
Università degli Studi di Modena e Reggio Emilia
1

D
BG

ro
up

 @
 u

nim
or

e

Giovanni Simonini

DBGroup
Università di Modena e Reggio Emilia

Dipartimento di Ingegneria “Enzo Ferrari”

Università degli Studi di Modena e Reggio Emilia
2

D
BG

ro
up

 @
 u

nim
or

e

•  Abstractions on top of MapReduce
–  Pig
–  Hive

•  MapReduce and Machine learning
–  Mahout

•  MapReduce and graphs
–  Giraph

Università degli Studi di Modena e Reggio Emilia
3

D
BG

ro
up

 @
 u

nim
or

e

Pig and Hive

Università degli Studi di Modena e Reggio Emilia
4

D
BG

ro
up

 @
 u

nim
or

e

High level languages: easier to program MR jobs

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 10^6

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>10^6;
output = FOREACH big_groups

GENERATE category, AVG(good_urls.pagerank);

urls:(url, category, pagerank)
PI

G
HI

VE
In

pu
t

Da
ta

Finds, for each sufficiently large category, the average pagerank of high-
pagerank urls in that category.

Università degli Studi di Modena e Reggio Emilia
5

D
BG

ro
up

 @
 u

nim
or

e

PIG and HIVE

•  Allow to express programs through declarative languages that is
transformed in a series of MapReduce Job.

•  Bring Relational Algebra on top of MapReduce
–  higher layer of abstraction that allows a series of optimization

of the generates MapReduce jobs

Università degli Studi di Modena e Reggio Emilia
6

D
BG

ro
up

 @
 u

nim
or

e

•  Pig provides an engine for executing data flow in parallel on
Hadoop
–  Pig Latin: language for expressing the data flows

• Operators for many traditional data operations (join, sort, filter)
• Ability to develop UDF (User Defined Function) for reading,

processing, and writing data

•  Pig Latin use cases tend to fall into three separate categories:
–  traditional extract transform load (ETL) data pipelines
–  research on raw data
–  iterative processing

Università degli Studi di Modena e Reggio Emilia
7

D
BG

ro
up

 @
 u

nim
or

e

A Pig Latin program describes a data flow

•  How do we go from Pig Latin to MapReduce?
–  Pig Compiler

• Complex execution environment that interacts with Hadoop
MapReduce

• Pig Latin operators are translated into MapReduce code

•  Pig Optimizer
–  Pig Latin data flows undergo an (automatic) optimization phase
–  These optimizations are borrowed from the RDBMS community (thanks

to Relational Algebra)

Università degli Studi di Modena e Reggio Emilia
8

D
BG

ro
up

 @
 u

nim
or

e

In Pig Latin
Users = load ‘users’ as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
 COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write

Università degli Studi di Modena e Reggio Emilia
9

D
BG

ro
up

 @
 u

nim
or

e

In MapReduce
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.substring(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.toString();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputCollector<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', firstComma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text key,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.setJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.setJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMapper.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRExample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFileOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputFormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

170 lines of code, 4 hours to write

Università degli Studi di Modena e Reggio Emilia
10

D
BG

ro
up

 @
 u

nim
or

e

•  Atom
–  Int, float, string …

•  Complex Types
–  Tuple

• An ordered set of fields, (19,2)
• Each field of any type

–  Bag
• A collection of tuples, {(19,2), (18,1)}
• not necessary the same type
• duplicate allowed

–  Map
• A set of key value pairs, [open#apache]

Università degli Studi di Modena e Reggio Emilia
11

D
BG

ro
up

 @
 u

nim
or

e

()

f1:atom f2:bag f3:map

a ,{(19,2),(18,1),(19,2)},[open#apache]

expression result
$0 a
f2 bag{(19,2),(18,1),(19,2)}
f2.$0 bag{(19),(18),(19)}
f3#’open’ ‘apache’
sum(f2.$1) 2 + 1 + 2

Università degli Studi di Modena e Reggio Emilia
12

D
BG

ro
up

 @
 u

nim
or

e

•  Schemas enable you to assign names to and declare types for fields
–  Schemas are optional

•  Type declarations result in better parse-time error checking and more
efficient code execution

•  You can define a schema that includes the field name and field type

•  Definition of a schema that includes the field name only
–  you can refer to that field using the name or by positional notation
–  the field type defaults to bytearray

•  Undefined schema
–  the field is un-named and the field type defaults to bytearray
–  you can only refer to the field using positional notation

Università degli Studi di Modena e Reggio Emilia
13

D
BG

ro
up

 @
 u

nim
or

e

•  Input is assumed to be a bag (sequence of tuples)

•  Assumes that every dataset is a sequence of tuples

•  Specify a parsing function with “USING”
–  you can define your own function

•  Specify a schema with “AS”

A = LOAD 'myfile.txt' USING PigStorage('\t') AS (a1,a2,a3);

Università degli Studi di Modena e Reggio Emilia
14

D
BG

ro
up

 @
 u

nim
or

e

•  FILTER
–  Getting rid of data
–  Arbitrary Boolean conditions
–  Regular expressions allowed

•  GROUP
–  The result is a relation that includes one tuple per group. This tuple

contains two fields:
•  The first field is named "group" and is the same type as the group key.
•  The second field takes the name of the original relation and is type bag.

•  COGROUP
–  similar to GROUP, but with multiple relations re involved

•  FOREACH
–  Takes a set of expressions and applies them to every record in the

pipeline

Università degli Studi di Modena e Reggio Emilia
15

D
BG

ro
up

 @
 u

nim
or

e

•  JOIN is a two-step process
–  Create groups with shared keys
–  Produce joined tuples

•  COGROUP only performs the first step
–  You might do different processing on the groups

Università degli Studi di Modena e Reggio Emilia
16

D
BG

ro
up

 @
 u

nim
or

e

Relational Operators
COGROUP
CROSS
DISTINCT
FILTER
FOREACH
GROUP
JOIN (inner/outer)
LIMIT
LOAD
ORDER
SAMPLE
SPLIT
STORE
STREAM
UNION

UDF Statements
DEFINE
REGISTER

Diagnostic Operators
DESCRIBE
DUMP
EXPLAIN
ILLUSTRATE

Eval Functions
AVG
CONCAT
COUNT
COUNT_STAR
DIFF
IsEmpty
MAX
MIN
SIZE
SUM
TOKENIZE

Load/Store Functions Handling
Compression
BinStorage
PigStorage
PigDump
TextLoader

Arithmetic Operators Arithmetic
Operators
Comparison Operators
Null Operators
Boolean Operators
Dereference Operators
Sign Operators
Flatten Operator
Cast Operators

Università degli Studi di Modena e Reggio Emilia
17

D
BG

ro
up

 @
 u

nim
or

e

A = LOAD ‘traffic.dat’ AS (ip, time, url);
B = GROUP A BY ip;  
C = FOREACH B GENERATE group AS ip,

COUNT(A);  
D = FILTER C BY ip IS ‘192.168.0.1’

OR ip IS ‘192.168.0.0’;
STORE D INTO ‘local_traffic.dat’;

LOAD

GROUP

FOREACH

FILTER

STORE

Lazy Evaluation:
no work is done until the store

Università degli Studi di Modena e Reggio Emilia
18

D
BG

ro
up

 @
 u

nim
or

e

1.  (CO)GROUP requires both
Map and Reduce phase:

–  create a MR job for each
(CO)GROUP

LOAD

FILTER

GROUP

FOREACH

STORE

M
R

2.  Adds other operator where
possible

Certain operator requires their
own MR job
(e.g. ORDER)

Università degli Studi di Modena e Reggio Emilia
19

D
BG

ro
up

 @
 u

nim
or

e

Conceptually speaking, our (CO)GROUP command places tuples
belonging to the same group into one or more nested bags.
•  In many cases, the system can avoid actually materializing these

bags, which is especially important when the bags are larger than
one machine’s main memory

•  One common case is where the user applies a algebraic
aggregation function over the result of a (CO)GROUP
operation

An algebraic function is one that can be structured as a tree of sub-
functions, with each leaf sub-function operating over a subset of the
input data. (remember monoids?)
•  If nodes in this tree achieve data reduction, then the system can

keep the amount of data materialized in any single location
small.

•  Examples: COUNT, SUM, MIN, MAX, AVERAGE, VARIANCE,
although some useful functions are not algebraic, e.g., MEDIAN

•  Pig provides a special API for algebraic UDF

Università degli Studi di Modena e Reggio Emilia
20

D
BG

ro
up

 @
 u

nim
or

e

MEMORY-BACKED JOIN:
•  If one of the two dataset can fit in memory, it is possible to store in memory

a copy of the dataset for each mapper
•  Reduce phase only to aggregate the data

SkewTune: Mitigating Skew in MapReduce Applications

YongChul Kwon1, Magdalena Balazinska1, Bill Howe1, Jerome Rolia2

1 University of Washington, 2 HP Labs
{yongchul,magda,billhowe}@cs.washington.edu, jerry.rolia@hp.com

ABSTRACT
We present an automatic skew mitigation approach for user-
defined MapReduce programs and present SkewTune, a sys-
tem that implements this approach as a drop-in replacement
for an existing MapReduce implementation. There are three
key challenges: (a) require no extra input from the user
yet work for all MapReduce applications, (b) be completely
transparent, and (c) impose minimal overhead if there is no
skew. The SkewTune approach addresses these challenges
and works as follows: When a node in the cluster becomes
idle, SkewTune identifies the task with the greatest expected
remaining processing time. The unprocessed input data of
this straggling task is then proactively repartitioned in a way
that fully utilizes the nodes in the cluster and preserves the
ordering of the input data so that the original output can be
reconstructed by concatenation. We implement SkewTune
as an extension to Hadoop and evaluate its e↵ectiveness us-
ing several real applications. The results show that Skew-
Tune can significantly reduce job runtime in the presence of
skew and adds little to no overhead in the absence of skew.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed

databases, Parallel databases, Query processing

General Terms
Design, Performance

1. INTRODUCTION
Today, companies, researchers, and governments accu-

mulate increasingly large amounts of data that they pro-
cess using advanced analytics. We observe that the in-
creased demand for complex analytics support has trans-
lated into an increased demand for user-defined operations
(UDOs) — relational algebra and its close derivatives are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

0 100 200 300
Time (seconds)

Ta
sk

s

Shuffle

Sort

Exec

M
A
P

R
E
D
U
C
E

Figure 1: A timing chart of a MapReduce job run-
ning the PageRank algorithm from Cloud 9 [18]. Exec
represents the actual map and reduce operations. The
slowest map task (first one from the top) takes more than
twice as long to complete as the second slowest map task,
which is still five times slower than the average. If all
tasks took approximately the same amount of time, the
job would have completed in less than half the time.

not enough [23, 32]. But UDOs complicate the algebraic
reasoning and other simplifying assumptions relied on by the
database community to optimize execution. Instead devel-
opers rely on “tricks” to achieve high performance: ordering
properties of intermediate results, custom partitioning func-
tions, extensions to support pipelining [33] and iteration [5],
and assumptions about the number of partitions. For ex-
ample, the Hadoop-based sort algorithm that won the tera-
sort benchmark in 2008 required a custom partition func-
tion to prescribe a global order on the data [27]. Moreover,
when these UDOs are assembled into complex workflows,
the overall correctness and performance of the application
becomes sensitive to the characteristics of individual oper-
ations. Transparent optimization in the context of realistic
UDO programming practices is a key goal in this work. In
particular, we tackle the challenge of e↵ective UDO paral-
lelization.
MapReduce [6] has proven itself as a powerful and cost-

e↵ective approach for writing UDOs and applying them to
massive-scale datasets [2]. MapReduce provides a simple
API for writing UDOs: a user only needs to specify a serial

SKEW JOIN:
•  Struggler tasks: a small fraction of reducers (even only one)

are doing the majority of the work
•  load imbalances will swamp any of the parallelism gains

–  e.g.: most of the keys have few hundreds of tuples, while only
one joining key correspond to millions of tuples

•  Solution:
–  computes a histogram of the key space and uses this

data to allocate reducers for a given key
–  splits the left input on the join predicate and streaming

the right input

C = JOIN big BY b1, tiny BY t1, mini BY m1 USING 'replicated';

C = JOIN big BY b1, massive BY m1 USING 'skewed';

Università degli Studi di Modena e Reggio Emilia
21

D
BG

ro
up

 @
 u

nim
or

e

Pig MapReduce
Pig Latin provides standard data-processing
operations, such as join, filter, group by, order
by, union, …

MapReduce provides the group by
operation directly, the order by operation
indirectly through the grouping. Filter and
projection can be implemented in the map
phase

Pig provides some complex implementations
of standard data operations.
•  For example the data sent to the reducers is

often skewed.
•  Pig has join and order by operators that will

handle this case and (in some cases) rebalance
the reducers.

In MapReduce, the data processing inside the
map and reduce phases is opaque to the
system. This means that MapReduce has no
opportunity to optimize or check the user’
code

Pig, can analyze a Pig Latin script and
understand the data flow that the user is
describing.
•  It can do early error checking and

optimizations

MapReduce does not have a type system.
This gives users the flexibility to use their
own data types and serialization frameworks.
•  this limits the system’s ability to check users’

code for errors both before and during
runtime.

Università degli Studi di Modena e Reggio Emilia
22

D
BG

ro
up

 @
 u

nim
or

e

Are your problem
suited for Pig?

Use Pig Try Pig Anyway

Does it works?

Use MapReduce

Yes

No

•  Writing and optimizing MapReduce code
requires Java expert

•  MapReduce is not a place where learn Java
•  Using Pig the code does not loose in

performance
•  Using Pig help to think to the dataflow of

the solution to your problem
-  Pig has an interactive shell…

Università degli Studi di Modena e Reggio Emilia
23

D
BG

ro
up

 @
 u

nim
or

e

•  Grunt is Pig’s interactive shell

–  Local Mode���
To run the scripts in local mode, no Hadoop or HDFS installation is
required

–  Mapreduce Mode���
To run the scripts in mapreduce mode, you need access to a Hadoop
cluster and HDFS installation

pig {–x local}

Università degli Studi di Modena e Reggio Emilia
24

D
BG

ro
up

 @
 u

nim
or

e

Hive
•  Provide a SQL-like language (HiveQL)
•  Under the covers, generates MapReduce jobs that run on Hadoop (like Pig)
•  Enabling Hive requires almost no extra work by the system administrator

Hive Data Model
•  Requires table definition

–  typed columns (int, float, string, boolean…)
–  allows array, struct, map…

•  Hive Metastore
–  a database containing table definition and other metadata
–  Default: stored locally on the client machine in a Derby database (embedded

RDBMS)
–  if needed: shared Metastore (usually MySQL).

•  but the system administrator should create it

Università degli Studi di Modena e Reggio Emilia
25

D
BG

ro
up

 @
 u

nim
or

e

•  Not all ‘standard’ SQL is supported
–  Subqueries are only supported in the FROM clause
–  No correlated subqueries

•  No support for UPDATE or DELETE

•  All inserts overwrite the existing data. Accordingly, Hive has an
explicit syntax:
–  INSERT OVERWRITE TABLE t1
The only option is to append row to the table:
–  INSERT INTO TABLE t1

Università degli Studi di Modena e Reggio Emilia
26

D
BG

ro
up

 @
 u

nim
or

e

Pig Hive

PIG LATIN HiveQL (~SQL)

Schema defined dynamically while
importing data

text = LOAD ’PATH_TO_FILE’ AS
(freq:INT, word:CHARARRAY);

Schema defined before importing data, e.g.:

CREATE TABLE text (freq INT, word
STRING)
ROW FORMAT DELIMITED
FIELD TERMINATED BY ‘\t’
STORE AS TEXTFILE;

LOAD DATA INPATH ‘PATH_TO_FILE’
INTO TABLE text

Università degli Studi di Modena e Reggio Emilia
27

D
BG

ro
up

 @
 u

nim
or

e

Mahout

Università degli Studi di Modena e Reggio Emilia
28

D
BG

ro
up

 @
 u

nim
or

e

In theory, Mahout is a project open to implementations of all kinds of machine
learning techniques
In practice, it’s a project that focuses on three key areas of machine learning at
the moment. These are recommender engines (collaborative filtering),
clustering, and classification

Recommendation
•  For a given set of input, make a recommendation
•  Rank the best out of many possibilities

Clustering
•  Finding similar groups (based on a definition of similarity)
•  Algorithms do not require training
•  Stopping condition: iterate until close enough

Classification
•  identifying to which of a set of (predefined)categories a new observation belongs
•  Algorithms do require training

Università degli Studi di Modena e Reggio Emilia
29

D
BG

ro
up

 @
 u

nim
or

e

Scala & Spark Bindings for Mahout:
•  Scala DSL and algebraic optimizer

-  The main idea is that a scientist writing algebraic expressions cannot care
less of distributed operation plans and works entirely on the logical level
just like he or she would do with R.

-  Another idea is decoupling logical expression from distributed back-end. As
more back-ends are added, this implies "write once, run everywhere".

Università degli Studi di Modena e Reggio Emilia
30

D
BG

ro
up

 @
 u

nim
or

e

http://mahout.apache.org/users/basics/algorithms.html

Università degli Studi di Modena e Reggio Emilia
31

D
BG

ro
up

 @
 u

nim
or

e

http://mahout.apache.org/users/basics/algorithms.html

Università degli Studi di Modena e Reggio Emilia
32

D
BG

ro
up

 @
 u

nim
or

e

http://mahout.apache.org/users/basics/algorithms.html

Università degli Studi di Modena e Reggio Emilia
33

D
BG

ro
up

 @
 u

nim
or

e

Giraph

Università degli Studi di Modena e Reggio Emilia
34

D
BG

ro
up

 @
 u

nim
or

e

•  Representing graphs in MapReduce is complex (and “unnatural”):���
e.g: <key: vertex_id ; value:{weight,…, [list of neighbor] }>

•  Computation is not efficient:
-  Each vertex depends on its neighbors, recursively
-  Recursive problems are nicely solved iteratively
-  In MapReduce iterations means chains of MR jobs

§  must store graph state in each stage, too much communication
between stages

Solution
•  Pregel (Google 2010)
•  Giraph (Apache open-source equivalent)

Università degli Studi di Modena e Reggio Emilia
35

D
BG

ro
up

 @
 u

nim
or

e

Solution: BSP (Bulk Synchronous Parallel)

•  Computations consist of a sequence of iterations, called supersteps.

•  During a superstep the framework invokes a user-defined function for each vertex,
conceptually in parallel.

•  The function specifies behavior at a single vertex V and a single superstep S.

•  It can read messages sent to V in superstep S − 1, send messages to other vertices that
will be received at superstep S +1, and modify the state of V and its outgoing edges.

•  Messages are typically sent along outgoing edges, but a message may be sent to any
vertex whose identifier is known.

•  The synchronicity of this model makes it easier to reason about program semantics
when implementing algorithms, and ensures that Giraph programs are inherently free of
dead-locks and data races (common in asynchronous systems).

Università degli Studi di Modena e Reggio Emilia
36

D
BG

ro
up

 @
 u

nim
or

e

Università degli Studi di Modena e Reggio Emilia
37

D
BG

ro
up

 @
 u

nim
or

e

3 6 2 1

6 6 2 6

6 6 6 6

6 6 6 6

Università degli Studi di Modena e Reggio Emilia
38

D
BG

ro
up

 @
 u

nim
or

e

•  The assignment of vertices to worker machines is the main place where
distribution is not transparent in Giraph.

•  Some applications work well with the default assignment, but some benefit
from defining custom assignment functions to better exploit locality inherent
in the graph.
–  custom partitioning function (similar to the customPartitioner in Hadoop)

•  E.g., a typical heuristic employed for the Web graph is to co-locate vertices
representing pages of the same site

Università degli Studi di Modena e Reggio Emilia
39

D
BG

ro
up

 @
 u

nim
or

e

public void compute(Iterable<DoubleWritable> messages) {
 double minDist = Double.MAX_VALUE;
 for (DoubleWritable message : messages) {
 minDist = Math.min(minDist, message.get());
 }
 if (minDist < getValue().get()) {
 setValue(new DoubleWritable(minDist));
 for (Edge<LongWritable, FloatWritable> edge : getEdges()) {
 double distance = minDist + edge.getValue().get();
 sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance));
 }
 }
 voteToHalt();
}

Università degli Studi di Modena e Reggio Emilia
40

D
BG

ro
up

 @
 u

nim
or

e

Machine Learning library for Giraph

•  Collaborative Filtering
–  Alternating Least Squares (ALS)
–  Bayesian Personalized Ranking (BPR) –beta-
–  Collaborative Less-is-More Filtering (CLiMF) –beta-
–  Singular Value Decomposition (SVD++)
–  Stochastic Gradient Descent (SGD)

•  Graph Analytics
–  Graph partitioning
–  Similarity
–  SybilRank

•  Clustering
–  Kmeans

http://grafos.ml/#Okapi

Università degli Studi di Modena e Reggio Emilia
41

D
BG

ro
up

 @
 u

nim
or

e

§  Olston, Christopher, et al. "Pig latin: a not-so-foreign language for data processing." Proceedings

of the 2008 ACM SIGMOD international conference on Management of data. ACM, 2008.

§  Thusoo, Ashish, et al. "Hive: a warehousing solution over a map-reduce framework." Proceedings

of the VLDB Endowment 2.2 (2009): 1626-1629.

§  Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the

2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.

§  Hadoop, Module 2: The Hadoop Distributed File System, Yahoo! http://developer.yahoo.com/

hadoop/tutorial/module2.html

§  Pig Tutorial,���

http://pig.apache.org/docs/r0.7.0/index.html

§  Alan Gates: Programming Pig. O'Reilly Media, Inc. 2011���

http://ofps.oreilly.com/titles/9781449302641/index.html

§  Introduction to Pig, Cloudera 2009 http://blog.cloudera.com/wp-content/uploads/2010/01/

IntroToPig.pdf

Università degli Studi di Modena e Reggio Emilia
42

D
BG

ro
up

 @
 u

nim
or

e

§  http://pig.apache.org/

§  https://hive.apache.org/

§  http://giraph.apache.org/

§  Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

§  Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge

University Press, 2011.

§  http://hadoop.apache.org/

§  https://www.coursera.org/course/datasci

§  https://www.coursera.org/course/mmds

§  https://www.coursera.org/course/bigdata

