive Bayes / Complementary Naive Bayes

Random Forest
Hidden Markov Models

Multilayer Perceptron

Clustering with CL/ Drivers
Canopy Clustering
k-Means Clustering

Fuzzy k-Means

Streaming k-Means

Spectral Clustering

Single
Machine

deprecated
X
X

X

MapReduce

deprecated
X
X
X

X

Spark

in
development

http://mahout.apache.org/users/basics/algorithms.html

Giraph

MAPREDUCE AND GRAPHS

Girpah Motivations

* Representing graphs in MapReduce Is complex (and "unnatural™):
e.g: <key: vertex_id ; value:{weight,..., [list of neighbor] }>

€ DBGroup @ unimore

* Computation is not efficient;
— Each vertex depends on its neighbors, recursively
— Recursive problems are nicely solved rteratively

— In MapReduce iterations means chains of MR jobs
" must store graph state in each stage, too much communication
between stages

Solution
* Pregel (Google 2010)

* Giraph (Apache open-source equivalent)

€ DBGroup @ unimore

Girpah Model

Solution: BSP (Bulk Synchronous Parallel)

Computations consist of a sequence of iterations, called supersteps.

During a superstep the framework invokes a user-defined function for each vertex,
conceptually in parallel.

The function specifies behavior at a single vertexV and a single superstep S.

It can read messages sent toV in superstep S — |, send messages to other vertices that
will be received at superstep S + 1, and modify the state of V and its outgoing edges.

Messages are typically sent along outgoing edges, but a message may be sent to any
vertex whose identifier is known.

The synchronicity of this model makes it easier to reason about program semantics

when implementing algorithms, and ensures that Giraph programs are inherently free of
dead-locks and data races (common in asynchronous systems).

Universita degli Studi di Modena e Reggio E.

Giraph Job

€ DBGroup @ unimore

Loading phase Compute phase Offloading phase
A
Workers call
compute() on the
active vertices and

collect messages

Vertices are loaded Vertices are offloaded

into Giraph through an More vertices and to HDFS through an
InputFormat All data loaded messdges to be OutputFormat
processed

All vertices halted
and no messages
produced
All vertices computed

' Workers compute
All messages sent aqgregators, collect
statistics, and wait at
the synchronisation
barrier

Workers finish
exchange messages

€ DBGroup @ unimore

Example: finding maximum value

. C}/@Q
O
cj\}Q N

Universita degli Studi di Modena e Reggio Emilia
37

Data Locality

* The assignment of vertices to worker machines is the main place where
distribution is not transparent in Giraph.

€ DBGroup @ unimore

* Some applications work well with the default assignment, but some benefit
from defining custom assignment functions to better exploit locality inherent
in the graph.

— custom partitioning function (similar to the customPartitioner in Hadoop)

» E.g, atypical heuristic employed for the Web graph is to co-locate vertices
representing pages of the same site

Universita degli Studi di Modi-

Example: shortest path

€ DBGroup @ unimore

public void compute(Iterable<DoubleWritable> messages) {
double minDist = Double.MAX_VALUE;
for (DoubleWritable message : messages) {
minDist = Math.min(minDist, message.get());
ks
1f (minDist < getValue().get()) {
setValue(new DoubleWritable(minDist));
for (Edge<LongWritable, FloatWritable> edge : getEdges()) {
double distance = minDist + edge.getValue().get();
sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance));

}

¥
voteToHalt();

Universita degli Studi di Modena e Reggio Emgl
3

Okapi

Machine Learning library for Giraph

* Collaborative Filtering
— Alternating Least Squares (ALS)
— Bayesian Personalized Ranking (BPR) —beta-
— Collaborative Less-is-More Filtering (CLIMF) —beta-
— Singular Value Decomposition (SVD++)
— Stochastic Gradient Descent (SGD)

€ DBGroup @ unimore

* Graph Analytics
— Graph partitioning
— Similarity
— SybilRank

. :
Cl USterlﬂg http:/grafos.ml/#Okapi

Universita degli Studi di /\/Ioden-

— Kmeans

€ DBGroup @ unimore

References

Olston, Christopher, et al. "Pig latin: a not-so-foreign language for data processing." Proceedings

of the 2008 ACM SIGMOD international conference on Management of data. ACM, 2008,

Thusoo, Ashish, et al. "Hive: a warehousing solution over a map-reduce framework." Proceedings

of the VLDB Endowment 2.2 (2009): 1626-1629.

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the

2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.

Hadoop, Module 2: The Hadoop Distributed File System, Yahoo! http://developer.yahoo.com/

hadoop/tutorial/module2.ntml

Pig Tutorial,
http://pig.apache.org/docs/r0.7.0/index.html

Alan Gates: Programming Pig. O'Rellly Media, Inc. 201 |
http://ofps.oreilly.com/titles/978 144930264 | /index.html

Introduction to Pig, Cloudera 2009 http://blog.cloudera.com/wp-content/uploads/2010/01/
Intro ToPig.pdf

Universita degli Studi di Modena e-

€ DBGroup @ unimore

References

http://pig.apache.org/

https://hive.apache.org/

http://giraph.apache.org/

Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge

University Press, 201 I.
http://hadoop.apache.org/
https://www.coursera.org/course/datasci
https://www.coursera.org/course/mmds

https://www.coursera.org/course/bigdata

¥ ’V_

